qemu/hw/ssi/xilinx_spips.c

901 lines
28 KiB
C
Raw Normal View History

/*
* QEMU model of the Xilinx Zynq SPI controller
*
* Copyright (c) 2012 Peter A. G. Crosthwaite
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/sysbus.h"
#include "sysemu/sysemu.h"
#include "hw/ptimer.h"
#include "qemu/log.h"
#include "qemu/bitops.h"
#include "hw/ssi/xilinx_spips.h"
#include "qapi/error.h"
#include "hw/register.h"
#include "migration/blocker.h"
#ifndef XILINX_SPIPS_ERR_DEBUG
#define XILINX_SPIPS_ERR_DEBUG 0
#endif
#define DB_PRINT_L(level, ...) do { \
if (XILINX_SPIPS_ERR_DEBUG > (level)) { \
fprintf(stderr, ": %s: ", __func__); \
fprintf(stderr, ## __VA_ARGS__); \
} \
} while (0);
/* config register */
#define R_CONFIG (0x00 / 4)
#define IFMODE (1U << 31)
#define ENDIAN (1 << 26)
#define MODEFAIL_GEN_EN (1 << 17)
#define MAN_START_COM (1 << 16)
#define MAN_START_EN (1 << 15)
#define MANUAL_CS (1 << 14)
#define CS (0xF << 10)
#define CS_SHIFT (10)
#define PERI_SEL (1 << 9)
#define REF_CLK (1 << 8)
#define FIFO_WIDTH (3 << 6)
#define BAUD_RATE_DIV (7 << 3)
#define CLK_PH (1 << 2)
#define CLK_POL (1 << 1)
#define MODE_SEL (1 << 0)
#define R_CONFIG_RSVD (0x7bf40000)
/* interrupt mechanism */
#define R_INTR_STATUS (0x04 / 4)
#define R_INTR_EN (0x08 / 4)
#define R_INTR_DIS (0x0C / 4)
#define R_INTR_MASK (0x10 / 4)
#define IXR_TX_FIFO_UNDERFLOW (1 << 6)
#define IXR_RX_FIFO_FULL (1 << 5)
#define IXR_RX_FIFO_NOT_EMPTY (1 << 4)
#define IXR_TX_FIFO_FULL (1 << 3)
#define IXR_TX_FIFO_NOT_FULL (1 << 2)
#define IXR_TX_FIFO_MODE_FAIL (1 << 1)
#define IXR_RX_FIFO_OVERFLOW (1 << 0)
#define IXR_ALL ((IXR_TX_FIFO_UNDERFLOW<<1)-1)
#define R_EN (0x14 / 4)
#define R_DELAY (0x18 / 4)
#define R_TX_DATA (0x1C / 4)
#define R_RX_DATA (0x20 / 4)
#define R_SLAVE_IDLE_COUNT (0x24 / 4)
#define R_TX_THRES (0x28 / 4)
#define R_RX_THRES (0x2C / 4)
#define R_TXD1 (0x80 / 4)
#define R_TXD2 (0x84 / 4)
#define R_TXD3 (0x88 / 4)
#define R_LQSPI_CFG (0xa0 / 4)
#define R_LQSPI_CFG_RESET 0x03A002EB
#define LQSPI_CFG_LQ_MODE (1U << 31)
#define LQSPI_CFG_TWO_MEM (1 << 30)
#define LQSPI_CFG_SEP_BUS (1 << 30)
#define LQSPI_CFG_U_PAGE (1 << 28)
#define LQSPI_CFG_MODE_EN (1 << 25)
#define LQSPI_CFG_MODE_WIDTH 8
#define LQSPI_CFG_MODE_SHIFT 16
#define LQSPI_CFG_DUMMY_WIDTH 3
#define LQSPI_CFG_DUMMY_SHIFT 8
#define LQSPI_CFG_INST_CODE 0xFF
#define R_CMND (0xc0 / 4)
#define R_CMND_RXFIFO_DRAIN (1 << 19)
FIELD(CMND, PARTIAL_BYTE_LEN, 16, 3)
#define R_CMND_EXT_ADD (1 << 15)
FIELD(CMND, RX_DISCARD, 8, 7)
FIELD(CMND, DUMMY_CYCLES, 2, 6)
#define R_CMND_DMA_EN (1 << 1)
#define R_CMND_PUSH_WAIT (1 << 0)
#define R_LQSPI_STS (0xA4 / 4)
#define LQSPI_STS_WR_RECVD (1 << 1)
#define R_MOD_ID (0xFC / 4)
/* size of TXRX FIFOs */
#define RXFF_A 32
#define TXFF_A 32
#define RXFF_A_Q (64 * 4)
#define TXFF_A_Q (64 * 4)
/* 16MB per linear region */
#define LQSPI_ADDRESS_BITS 24
#define SNOOP_CHECKING 0xFF
#define SNOOP_ADDR 0xF0
#define SNOOP_NONE 0xEE
#define SNOOP_STRIPING 0
static inline int num_effective_busses(XilinxSPIPS *s)
{
return (s->regs[R_LQSPI_CFG] & LQSPI_CFG_SEP_BUS &&
s->regs[R_LQSPI_CFG] & LQSPI_CFG_TWO_MEM) ? s->num_busses : 1;
}
static inline bool xilinx_spips_cs_is_set(XilinxSPIPS *s, int i, int field)
{
return ~field & (1 << i) && (s->regs[R_CONFIG] & MANUAL_CS
|| !fifo8_is_empty(&s->tx_fifo));
}
static void xilinx_spips_update_cs_lines(XilinxSPIPS *s)
{
int i, j;
bool found = false;
int field = s->regs[R_CONFIG] >> CS_SHIFT;
for (i = 0; i < s->num_cs; i++) {
for (j = 0; j < num_effective_busses(s); j++) {
int upage = !!(s->regs[R_LQSPI_STS] & LQSPI_CFG_U_PAGE);
int cs_to_set = (j * s->num_cs + i + upage) %
(s->num_cs * s->num_busses);
if (xilinx_spips_cs_is_set(s, i, field) && !found) {
DB_PRINT_L(0, "selecting slave %d\n", i);
qemu_set_irq(s->cs_lines[cs_to_set], 0);
if (s->cs_lines_state[cs_to_set]) {
s->cs_lines_state[cs_to_set] = false;
s->rx_discard = ARRAY_FIELD_EX32(s->regs, CMND, RX_DISCARD);
}
} else {
DB_PRINT_L(0, "deselecting slave %d\n", i);
qemu_set_irq(s->cs_lines[cs_to_set], 1);
s->cs_lines_state[cs_to_set] = true;
}
}
if (xilinx_spips_cs_is_set(s, i, field)) {
found = true;
}
}
if (!found) {
s->snoop_state = SNOOP_CHECKING;
s->cmd_dummies = 0;
s->link_state = 1;
s->link_state_next = 1;
s->link_state_next_when = 0;
DB_PRINT_L(1, "moving to snoop check state\n");
}
}
static void xilinx_spips_update_ixr(XilinxSPIPS *s)
{
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE) {
return;
}
/* These are set/cleared as they occur */
s->regs[R_INTR_STATUS] &= (IXR_TX_FIFO_UNDERFLOW | IXR_RX_FIFO_OVERFLOW |
IXR_TX_FIFO_MODE_FAIL);
/* these are pure functions of fifo state, set them here */
s->regs[R_INTR_STATUS] |=
(fifo8_is_full(&s->rx_fifo) ? IXR_RX_FIFO_FULL : 0) |
(s->rx_fifo.num >= s->regs[R_RX_THRES] ? IXR_RX_FIFO_NOT_EMPTY : 0) |
(fifo8_is_full(&s->tx_fifo) ? IXR_TX_FIFO_FULL : 0) |
(s->tx_fifo.num < s->regs[R_TX_THRES] ? IXR_TX_FIFO_NOT_FULL : 0);
/* drive external interrupt pin */
int new_irqline = !!(s->regs[R_INTR_MASK] & s->regs[R_INTR_STATUS] &
IXR_ALL);
if (new_irqline != s->irqline) {
s->irqline = new_irqline;
qemu_set_irq(s->irq, s->irqline);
}
}
static void xilinx_spips_reset(DeviceState *d)
{
XilinxSPIPS *s = XILINX_SPIPS(d);
int i;
for (i = 0; i < XLNX_SPIPS_R_MAX; i++) {
s->regs[i] = 0;
}
fifo8_reset(&s->rx_fifo);
fifo8_reset(&s->rx_fifo);
/* non zero resets */
s->regs[R_CONFIG] |= MODEFAIL_GEN_EN;
s->regs[R_SLAVE_IDLE_COUNT] = 0xFF;
s->regs[R_TX_THRES] = 1;
s->regs[R_RX_THRES] = 1;
/* FIXME: move magic number definition somewhere sensible */
s->regs[R_MOD_ID] = 0x01090106;
s->regs[R_LQSPI_CFG] = R_LQSPI_CFG_RESET;
s->link_state = 1;
s->link_state_next = 1;
s->link_state_next_when = 0;
s->snoop_state = SNOOP_CHECKING;
s->cmd_dummies = 0;
xilinx_spips_update_ixr(s);
xilinx_spips_update_cs_lines(s);
}
/* N way (num) in place bit striper. Lay out row wise bits (MSB to LSB)
* column wise (from element 0 to N-1). num is the length of x, and dir
* reverses the direction of the transform. Best illustrated by example:
* Each digit in the below array is a single bit (num == 3):
*
* {{ 76543210, } ----- stripe (dir == false) -----> {{ 741gdaFC, }
* { hgfedcba, } { 630fcHEB, }
* { HGFEDCBA, }} <---- upstripe (dir == true) ----- { 52hebGDA, }}
*/
static inline void stripe8(uint8_t *x, int num, bool dir)
{
uint8_t r[num];
memset(r, 0, sizeof(uint8_t) * num);
int idx[2] = {0, 0};
int bit[2] = {0, 7};
int d = dir;
for (idx[0] = 0; idx[0] < num; ++idx[0]) {
for (bit[0] = 7; bit[0] >= 0; bit[0]--) {
r[idx[!d]] |= x[idx[d]] & 1 << bit[d] ? 1 << bit[!d] : 0;
idx[1] = (idx[1] + 1) % num;
if (!idx[1]) {
bit[1]--;
}
}
}
memcpy(x, r, sizeof(uint8_t) * num);
}
static int xilinx_spips_num_dummies(XilinxQSPIPS *qs, uint8_t command)
{
if (!qs) {
/* The SPI device is not a QSPI device */
return -1;
}
switch (command) { /* check for dummies */
case READ: /* no dummy bytes/cycles */
case PP:
case DPP:
case QPP:
case READ_4:
case PP_4:
case QPP_4:
return 0;
case FAST_READ:
case DOR:
case QOR:
case DOR_4:
case QOR_4:
return 1;
case DIOR:
case FAST_READ_4:
case DIOR_4:
return 2;
case QIOR:
case QIOR_4:
return 5;
default:
return -1;
}
}
static inline uint8_t get_addr_length(XilinxSPIPS *s, uint8_t cmd)
{
switch (cmd) {
case PP_4:
case QPP_4:
case READ_4:
case QIOR_4:
case FAST_READ_4:
case DOR_4:
case QOR_4:
case DIOR_4:
return 4;
default:
return (s->regs[R_CMND] & R_CMND_EXT_ADD) ? 4 : 3;
}
}
static void xilinx_spips_flush_txfifo(XilinxSPIPS *s)
{
int debug_level = 0;
XilinxQSPIPS *q = (XilinxQSPIPS *) object_dynamic_cast(OBJECT(s),
TYPE_XILINX_QSPIPS);
for (;;) {
int i;
uint8_t tx = 0;
uint8_t tx_rx[num_effective_busses(s)];
uint8_t dummy_cycles = 0;
uint8_t addr_length;
if (fifo8_is_empty(&s->tx_fifo)) {
if (!(s->regs[R_LQSPI_CFG] & LQSPI_CFG_LQ_MODE)) {
s->regs[R_INTR_STATUS] |= IXR_TX_FIFO_UNDERFLOW;
}
xilinx_spips_update_ixr(s);
return;
} else if (s->snoop_state == SNOOP_STRIPING) {
for (i = 0; i < num_effective_busses(s); ++i) {
tx_rx[i] = fifo8_pop(&s->tx_fifo);
}
stripe8(tx_rx, num_effective_busses(s), false);
} else if (s->snoop_state >= SNOOP_ADDR) {
tx = fifo8_pop(&s->tx_fifo);
for (i = 0; i < num_effective_busses(s); ++i) {
tx_rx[i] = tx;
}
} else {
/* Extract a dummy byte and generate dummy cycles according to the
* link state */
tx = fifo8_pop(&s->tx_fifo);
dummy_cycles = 8 / s->link_state;
}
for (i = 0; i < num_effective_busses(s); ++i) {
int bus = num_effective_busses(s) - 1 - i;
if (dummy_cycles) {
int d;
for (d = 0; d < dummy_cycles; ++d) {
tx_rx[0] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[0]);
}
} else {
DB_PRINT_L(debug_level, "tx = %02x\n", tx_rx[i]);
tx_rx[i] = ssi_transfer(s->spi[bus], (uint32_t)tx_rx[i]);
DB_PRINT_L(debug_level, "rx = %02x\n", tx_rx[i]);
}
}
if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
DB_PRINT_L(debug_level, "dircarding drained rx byte\n");
/* Do nothing */
} else if (s->rx_discard) {
DB_PRINT_L(debug_level, "dircarding discarded rx byte\n");
s->rx_discard -= 8 / s->link_state;
} else if (fifo8_is_full(&s->rx_fifo)) {
s->regs[R_INTR_STATUS] |= IXR_RX_FIFO_OVERFLOW;
DB_PRINT_L(0, "rx FIFO overflow");
} else if (s->snoop_state == SNOOP_STRIPING) {
stripe8(tx_rx, num_effective_busses(s), true);
for (i = 0; i < num_effective_busses(s); ++i) {
fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[i]);
DB_PRINT_L(debug_level, "pushing striped rx byte\n");
}
} else {
DB_PRINT_L(debug_level, "pushing unstriped rx byte\n");
fifo8_push(&s->rx_fifo, (uint8_t)tx_rx[0]);
}
if (s->link_state_next_when) {
s->link_state_next_when--;
if (!s->link_state_next_when) {
s->link_state = s->link_state_next;
}
}
DB_PRINT_L(debug_level, "initial snoop state: %x\n",
(unsigned)s->snoop_state);
switch (s->snoop_state) {
case (SNOOP_CHECKING):
/* Store the count of dummy bytes in the txfifo */
s->cmd_dummies = xilinx_spips_num_dummies(q, tx);
addr_length = get_addr_length(s, tx);
if (s->cmd_dummies < 0) {
s->snoop_state = SNOOP_NONE;
} else {
s->snoop_state = SNOOP_ADDR + addr_length - 1;
}
switch (tx) {
case DPP:
case DOR:
case DOR_4:
s->link_state_next = 2;
s->link_state_next_when = addr_length + s->cmd_dummies;
break;
case QPP:
case QPP_4:
case QOR:
case QOR_4:
s->link_state_next = 4;
s->link_state_next_when = addr_length + s->cmd_dummies;
break;
case DIOR:
case DIOR_4:
s->link_state = 2;
break;
case QIOR:
case QIOR_4:
s->link_state = 4;
break;
}
break;
case (SNOOP_ADDR):
/* Address has been transmitted, transmit dummy cycles now if
* needed */
if (s->cmd_dummies < 0) {
s->snoop_state = SNOOP_NONE;
} else {
s->snoop_state = s->cmd_dummies;
}
break;
case (SNOOP_STRIPING):
case (SNOOP_NONE):
/* Once we hit the boring stuff - squelch debug noise */
if (!debug_level) {
DB_PRINT_L(0, "squelching debug info ....\n");
debug_level = 1;
}
break;
default:
s->snoop_state--;
}
DB_PRINT_L(debug_level, "final snoop state: %x\n",
(unsigned)s->snoop_state);
}
}
static inline void rx_data_bytes(XilinxSPIPS *s, uint8_t *value, int max)
{
int i;
for (i = 0; i < max && !fifo8_is_empty(&s->rx_fifo); ++i) {
value[i] = fifo8_pop(&s->rx_fifo);
}
}
static uint64_t xilinx_spips_read(void *opaque, hwaddr addr,
unsigned size)
{
XilinxSPIPS *s = opaque;
uint32_t mask = ~0;
uint32_t ret;
uint8_t rx_buf[4];
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = ~(R_CONFIG_RSVD | MAN_START_COM);
break;
case R_INTR_STATUS:
ret = s->regs[addr] & IXR_ALL;
s->regs[addr] = 0;
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
return ret;
case R_INTR_MASK:
mask = IXR_ALL;
break;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_MOD_ID:
mask = 0x01FFFFFF;
break;
case R_INTR_EN:
case R_INTR_DIS:
case R_TX_DATA:
mask = 0;
break;
case R_RX_DATA:
memset(rx_buf, 0, sizeof(rx_buf));
rx_data_bytes(s, rx_buf, s->num_txrx_bytes);
ret = s->regs[R_CONFIG] & ENDIAN ? cpu_to_be32(*(uint32_t *)rx_buf)
: cpu_to_le32(*(uint32_t *)rx_buf);
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4, ret);
xilinx_spips_update_ixr(s);
return ret;
}
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr * 4,
s->regs[addr] & mask);
return s->regs[addr] & mask;
}
static inline void tx_data_bytes(XilinxSPIPS *s, uint32_t value, int num)
{
int i;
for (i = 0; i < num && !fifo8_is_full(&s->tx_fifo); ++i) {
if (s->regs[R_CONFIG] & ENDIAN) {
fifo8_push(&s->tx_fifo, (uint8_t)(value >> 24));
value <<= 8;
} else {
fifo8_push(&s->tx_fifo, (uint8_t)value);
value >>= 8;
}
}
}
static void xilinx_spips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
int mask = ~0;
int man_start_com = 0;
XilinxSPIPS *s = opaque;
DB_PRINT_L(0, "addr=" TARGET_FMT_plx " = %x\n", addr, (unsigned)value);
addr >>= 2;
switch (addr) {
case R_CONFIG:
mask = ~(R_CONFIG_RSVD | MAN_START_COM);
if (value & MAN_START_COM) {
man_start_com = 1;
}
break;
case R_INTR_STATUS:
mask = IXR_ALL;
s->regs[R_INTR_STATUS] &= ~(mask & value);
goto no_reg_update;
case R_INTR_DIS:
mask = IXR_ALL;
s->regs[R_INTR_MASK] &= ~(mask & value);
goto no_reg_update;
case R_INTR_EN:
mask = IXR_ALL;
s->regs[R_INTR_MASK] |= mask & value;
goto no_reg_update;
case R_EN:
mask = 0x1;
break;
case R_SLAVE_IDLE_COUNT:
mask = 0xFF;
break;
case R_RX_DATA:
case R_INTR_MASK:
case R_MOD_ID:
mask = 0;
break;
case R_TX_DATA:
tx_data_bytes(s, (uint32_t)value, s->num_txrx_bytes);
goto no_reg_update;
case R_TXD1:
tx_data_bytes(s, (uint32_t)value, 1);
goto no_reg_update;
case R_TXD2:
tx_data_bytes(s, (uint32_t)value, 2);
goto no_reg_update;
case R_TXD3:
tx_data_bytes(s, (uint32_t)value, 3);
goto no_reg_update;
}
s->regs[addr] = (s->regs[addr] & ~mask) | (value & mask);
no_reg_update:
xilinx_spips_update_cs_lines(s);
if ((man_start_com && s->regs[R_CONFIG] & MAN_START_EN) ||
(fifo8_is_empty(&s->tx_fifo) && s->regs[R_CONFIG] & MAN_START_EN)) {
xilinx_spips_flush_txfifo(s);
}
xilinx_spips_update_cs_lines(s);
xilinx_spips_update_ixr(s);
}
static const MemoryRegionOps spips_ops = {
.read = xilinx_spips_read,
.write = xilinx_spips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void xilinx_qspips_invalidate_mmio_ptr(XilinxQSPIPS *q)
{
XilinxSPIPS *s = &q->parent_obj;
if ((q->mmio_execution_enabled) && (q->lqspi_cached_addr != ~0ULL)) {
/* Invalidate the current mapped mmio */
memory_region_invalidate_mmio_ptr(&s->mmlqspi, q->lqspi_cached_addr,
LQSPI_CACHE_SIZE);
}
q->lqspi_cached_addr = ~0ULL;
}
static void xilinx_qspips_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
XilinxQSPIPS *q = XILINX_QSPIPS(opaque);
XilinxSPIPS *s = XILINX_SPIPS(opaque);
xilinx_spips_write(opaque, addr, value, size);
addr >>= 2;
if (addr == R_LQSPI_CFG) {
xilinx_qspips_invalidate_mmio_ptr(q);
}
if (s->regs[R_CMND] & R_CMND_RXFIFO_DRAIN) {
fifo8_reset(&s->rx_fifo);
}
}
static const MemoryRegionOps qspips_ops = {
.read = xilinx_spips_read,
.write = xilinx_qspips_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
#define LQSPI_CACHE_SIZE 1024
static void lqspi_load_cache(void *opaque, hwaddr addr)
{
XilinxQSPIPS *q = opaque;
XilinxSPIPS *s = opaque;
int i;
int flash_addr = ((addr & ~(LQSPI_CACHE_SIZE - 1))
/ num_effective_busses(s));
int slave = flash_addr >> LQSPI_ADDRESS_BITS;
int cache_entry = 0;
uint32_t u_page_save = s->regs[R_LQSPI_STS] & ~LQSPI_CFG_U_PAGE;
if (addr < q->lqspi_cached_addr ||
addr > q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
xilinx_qspips_invalidate_mmio_ptr(q);
s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
s->regs[R_LQSPI_STS] |= slave ? LQSPI_CFG_U_PAGE : 0;
DB_PRINT_L(0, "config reg status: %08x\n", s->regs[R_LQSPI_CFG]);
fifo8_reset(&s->tx_fifo);
fifo8_reset(&s->rx_fifo);
/* instruction */
DB_PRINT_L(0, "pushing read instruction: %02x\n",
(unsigned)(uint8_t)(s->regs[R_LQSPI_CFG] &
LQSPI_CFG_INST_CODE));
fifo8_push(&s->tx_fifo, s->regs[R_LQSPI_CFG] & LQSPI_CFG_INST_CODE);
/* read address */
DB_PRINT_L(0, "pushing read address %06x\n", flash_addr);
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 16));
fifo8_push(&s->tx_fifo, (uint8_t)(flash_addr >> 8));
fifo8_push(&s->tx_fifo, (uint8_t)flash_addr);
/* mode bits */
if (s->regs[R_LQSPI_CFG] & LQSPI_CFG_MODE_EN) {
fifo8_push(&s->tx_fifo, extract32(s->regs[R_LQSPI_CFG],
LQSPI_CFG_MODE_SHIFT,
LQSPI_CFG_MODE_WIDTH));
}
/* dummy bytes */
for (i = 0; i < (extract32(s->regs[R_LQSPI_CFG], LQSPI_CFG_DUMMY_SHIFT,
LQSPI_CFG_DUMMY_WIDTH)); ++i) {
DB_PRINT_L(0, "pushing dummy byte\n");
fifo8_push(&s->tx_fifo, 0);
}
xilinx_spips_update_cs_lines(s);
xilinx_spips_flush_txfifo(s);
fifo8_reset(&s->rx_fifo);
DB_PRINT_L(0, "starting QSPI data read\n");
while (cache_entry < LQSPI_CACHE_SIZE) {
for (i = 0; i < 64; ++i) {
tx_data_bytes(s, 0, 1);
}
xilinx_spips_flush_txfifo(s);
for (i = 0; i < 64; ++i) {
rx_data_bytes(s, &q->lqspi_buf[cache_entry++], 1);
}
}
s->regs[R_LQSPI_STS] &= ~LQSPI_CFG_U_PAGE;
s->regs[R_LQSPI_STS] |= u_page_save;
xilinx_spips_update_cs_lines(s);
q->lqspi_cached_addr = flash_addr * num_effective_busses(s);
}
}
static void *lqspi_request_mmio_ptr(void *opaque, hwaddr addr, unsigned *size,
unsigned *offset)
{
XilinxQSPIPS *q = opaque;
hwaddr offset_within_the_region;
if (!q->mmio_execution_enabled) {
return NULL;
}
offset_within_the_region = addr & ~(LQSPI_CACHE_SIZE - 1);
lqspi_load_cache(opaque, offset_within_the_region);
*size = LQSPI_CACHE_SIZE;
*offset = offset_within_the_region;
return q->lqspi_buf;
}
static uint64_t
lqspi_read(void *opaque, hwaddr addr, unsigned int size)
{
XilinxQSPIPS *q = opaque;
uint32_t ret;
if (addr >= q->lqspi_cached_addr &&
addr <= q->lqspi_cached_addr + LQSPI_CACHE_SIZE - 4) {
uint8_t *retp = &q->lqspi_buf[addr - q->lqspi_cached_addr];
ret = cpu_to_le32(*(uint32_t *)retp);
DB_PRINT_L(1, "addr: %08x, data: %08x\n", (unsigned)addr,
(unsigned)ret);
return ret;
} else {
lqspi_load_cache(opaque, addr);
return lqspi_read(opaque, addr, size);
}
}
static const MemoryRegionOps lqspi_ops = {
.read = lqspi_read,
.request_ptr = lqspi_request_mmio_ptr,
.endianness = DEVICE_NATIVE_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 4
}
};
static void xilinx_spips_realize(DeviceState *dev, Error **errp)
{
XilinxSPIPS *s = XILINX_SPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
XilinxSPIPSClass *xsc = XILINX_SPIPS_GET_CLASS(s);
xilinx: fix buffer overflow on realize ASAN complains about buffer overflow when running: aarch64-softmmu/qemu-system-aarch64 -machine xilinx-zynq-a9 ==476==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000035e38 at pc 0x000000f75253 bp 0x7ffc597e0ec0 sp 0x7ffc597e0eb0 READ of size 8 at 0x602000035e38 thread T0 #0 0xf75252 in xilinx_spips_realize hw/ssi/xilinx_spips.c:623 #1 0xb9ef6c in device_set_realized hw/core/qdev.c:918 #2 0x129ae01 in property_set_bool qom/object.c:1854 #3 0x1296e70 in object_property_set qom/object.c:1088 #4 0x129dd1b in object_property_set_qobject qom/qom-qobject.c:27 #5 0x1297168 in object_property_set_bool qom/object.c:1157 #6 0xb9aeac in qdev_init_nofail hw/core/qdev.c:358 #7 0x78a5bf in zynq_init_spi_flashes /home/elmarco/src/qemu/hw/arm/xilinx_zynq.c:125 #8 0x78af60 in zynq_init /home/elmarco/src/qemu/hw/arm/xilinx_zynq.c:238 #9 0x998eac in main /home/elmarco/src/qemu/vl.c:4534 #10 0x7f96ed692730 in __libc_start_main (/lib64/libc.so.6+0x20730) #11 0x41d0a8 in _start (/home/elmarco/src/qemu/aarch64-softmmu/qemu-system-aarch64+0x41d0a8) 0x602000035e38 is located 0 bytes to the right of 8-byte region [0x602000035e30,0x602000035e38) allocated by thread T0 here: #0 0x7f970b014e60 in malloc (/lib64/libasan.so.3+0xc6e60) #1 0x7f96f15b0e18 in g_malloc (/lib64/libglib-2.0.so.0+0x4ee18) #2 0xb9ef6c in device_set_realized hw/core/qdev.c:918 #3 0x129ae01 in property_set_bool qom/object.c:1854 #4 0x1296e70 in object_property_set qom/object.c:1088 #5 0x129dd1b in object_property_set_qobject qom/qom-qobject.c:27 #6 0x1297168 in object_property_set_bool qom/object.c:1157 #7 0xb9aeac in qdev_init_nofail hw/core/qdev.c:358 #8 0x78a5bf in zynq_init_spi_flashes /home/elmarco/src/qemu/hw/arm/xilinx_zynq.c:125 #9 0x78af60 in zynq_init /home/elmarco/src/qemu/hw/arm/xilinx_zynq.c:238 #10 0x998eac in main /home/elmarco/src/qemu/vl.c:4534 #11 0x7f96ed692730 in __libc_start_main (/lib64/libc.so.6+0x20730) s->spi is allocated with the size of num_busses which may be 1 (by default). Change to use a loop up to s->num_busses also for the call to ssi_auto_connect_slaves(). Reported-by: Marc-André Lureau <marcandre.lureau@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-10-23 23:42:22 +08:00
qemu_irq *cs;
int i;
DB_PRINT_L(0, "realized spips\n");
s->spi = g_new(SSIBus *, s->num_busses);
for (i = 0; i < s->num_busses; ++i) {
char bus_name[16];
snprintf(bus_name, 16, "spi%d", i);
s->spi[i] = ssi_create_bus(dev, bus_name);
}
s->cs_lines = g_new0(qemu_irq, s->num_cs * s->num_busses);
s->cs_lines_state = g_new0(bool, s->num_cs * s->num_busses);
xilinx: fix buffer overflow on realize ASAN complains about buffer overflow when running: aarch64-softmmu/qemu-system-aarch64 -machine xilinx-zynq-a9 ==476==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x602000035e38 at pc 0x000000f75253 bp 0x7ffc597e0ec0 sp 0x7ffc597e0eb0 READ of size 8 at 0x602000035e38 thread T0 #0 0xf75252 in xilinx_spips_realize hw/ssi/xilinx_spips.c:623 #1 0xb9ef6c in device_set_realized hw/core/qdev.c:918 #2 0x129ae01 in property_set_bool qom/object.c:1854 #3 0x1296e70 in object_property_set qom/object.c:1088 #4 0x129dd1b in object_property_set_qobject qom/qom-qobject.c:27 #5 0x1297168 in object_property_set_bool qom/object.c:1157 #6 0xb9aeac in qdev_init_nofail hw/core/qdev.c:358 #7 0x78a5bf in zynq_init_spi_flashes /home/elmarco/src/qemu/hw/arm/xilinx_zynq.c:125 #8 0x78af60 in zynq_init /home/elmarco/src/qemu/hw/arm/xilinx_zynq.c:238 #9 0x998eac in main /home/elmarco/src/qemu/vl.c:4534 #10 0x7f96ed692730 in __libc_start_main (/lib64/libc.so.6+0x20730) #11 0x41d0a8 in _start (/home/elmarco/src/qemu/aarch64-softmmu/qemu-system-aarch64+0x41d0a8) 0x602000035e38 is located 0 bytes to the right of 8-byte region [0x602000035e30,0x602000035e38) allocated by thread T0 here: #0 0x7f970b014e60 in malloc (/lib64/libasan.so.3+0xc6e60) #1 0x7f96f15b0e18 in g_malloc (/lib64/libglib-2.0.so.0+0x4ee18) #2 0xb9ef6c in device_set_realized hw/core/qdev.c:918 #3 0x129ae01 in property_set_bool qom/object.c:1854 #4 0x1296e70 in object_property_set qom/object.c:1088 #5 0x129dd1b in object_property_set_qobject qom/qom-qobject.c:27 #6 0x1297168 in object_property_set_bool qom/object.c:1157 #7 0xb9aeac in qdev_init_nofail hw/core/qdev.c:358 #8 0x78a5bf in zynq_init_spi_flashes /home/elmarco/src/qemu/hw/arm/xilinx_zynq.c:125 #9 0x78af60 in zynq_init /home/elmarco/src/qemu/hw/arm/xilinx_zynq.c:238 #10 0x998eac in main /home/elmarco/src/qemu/vl.c:4534 #11 0x7f96ed692730 in __libc_start_main (/lib64/libc.so.6+0x20730) s->spi is allocated with the size of num_busses which may be 1 (by default). Change to use a loop up to s->num_busses also for the call to ssi_auto_connect_slaves(). Reported-by: Marc-André Lureau <marcandre.lureau@redhat.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2016-10-23 23:42:22 +08:00
for (i = 0, cs = s->cs_lines; i < s->num_busses; ++i, cs += s->num_cs) {
ssi_auto_connect_slaves(DEVICE(s), cs, s->spi[i]);
}
sysbus_init_irq(sbd, &s->irq);
for (i = 0; i < s->num_cs * s->num_busses; ++i) {
sysbus_init_irq(sbd, &s->cs_lines[i]);
}
memory_region_init_io(&s->iomem, OBJECT(s), xsc->reg_ops, s,
"spi", XLNX_SPIPS_R_MAX * 4);
sysbus_init_mmio(sbd, &s->iomem);
s->irqline = -1;
fifo8_create(&s->rx_fifo, xsc->rx_fifo_size);
fifo8_create(&s->tx_fifo, xsc->tx_fifo_size);
}
static void xilinx_qspips_realize(DeviceState *dev, Error **errp)
{
XilinxSPIPS *s = XILINX_SPIPS(dev);
XilinxQSPIPS *q = XILINX_QSPIPS(dev);
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
DB_PRINT_L(0, "realized qspips\n");
s->num_busses = 2;
s->num_cs = 2;
s->num_txrx_bytes = 4;
xilinx_spips_realize(dev, errp);
memory_region_init_io(&s->mmlqspi, OBJECT(s), &lqspi_ops, s, "lqspi",
(1 << LQSPI_ADDRESS_BITS) * 2);
sysbus_init_mmio(sbd, &s->mmlqspi);
q->lqspi_cached_addr = ~0ULL;
/* mmio_execution breaks migration better aborting than having strange
* bugs.
*/
if (q->mmio_execution_enabled) {
error_setg(&q->migration_blocker,
"enabling mmio_execution breaks migration");
migrate_add_blocker(q->migration_blocker, &error_fatal);
}
}
static int xilinx_spips_post_load(void *opaque, int version_id)
{
xilinx_spips_update_ixr((XilinxSPIPS *)opaque);
xilinx_spips_update_cs_lines((XilinxSPIPS *)opaque);
return 0;
}
static const VMStateDescription vmstate_xilinx_spips = {
.name = "xilinx_spips",
.version_id = 2,
.minimum_version_id = 2,
.post_load = xilinx_spips_post_load,
.fields = (VMStateField[]) {
VMSTATE_FIFO8(tx_fifo, XilinxSPIPS),
VMSTATE_FIFO8(rx_fifo, XilinxSPIPS),
VMSTATE_UINT32_ARRAY(regs, XilinxSPIPS, XLNX_SPIPS_R_MAX),
VMSTATE_UINT8(snoop_state, XilinxSPIPS),
VMSTATE_END_OF_LIST()
}
};
static Property xilinx_qspips_properties[] = {
/* We had to turn this off for 2.10 as it is not compatible with migration.
* It can be enabled but will prevent the device to be migrated.
* This will go aways when a fix will be released.
*/
DEFINE_PROP_BOOL("x-mmio-exec", XilinxQSPIPS, mmio_execution_enabled,
false),
DEFINE_PROP_END_OF_LIST(),
};
static Property xilinx_spips_properties[] = {
DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1),
DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4),
DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void xilinx_qspips_class_init(ObjectClass *klass, void * data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_qspips_realize;
dc->props = xilinx_qspips_properties;
xsc->reg_ops = &qspips_ops;
xsc->rx_fifo_size = RXFF_A_Q;
xsc->tx_fifo_size = TXFF_A_Q;
}
static void xilinx_spips_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass);
dc->realize = xilinx_spips_realize;
dc->reset = xilinx_spips_reset;
dc->props = xilinx_spips_properties;
dc->vmsd = &vmstate_xilinx_spips;
xsc->reg_ops = &spips_ops;
xsc->rx_fifo_size = RXFF_A;
xsc->tx_fifo_size = TXFF_A;
}
static const TypeInfo xilinx_spips_info = {
.name = TYPE_XILINX_SPIPS,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(XilinxSPIPS),
.class_init = xilinx_spips_class_init,
.class_size = sizeof(XilinxSPIPSClass),
};
static const TypeInfo xilinx_qspips_info = {
.name = TYPE_XILINX_QSPIPS,
.parent = TYPE_XILINX_SPIPS,
.instance_size = sizeof(XilinxQSPIPS),
.class_init = xilinx_qspips_class_init,
};
static void xilinx_spips_register_types(void)
{
type_register_static(&xilinx_spips_info);
type_register_static(&xilinx_qspips_info);
}
type_init(xilinx_spips_register_types)