qemu/hw/ppc/spapr_rtas.c

398 lines
13 KiB
C
Raw Normal View History

/*
* QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
*
* Hypercall based emulated RTAS
*
* Copyright (c) 2010-2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
*/
#include "cpu.h"
#include "sysemu/sysemu.h"
#include "sysemu/char.h"
#include "hw/qdev.h"
#include "sysemu/device_tree.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_vio.h"
#include "qapi-event.h"
#include <libfdt.h>
static void rtas_display_character(PowerPCCPU *cpu, sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint8_t c = rtas_ld(args, 0);
VIOsPAPRDevice *sdev = vty_lookup(spapr, 0);
if (!sdev) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
} else {
vty_putchars(sdev, &c, sizeof(c));
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
}
static void rtas_get_time_of_day(PowerPCCPU *cpu, sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
struct tm tm;
if (nret != 8) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
qemu_get_timedate(&tm, spapr->rtc_offset);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
rtas_st(rets, 1, tm.tm_year + 1900);
rtas_st(rets, 2, tm.tm_mon + 1);
rtas_st(rets, 3, tm.tm_mday);
rtas_st(rets, 4, tm.tm_hour);
rtas_st(rets, 5, tm.tm_min);
rtas_st(rets, 6, tm.tm_sec);
rtas_st(rets, 7, 0); /* we don't do nanoseconds */
}
static void rtas_set_time_of_day(PowerPCCPU *cpu, sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
struct tm tm;
tm.tm_year = rtas_ld(args, 0) - 1900;
tm.tm_mon = rtas_ld(args, 1) - 1;
tm.tm_mday = rtas_ld(args, 2);
tm.tm_hour = rtas_ld(args, 3);
tm.tm_min = rtas_ld(args, 4);
tm.tm_sec = rtas_ld(args, 5);
/* Just generate a monitor event for the change */
qapi_event_send_rtc_change(qemu_timedate_diff(&tm), &error_abort);
spapr->rtc_offset = qemu_timedate_diff(&tm);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static void rtas_power_off(PowerPCCPU *cpu, sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs, target_ulong args,
uint32_t nret, target_ulong rets)
{
if (nargs != 2 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
qemu_system_shutdown_request();
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static void rtas_system_reboot(PowerPCCPU *cpu, sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
if (nargs != 0 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
qemu_system_reset_request();
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
}
static void rtas_query_cpu_stopped_state(PowerPCCPU *cpu_,
sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong id;
PowerPCCPU *cpu;
if (nargs != 1 || nret != 2) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
id = rtas_ld(args, 0);
cpu = ppc_get_vcpu_by_dt_id(id);
if (cpu != NULL) {
if (CPU(cpu)->halted) {
rtas_st(rets, 1, 0);
} else {
rtas_st(rets, 1, 2);
}
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
return;
}
/* Didn't find a matching cpu */
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_start_cpu(PowerPCCPU *cpu_, sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong id, start, r3;
PowerPCCPU *cpu;
if (nargs != 3 || nret != 1) {
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return;
}
id = rtas_ld(args, 0);
start = rtas_ld(args, 1);
r3 = rtas_ld(args, 2);
cpu = ppc_get_vcpu_by_dt_id(id);
if (cpu != NULL) {
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
if (!cs->halted) {
rtas_st(rets, 0, RTAS_OUT_HW_ERROR);
return;
}
pseries: Fix and cleanup CPU initialization and reset The current pseries machine init function iterates over the CPUs at several points, doing various bits of initialization. This is messy; these can and should be merged into a single iteration doing all the necessary per cpu initialization. Worse, some of these initializations were setting up state which should be set on every reset, not just at machine init time. A few of the initializations simply weren't necessary at all. This patch, therefore, moves those things that need to be to the per-cpu reset handler, and combines the remainder into two loops over the cpus (which also creates them). The second loop is for setting up hash table information, and will be removed in a subsequent patch also making other fixes to the hash table setup. This exposes a bug in our start-cpu RTAS routine (called by the guest to start up CPUs other than CPU0) under kvm. Previously, this function did not make a call to ensure that it's changes to the new cpu's state were pushed into KVM in-kernel state. We sort-of got away with this because some of the initializations had already placed the secondary CPUs into the right starting state for the sorts of Linux guests we've been running. Nonetheless the start-cpu RTAS call's behaviour was not correct and could easily have been broken by guest changes. This patch also fixes it. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Andreas Färber <afaerber@suse.de> Signed-off-by: Alexander Graf <agraf@suse.de>
2012-09-13 00:57:10 +08:00
/* This will make sure qemu state is up to date with kvm, and
* mark it dirty so our changes get flushed back before the
* new cpu enters */
kvm_cpu_synchronize_state(cs);
pseries: Fix and cleanup CPU initialization and reset The current pseries machine init function iterates over the CPUs at several points, doing various bits of initialization. This is messy; these can and should be merged into a single iteration doing all the necessary per cpu initialization. Worse, some of these initializations were setting up state which should be set on every reset, not just at machine init time. A few of the initializations simply weren't necessary at all. This patch, therefore, moves those things that need to be to the per-cpu reset handler, and combines the remainder into two loops over the cpus (which also creates them). The second loop is for setting up hash table information, and will be removed in a subsequent patch also making other fixes to the hash table setup. This exposes a bug in our start-cpu RTAS routine (called by the guest to start up CPUs other than CPU0) under kvm. Previously, this function did not make a call to ensure that it's changes to the new cpu's state were pushed into KVM in-kernel state. We sort-of got away with this because some of the initializations had already placed the secondary CPUs into the right starting state for the sorts of Linux guests we've been running. Nonetheless the start-cpu RTAS call's behaviour was not correct and could easily have been broken by guest changes. This patch also fixes it. Signed-off-by: David Gibson <david@gibson.dropbear.id.au> Reviewed-by: Andreas Färber <afaerber@suse.de> Signed-off-by: Alexander Graf <agraf@suse.de>
2012-09-13 00:57:10 +08:00
env->msr = (1ULL << MSR_SF) | (1ULL << MSR_ME);
env->nip = start;
env->gpr[3] = r3;
cs->halted = 0;
qemu_cpu_kick(cs);
rtas_st(rets, 0, RTAS_OUT_SUCCESS);
return;
}
/* Didn't find a matching cpu */
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
}
static void rtas_stop_self(PowerPCCPU *cpu, sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
CPUState *cs = CPU(cpu);
CPUPPCState *env = &cpu->env;
cs->halted = 1;
cpu_exit(cs);
/*
* While stopping a CPU, the guest calls H_CPPR which
* effectively disables interrupts on XICS level.
* However decrementer interrupts in TCG can still
* wake the CPU up so here we disable interrupts in MSR
* as well.
* As rtas_start_cpu() resets the whole MSR anyway, there is
* no need to bother with specific bits, we just clear it.
*/
env->msr = 0;
}
#define DIAGNOSTICS_RUN_MODE 42
static void rtas_ibm_get_system_parameter(PowerPCCPU *cpu,
sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong parameter = rtas_ld(args, 0);
target_ulong buffer = rtas_ld(args, 1);
target_ulong length = rtas_ld(args, 2);
target_ulong ret = RTAS_OUT_NOT_SUPPORTED;
switch (parameter) {
case DIAGNOSTICS_RUN_MODE:
if (length == 1) {
rtas_st(buffer, 0, 0);
ret = RTAS_OUT_SUCCESS;
}
break;
}
rtas_st(rets, 0, ret);
}
static void rtas_ibm_set_system_parameter(PowerPCCPU *cpu,
sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
target_ulong parameter = rtas_ld(args, 0);
target_ulong ret = RTAS_OUT_NOT_SUPPORTED;
switch (parameter) {
case DIAGNOSTICS_RUN_MODE:
ret = RTAS_OUT_NOT_AUTHORIZED;
break;
}
rtas_st(rets, 0, ret);
}
static struct rtas_call {
const char *name;
spapr_rtas_fn fn;
} rtas_table[RTAS_TOKEN_MAX - RTAS_TOKEN_BASE];
target_ulong spapr_rtas_call(PowerPCCPU *cpu, sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs, target_ulong args,
uint32_t nret, target_ulong rets)
{
if ((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX)) {
struct rtas_call *call = rtas_table + (token - RTAS_TOKEN_BASE);
if (call->fn) {
call->fn(cpu, spapr, token, nargs, args, nret, rets);
return H_SUCCESS;
}
}
/* HACK: Some Linux early debug code uses RTAS display-character,
* but assumes the token value is 0xa (which it is on some real
* machines) without looking it up in the device tree. This
* special case makes this work */
if (token == 0xa) {
rtas_display_character(cpu, spapr, 0xa, nargs, args, nret, rets);
return H_SUCCESS;
}
hcall_dprintf("Unknown RTAS token 0x%x\n", token);
rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
return H_PARAMETER;
}
void spapr_rtas_register(int token, const char *name, spapr_rtas_fn fn)
{
if (!((token >= RTAS_TOKEN_BASE) && (token < RTAS_TOKEN_MAX))) {
fprintf(stderr, "RTAS invalid token 0x%x\n", token);
exit(1);
}
token -= RTAS_TOKEN_BASE;
if (rtas_table[token].name) {
fprintf(stderr, "RTAS call \"%s\" is registered already as 0x%x\n",
rtas_table[token].name, token);
exit(1);
}
rtas_table[token].name = name;
rtas_table[token].fn = fn;
}
int spapr_rtas_device_tree_setup(void *fdt, hwaddr rtas_addr,
hwaddr rtas_size)
{
int ret;
int i;
ret = fdt_add_mem_rsv(fdt, rtas_addr, rtas_size);
if (ret < 0) {
fprintf(stderr, "Couldn't add RTAS reserve entry: %s\n",
fdt_strerror(ret));
return ret;
}
ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-base",
rtas_addr);
if (ret < 0) {
fprintf(stderr, "Couldn't add linux,rtas-base property: %s\n",
fdt_strerror(ret));
return ret;
}
ret = qemu_fdt_setprop_cell(fdt, "/rtas", "linux,rtas-entry",
rtas_addr);
if (ret < 0) {
fprintf(stderr, "Couldn't add linux,rtas-entry property: %s\n",
fdt_strerror(ret));
return ret;
}
ret = qemu_fdt_setprop_cell(fdt, "/rtas", "rtas-size",
rtas_size);
if (ret < 0) {
fprintf(stderr, "Couldn't add rtas-size property: %s\n",
fdt_strerror(ret));
return ret;
}
for (i = 0; i < RTAS_TOKEN_MAX - RTAS_TOKEN_BASE; i++) {
struct rtas_call *call = &rtas_table[i];
if (!call->name) {
continue;
}
ret = qemu_fdt_setprop_cell(fdt, "/rtas", call->name,
i + RTAS_TOKEN_BASE);
if (ret < 0) {
fprintf(stderr, "Couldn't add rtas token for %s: %s\n",
call->name, fdt_strerror(ret));
return ret;
}
}
return 0;
}
static void core_rtas_register_types(void)
{
spapr_rtas_register(RTAS_DISPLAY_CHARACTER, "display-character",
rtas_display_character);
spapr_rtas_register(RTAS_GET_TIME_OF_DAY, "get-time-of-day",
rtas_get_time_of_day);
spapr_rtas_register(RTAS_SET_TIME_OF_DAY, "set-time-of-day",
rtas_set_time_of_day);
spapr_rtas_register(RTAS_POWER_OFF, "power-off", rtas_power_off);
spapr_rtas_register(RTAS_SYSTEM_REBOOT, "system-reboot",
rtas_system_reboot);
spapr_rtas_register(RTAS_QUERY_CPU_STOPPED_STATE, "query-cpu-stopped-state",
rtas_query_cpu_stopped_state);
spapr_rtas_register(RTAS_START_CPU, "start-cpu", rtas_start_cpu);
spapr_rtas_register(RTAS_STOP_SELF, "stop-self", rtas_stop_self);
spapr_rtas_register(RTAS_IBM_GET_SYSTEM_PARAMETER,
"ibm,get-system-parameter",
rtas_ibm_get_system_parameter);
spapr_rtas_register(RTAS_IBM_SET_SYSTEM_PARAMETER,
"ibm,set-system-parameter",
rtas_ibm_set_system_parameter);
}
type_init(core_rtas_register_types)