qemu/target-m68k/translate.c

3336 lines
81 KiB
C
Raw Normal View History

/*
* m68k translation
*
* Copyright (c) 2005-2007 CodeSourcery
* Written by Paul Brook
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <stdarg.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <inttypes.h>
#include "config.h"
#include "cpu.h"
#include "exec-all.h"
#include "disas.h"
#include "m68k-qreg.h"
//#define DEBUG_DISPATCH 1
static inline void qemu_assert(int cond, const char *msg)
{
if (!cond) {
fprintf (stderr, "badness: %s\n", msg);
abort();
}
}
/* internal defines */
typedef struct DisasContext {
CPUM68KState *env;
target_ulong insn_pc; /* Start of the current instruction. */
target_ulong pc;
int is_jmp;
int cc_op;
int user;
uint32_t fpcr;
struct TranslationBlock *tb;
int singlestep_enabled;
int is_mem;
} DisasContext;
#define DISAS_JUMP_NEXT 4
#if defined(CONFIG_USER_ONLY)
#define IS_USER(s) 1
#else
#define IS_USER(s) s->user
#endif
/* XXX: move that elsewhere */
/* ??? Fix exceptions. */
static void *gen_throws_exception;
#define gen_last_qop NULL
static uint16_t *gen_opc_ptr;
static uint32_t *gen_opparam_ptr;
extern FILE *logfile;
extern int loglevel;
enum {
#define DEF(s, n, copy_size) INDEX_op_ ## s,
#include "opc.h"
#undef DEF
NB_OPS,
};
#include "gen-op.h"
#if defined(CONFIG_USER_ONLY)
#define gen_st(s, name, addr, val) gen_op_st##name##_raw(addr, val)
#define gen_ld(s, name, val, addr) gen_op_ld##name##_raw(val, addr)
#else
#define gen_st(s, name, addr, val) do { \
if (IS_USER(s)) \
gen_op_st##name##_user(addr, val); \
else \
gen_op_st##name##_kernel(addr, val); \
} while (0)
#define gen_ld(s, name, val, addr) do { \
if (IS_USER(s)) \
gen_op_ld##name##_user(val, addr); \
else \
gen_op_ld##name##_kernel(val, addr); \
} while (0)
#endif
#include "op-hacks.h"
#define OS_BYTE 0
#define OS_WORD 1
#define OS_LONG 2
#define OS_SINGLE 4
#define OS_DOUBLE 5
#define DREG(insn, pos) (((insn >> pos) & 7) + QREG_D0)
#define AREG(insn, pos) (((insn >> pos) & 7) + QREG_A0)
#define FREG(insn, pos) (((insn >> pos) & 7) + QREG_F0)
typedef void (*disas_proc)(DisasContext *, uint16_t);
#ifdef DEBUG_DISPATCH
#define DISAS_INSN(name) \
static void real_disas_##name (DisasContext *s, uint16_t insn); \
static void disas_##name (DisasContext *s, uint16_t insn) { \
if (logfile) fprintf(logfile, "Dispatch " #name "\n"); \
real_disas_##name(s, insn); } \
static void real_disas_##name (DisasContext *s, uint16_t insn)
#else
#define DISAS_INSN(name) \
static void disas_##name (DisasContext *s, uint16_t insn)
#endif
/* Generate a load from the specified address. Narrow values are
sign extended to full register width. */
static inline int gen_load(DisasContext * s, int opsize, int addr, int sign)
{
int tmp;
s->is_mem = 1;
switch(opsize) {
case OS_BYTE:
tmp = gen_new_qreg(QMODE_I32);
if (sign)
gen_ld(s, 8s32, tmp, addr);
else
gen_ld(s, 8u32, tmp, addr);
break;
case OS_WORD:
tmp = gen_new_qreg(QMODE_I32);
if (sign)
gen_ld(s, 16s32, tmp, addr);
else
gen_ld(s, 16u32, tmp, addr);
break;
case OS_LONG:
tmp = gen_new_qreg(QMODE_I32);
gen_ld(s, 32, tmp, addr);
break;
case OS_SINGLE:
tmp = gen_new_qreg(QMODE_F32);
gen_ld(s, f32, tmp, addr);
break;
case OS_DOUBLE:
tmp = gen_new_qreg(QMODE_F64);
gen_ld(s, f64, tmp, addr);
break;
default:
qemu_assert(0, "bad load size");
}
gen_throws_exception = gen_last_qop;
return tmp;
}
/* Generate a store. */
static inline void gen_store(DisasContext *s, int opsize, int addr, int val)
{
s->is_mem = 1;
switch(opsize) {
case OS_BYTE:
gen_st(s, 8, addr, val);
break;
case OS_WORD:
gen_st(s, 16, addr, val);
break;
case OS_LONG:
gen_st(s, 32, addr, val);
break;
case OS_SINGLE:
gen_st(s, f32, addr, val);
break;
case OS_DOUBLE:
gen_st(s, f64, addr, val);
break;
default:
qemu_assert(0, "bad store size");
}
gen_throws_exception = gen_last_qop;
}
/* Generate an unsigned load if VAL is 0 a signed load if val is -1,
otherwise generate a store. */
static int gen_ldst(DisasContext *s, int opsize, int addr, int val)
{
if (val > 0) {
gen_store(s, opsize, addr, val);
return 0;
} else {
return gen_load(s, opsize, addr, val != 0);
}
}
/* Read a 32-bit immediate constant. */
static inline uint32_t read_im32(DisasContext *s)
{
uint32_t im;
im = ((uint32_t)lduw_code(s->pc)) << 16;
s->pc += 2;
im |= lduw_code(s->pc);
s->pc += 2;
return im;
}
/* Calculate and address index. */
static int gen_addr_index(uint16_t ext, int tmp)
{
int add;
int scale;
add = (ext & 0x8000) ? AREG(ext, 12) : DREG(ext, 12);
if ((ext & 0x800) == 0) {
gen_op_ext16s32(tmp, add);
add = tmp;
}
scale = (ext >> 9) & 3;
if (scale != 0) {
gen_op_shl32(tmp, add, gen_im32(scale));
add = tmp;
}
return add;
}
/* Handle a base + index + displacement effective addresss. A base of
-1 means pc-relative. */
static int gen_lea_indexed(DisasContext *s, int opsize, int base)
{
uint32_t offset;
uint16_t ext;
int add;
int tmp;
uint32_t bd, od;
offset = s->pc;
ext = lduw_code(s->pc);
s->pc += 2;
if ((ext & 0x800) == 0 && !m68k_feature(s->env, M68K_FEATURE_WORD_INDEX))
return -1;
if (ext & 0x100) {
/* full extension word format */
if (!m68k_feature(s->env, M68K_FEATURE_EXT_FULL))
return -1;
if ((ext & 0x30) > 0x10) {
/* base displacement */
if ((ext & 0x30) == 0x20) {
bd = (int16_t)lduw_code(s->pc);
s->pc += 2;
} else {
bd = read_im32(s);
}
} else {
bd = 0;
}
tmp = gen_new_qreg(QMODE_I32);
if ((ext & 0x44) == 0) {
/* pre-index */
add = gen_addr_index(ext, tmp);
} else {
add = QREG_NULL;
}
if ((ext & 0x80) == 0) {
/* base not suppressed */
if (base == -1) {
base = gen_im32(offset + bd);
bd = 0;
}
if (add) {
gen_op_add32(tmp, add, base);
add = tmp;
} else {
add = base;
}
}
if (add) {
if (bd != 0) {
gen_op_add32(tmp, add, gen_im32(bd));
add = tmp;
}
} else {
add = gen_im32(bd);
}
if ((ext & 3) != 0) {
/* memory indirect */
base = gen_load(s, OS_LONG, add, 0);
if ((ext & 0x44) == 4) {
add = gen_addr_index(ext, tmp);
gen_op_add32(tmp, add, base);
add = tmp;
} else {
add = base;
}
if ((ext & 3) > 1) {
/* outer displacement */
if ((ext & 3) == 2) {
od = (int16_t)lduw_code(s->pc);
s->pc += 2;
} else {
od = read_im32(s);
}
} else {
od = 0;
}
if (od != 0) {
gen_op_add32(tmp, add, gen_im32(od));
add = tmp;
}
}
} else {
/* brief extension word format */
tmp = gen_new_qreg(QMODE_I32);
add = gen_addr_index(ext, tmp);
if (base != -1) {
gen_op_add32(tmp, add, base);
if ((int8_t)ext)
gen_op_add32(tmp, tmp, gen_im32((int8_t)ext));
} else {
gen_op_add32(tmp, add, gen_im32(offset + (int8_t)ext));
}
add = tmp;
}
return add;
}
/* Update the CPU env CC_OP state. */
static inline void gen_flush_cc_op(DisasContext *s)
{
if (s->cc_op != CC_OP_DYNAMIC)
gen_op_mov32(QREG_CC_OP, gen_im32(s->cc_op));
}
/* Evaluate all the CC flags. */
static inline void gen_flush_flags(DisasContext *s)
{
if (s->cc_op == CC_OP_FLAGS)
return;
gen_flush_cc_op(s);
gen_op_flush_flags();
s->cc_op = CC_OP_FLAGS;
}
static inline int opsize_bytes(int opsize)
{
switch (opsize) {
case OS_BYTE: return 1;
case OS_WORD: return 2;
case OS_LONG: return 4;
case OS_SINGLE: return 4;
case OS_DOUBLE: return 8;
default:
qemu_assert(0, "bad operand size");
}
}
/* Assign value to a register. If the width is less than the register width
only the low part of the register is set. */
static void gen_partset_reg(int opsize, int reg, int val)
{
int tmp;
switch (opsize) {
case OS_BYTE:
gen_op_and32(reg, reg, gen_im32(0xffffff00));
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, val, gen_im32(0xff));
gen_op_or32(reg, reg, tmp);
break;
case OS_WORD:
gen_op_and32(reg, reg, gen_im32(0xffff0000));
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, val, gen_im32(0xffff));
gen_op_or32(reg, reg, tmp);
break;
case OS_LONG:
gen_op_mov32(reg, val);
break;
case OS_SINGLE:
gen_op_pack_32_f32(reg, val);
break;
default:
qemu_assert(0, "Bad operand size");
break;
}
}
/* Sign or zero extend a value. */
static inline int gen_extend(int val, int opsize, int sign)
{
int tmp;
switch (opsize) {
case OS_BYTE:
tmp = gen_new_qreg(QMODE_I32);
if (sign)
gen_op_ext8s32(tmp, val);
else
gen_op_ext8u32(tmp, val);
break;
case OS_WORD:
tmp = gen_new_qreg(QMODE_I32);
if (sign)
gen_op_ext16s32(tmp, val);
else
gen_op_ext16u32(tmp, val);
break;
case OS_LONG:
tmp = val;
break;
case OS_SINGLE:
tmp = gen_new_qreg(QMODE_F32);
gen_op_pack_f32_32(tmp, val);
break;
default:
qemu_assert(0, "Bad operand size");
}
return tmp;
}
/* Generate code for an "effective address". Does not adjust the base
register for autoincrememnt addressing modes. */
static int gen_lea(DisasContext *s, uint16_t insn, int opsize)
{
int reg;
int tmp;
uint16_t ext;
uint32_t offset;
reg = insn & 7;
switch ((insn >> 3) & 7) {
case 0: /* Data register direct. */
case 1: /* Address register direct. */
return -1;
case 2: /* Indirect register */
case 3: /* Indirect postincrement. */
reg += QREG_A0;
return reg;
case 4: /* Indirect predecrememnt. */
reg += QREG_A0;
tmp = gen_new_qreg(QMODE_I32);
gen_op_sub32(tmp, reg, gen_im32(opsize_bytes(opsize)));
return tmp;
case 5: /* Indirect displacement. */
reg += QREG_A0;
tmp = gen_new_qreg(QMODE_I32);
ext = lduw_code(s->pc);
s->pc += 2;
gen_op_add32(tmp, reg, gen_im32((int16_t)ext));
return tmp;
case 6: /* Indirect index + displacement. */
reg += QREG_A0;
return gen_lea_indexed(s, opsize, reg);
case 7: /* Other */
switch (reg) {
case 0: /* Absolute short. */
offset = ldsw_code(s->pc);
s->pc += 2;
return gen_im32(offset);
case 1: /* Absolute long. */
offset = read_im32(s);
return gen_im32(offset);
case 2: /* pc displacement */
tmp = gen_new_qreg(QMODE_I32);
offset = s->pc;
offset += ldsw_code(s->pc);
s->pc += 2;
return gen_im32(offset);
case 3: /* pc index+displacement. */
return gen_lea_indexed(s, opsize, -1);
case 4: /* Immediate. */
default:
return -1;
}
}
/* Should never happen. */
return -1;
}
/* Helper function for gen_ea. Reuse the computed address between the
for read/write operands. */
static inline int gen_ea_once(DisasContext *s, uint16_t insn, int opsize,
int val, int *addrp)
{
int tmp;
if (addrp && val > 0) {
tmp = *addrp;
} else {
tmp = gen_lea(s, insn, opsize);
if (tmp == -1)
return -1;
if (addrp)
*addrp = tmp;
}
return gen_ldst(s, opsize, tmp, val);
}
/* Generate code to load/store a value ito/from an EA. If VAL > 0 this is
a write otherwise it is a read (0 == sign extend, -1 == zero extend).
ADDRP is non-null for readwrite operands. */
static int gen_ea(DisasContext *s, uint16_t insn, int opsize, int val,
int *addrp)
{
int reg;
int result;
uint32_t offset;
reg = insn & 7;
switch ((insn >> 3) & 7) {
case 0: /* Data register direct. */
reg += QREG_D0;
if (val > 0) {
gen_partset_reg(opsize, reg, val);
return 0;
} else {
return gen_extend(reg, opsize, val);
}
case 1: /* Address register direct. */
reg += QREG_A0;
if (val > 0) {
gen_op_mov32(reg, val);
return 0;
} else {
return gen_extend(reg, opsize, val);
}
case 2: /* Indirect register */
reg += QREG_A0;
return gen_ldst(s, opsize, reg, val);
case 3: /* Indirect postincrement. */
reg += QREG_A0;
result = gen_ldst(s, opsize, reg, val);
/* ??? This is not exception safe. The instruction may still
fault after this point. */
if (val > 0 || !addrp)
gen_op_add32(reg, reg, gen_im32(opsize_bytes(opsize)));
return result;
case 4: /* Indirect predecrememnt. */
{
int tmp;
if (addrp && val > 0) {
tmp = *addrp;
} else {
tmp = gen_lea(s, insn, opsize);
if (tmp == -1)
return -1;
if (addrp)
*addrp = tmp;
}
result = gen_ldst(s, opsize, tmp, val);
/* ??? This is not exception safe. The instruction may still
fault after this point. */
if (val > 0 || !addrp) {
reg += QREG_A0;
gen_op_mov32(reg, tmp);
}
}
return result;
case 5: /* Indirect displacement. */
case 6: /* Indirect index + displacement. */
return gen_ea_once(s, insn, opsize, val, addrp);
case 7: /* Other */
switch (reg) {
case 0: /* Absolute short. */
case 1: /* Absolute long. */
case 2: /* pc displacement */
case 3: /* pc index+displacement. */
return gen_ea_once(s, insn, opsize, val, addrp);
case 4: /* Immediate. */
/* Sign extend values for consistency. */
switch (opsize) {
case OS_BYTE:
if (val)
offset = ldsb_code(s->pc + 1);
else
offset = ldub_code(s->pc + 1);
s->pc += 2;
break;
case OS_WORD:
if (val)
offset = ldsw_code(s->pc);
else
offset = lduw_code(s->pc);
s->pc += 2;
break;
case OS_LONG:
offset = read_im32(s);
break;
default:
qemu_assert(0, "Bad immediate operand");
}
return gen_im32(offset);
default:
return -1;
}
}
/* Should never happen. */
return -1;
}
static void gen_logic_cc(DisasContext *s, int val)
{
gen_op_logic_cc(val);
s->cc_op = CC_OP_LOGIC;
}
static void gen_jmpcc(DisasContext *s, int cond, int l1)
{
int tmp;
gen_flush_flags(s);
switch (cond) {
case 0: /* T */
gen_op_jmp(l1);
break;
case 1: /* F */
break;
case 2: /* HI (!C && !Z) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_C | CCF_Z));
gen_op_jmp_z32(tmp, l1);
break;
case 3: /* LS (C || Z) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_C | CCF_Z));
gen_op_jmp_nz32(tmp, l1);
break;
case 4: /* CC (!C) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_C));
gen_op_jmp_z32(tmp, l1);
break;
case 5: /* CS (C) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_C));
gen_op_jmp_nz32(tmp, l1);
break;
case 6: /* NE (!Z) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_Z));
gen_op_jmp_z32(tmp, l1);
break;
case 7: /* EQ (Z) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_Z));
gen_op_jmp_nz32(tmp, l1);
break;
case 8: /* VC (!V) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_V));
gen_op_jmp_z32(tmp, l1);
break;
case 9: /* VS (V) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_V));
gen_op_jmp_nz32(tmp, l1);
break;
case 10: /* PL (!N) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_N));
gen_op_jmp_z32(tmp, l1);
break;
case 11: /* MI (N) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_N));
gen_op_jmp_nz32(tmp, l1);
break;
case 12: /* GE (!(N ^ V)) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_shr32(tmp, QREG_CC_DEST, gen_im32(2));
gen_op_xor32(tmp, tmp, QREG_CC_DEST);
gen_op_and32(tmp, tmp, gen_im32(CCF_V));
gen_op_jmp_z32(tmp, l1);
break;
case 13: /* LT (N ^ V) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_shr32(tmp, QREG_CC_DEST, gen_im32(2));
gen_op_xor32(tmp, tmp, QREG_CC_DEST);
gen_op_and32(tmp, tmp, gen_im32(CCF_V));
gen_op_jmp_nz32(tmp, l1);
break;
case 14: /* GT (!(Z || (N ^ V))) */
{
int l2;
l2 = gen_new_label();
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_Z));
gen_op_jmp_nz32(tmp, l2);
tmp = gen_new_qreg(QMODE_I32);
gen_op_shr32(tmp, QREG_CC_DEST, gen_im32(2));
gen_op_xor32(tmp, tmp, QREG_CC_DEST);
gen_op_and32(tmp, tmp, gen_im32(CCF_V));
gen_op_jmp_nz32(tmp, l2);
gen_op_jmp(l1);
gen_set_label(l2);
}
break;
case 15: /* LE (Z || (N ^ V)) */
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_Z));
gen_op_jmp_nz32(tmp, l1);
tmp = gen_new_qreg(QMODE_I32);
gen_op_shr32(tmp, QREG_CC_DEST, gen_im32(2));
gen_op_xor32(tmp, tmp, QREG_CC_DEST);
gen_op_and32(tmp, tmp, gen_im32(CCF_V));
gen_op_jmp_nz32(tmp, l1);
break;
default:
/* Should ever happen. */
abort();
}
}
DISAS_INSN(scc)
{
int l1;
int cond;
int reg;
l1 = gen_new_label();
cond = (insn >> 8) & 0xf;
reg = DREG(insn, 0);
gen_op_and32(reg, reg, gen_im32(0xffffff00));
gen_jmpcc(s, cond ^ 1, l1);
gen_op_or32(reg, reg, gen_im32(0xff));
gen_set_label(l1);
}
/* Force a TB lookup after an instruction that changes the CPU state. */
static void gen_lookup_tb(DisasContext *s)
{
gen_flush_cc_op(s);
gen_op_mov32(QREG_PC, gen_im32(s->pc));
s->is_jmp = DISAS_UPDATE;
}
/* Generate a jump to to the address in qreg DEST. */
static void gen_jmp(DisasContext *s, int dest)
{
gen_flush_cc_op(s);
gen_op_mov32(QREG_PC, dest);
s->is_jmp = DISAS_JUMP;
}
static void gen_exception(DisasContext *s, uint32_t where, int nr)
{
gen_flush_cc_op(s);
gen_jmp(s, gen_im32(where));
gen_op_raise_exception(nr);
}
static inline void gen_addr_fault(DisasContext *s)
{
gen_exception(s, s->insn_pc, EXCP_ADDRESS);
}
#define SRC_EA(result, opsize, val, addrp) do { \
result = gen_ea(s, insn, opsize, val, addrp); \
if (result == -1) { \
gen_addr_fault(s); \
return; \
} \
} while (0)
#define DEST_EA(insn, opsize, val, addrp) do { \
int ea_result = gen_ea(s, insn, opsize, val, addrp); \
if (ea_result == -1) { \
gen_addr_fault(s); \
return; \
} \
} while (0)
/* Generate a jump to an immediate address. */
static void gen_jmp_tb(DisasContext *s, int n, uint32_t dest)
{
TranslationBlock *tb;
tb = s->tb;
if (__builtin_expect (s->singlestep_enabled, 0)) {
gen_exception(s, dest, EXCP_DEBUG);
} else if ((tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK) ||
(s->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK)) {
gen_op_goto_tb(0, n, (long)tb);
gen_op_mov32(QREG_PC, gen_im32(dest));
gen_op_mov32(QREG_T0, gen_im32((long)tb + n));
gen_op_exit_tb();
} else {
gen_jmp(s, gen_im32(dest));
gen_op_mov32(QREG_T0, gen_im32(0));
gen_op_exit_tb();
}
s->is_jmp = DISAS_TB_JUMP;
}
DISAS_INSN(undef_mac)
{
gen_exception(s, s->pc - 2, EXCP_LINEA);
}
DISAS_INSN(undef_fpu)
{
gen_exception(s, s->pc - 2, EXCP_LINEF);
}
DISAS_INSN(undef)
{
gen_exception(s, s->pc - 2, EXCP_UNSUPPORTED);
cpu_abort(cpu_single_env, "Illegal instruction: %04x @ %08x",
insn, s->pc - 2);
}
DISAS_INSN(mulw)
{
int reg;
int tmp;
int src;
int sign;
sign = (insn & 0x100) != 0;
reg = DREG(insn, 9);
tmp = gen_new_qreg(QMODE_I32);
if (sign)
gen_op_ext16s32(tmp, reg);
else
gen_op_ext16u32(tmp, reg);
SRC_EA(src, OS_WORD, sign ? -1 : 0, NULL);
gen_op_mul32(tmp, tmp, src);
gen_op_mov32(reg, tmp);
/* Unlike m68k, coldfire always clears the overflow bit. */
gen_logic_cc(s, tmp);
}
DISAS_INSN(divw)
{
int reg;
int tmp;
int src;
int sign;
sign = (insn & 0x100) != 0;
reg = DREG(insn, 9);
if (sign) {
gen_op_ext16s32(QREG_DIV1, reg);
} else {
gen_op_ext16u32(QREG_DIV1, reg);
}
SRC_EA(src, OS_WORD, sign ? -1 : 0, NULL);
gen_op_mov32(QREG_DIV2, src);
if (sign) {
gen_op_divs(1);
} else {
gen_op_divu(1);
}
tmp = gen_new_qreg(QMODE_I32);
src = gen_new_qreg(QMODE_I32);
gen_op_ext16u32(tmp, QREG_DIV1);
gen_op_shl32(src, QREG_DIV2, gen_im32(16));
gen_op_or32(reg, tmp, src);
gen_op_flags_set();
s->cc_op = CC_OP_FLAGS;
}
DISAS_INSN(divl)
{
int num;
int den;
int reg;
uint16_t ext;
ext = lduw_code(s->pc);
s->pc += 2;
if (ext & 0x87f8) {
gen_exception(s, s->pc - 4, EXCP_UNSUPPORTED);
return;
}
num = DREG(ext, 12);
reg = DREG(ext, 0);
gen_op_mov32(QREG_DIV1, num);
SRC_EA(den, OS_LONG, 0, NULL);
gen_op_mov32(QREG_DIV2, den);
if (ext & 0x0800) {
gen_op_divs(2);
} else {
gen_op_divu(2);
}
if (num == reg) {
/* div */
gen_op_mov32 (reg, QREG_DIV1);
} else {
/* rem */
gen_op_mov32 (reg, QREG_DIV2);
}
gen_op_flags_set();
s->cc_op = CC_OP_FLAGS;
}
DISAS_INSN(addsub)
{
int reg;
int dest;
int src;
int tmp;
int addr;
int add;
add = (insn & 0x4000) != 0;
reg = DREG(insn, 9);
dest = gen_new_qreg(QMODE_I32);
if (insn & 0x100) {
SRC_EA(tmp, OS_LONG, 0, &addr);
src = reg;
} else {
tmp = reg;
SRC_EA(src, OS_LONG, 0, NULL);
}
if (add) {
gen_op_add32(dest, tmp, src);
gen_op_update_xflag_lt(dest, src);
s->cc_op = CC_OP_ADD;
} else {
gen_op_update_xflag_lt(tmp, src);
gen_op_sub32(dest, tmp, src);
s->cc_op = CC_OP_SUB;
}
gen_op_update_cc_add(dest, src);
if (insn & 0x100) {
DEST_EA(insn, OS_LONG, dest, &addr);
} else {
gen_op_mov32(reg, dest);
}
}
/* Reverse the order of the bits in REG. */
DISAS_INSN(bitrev)
{
int val;
int tmp1;
int tmp2;
int reg;
val = gen_new_qreg(QMODE_I32);
tmp1 = gen_new_qreg(QMODE_I32);
tmp2 = gen_new_qreg(QMODE_I32);
reg = DREG(insn, 0);
gen_op_mov32(val, reg);
/* Reverse bits within each nibble. */
gen_op_shl32(tmp1, val, gen_im32(3));
gen_op_and32(tmp1, tmp1, gen_im32(0x88888888));
gen_op_shl32(tmp2, val, gen_im32(1));
gen_op_and32(tmp2, tmp2, gen_im32(0x44444444));
gen_op_or32(tmp1, tmp1, tmp2);
gen_op_shr32(tmp2, val, gen_im32(1));
gen_op_and32(tmp2, tmp2, gen_im32(0x22222222));
gen_op_or32(tmp1, tmp1, tmp2);
gen_op_shr32(tmp2, val, gen_im32(3));
gen_op_and32(tmp2, tmp2, gen_im32(0x11111111));
gen_op_or32(tmp1, tmp1, tmp2);
/* Reverse nibbles withing bytes. */
gen_op_shl32(val, tmp1, gen_im32(4));
gen_op_and32(val, val, gen_im32(0xf0f0f0f0));
gen_op_shr32(tmp2, tmp1, gen_im32(4));
gen_op_and32(tmp2, tmp2, gen_im32(0x0f0f0f0f));
gen_op_or32(val, val, tmp2);
/* Reverse bytes. */
gen_op_bswap32(reg, val);
gen_op_mov32(reg, val);
}
DISAS_INSN(bitop_reg)
{
int opsize;
int op;
int src1;
int src2;
int tmp;
int addr;
int dest;
if ((insn & 0x38) != 0)
opsize = OS_BYTE;
else
opsize = OS_LONG;
op = (insn >> 6) & 3;
SRC_EA(src1, opsize, 0, op ? &addr: NULL);
src2 = DREG(insn, 9);
dest = gen_new_qreg(QMODE_I32);
gen_flush_flags(s);
tmp = gen_new_qreg(QMODE_I32);
if (opsize == OS_BYTE)
gen_op_and32(tmp, src2, gen_im32(7));
else
gen_op_and32(tmp, src2, gen_im32(31));
src2 = tmp;
tmp = gen_new_qreg(QMODE_I32);
gen_op_shl32(tmp, gen_im32(1), src2);
gen_op_btest(src1, tmp);
switch (op) {
case 1: /* bchg */
gen_op_xor32(dest, src1, tmp);
break;
case 2: /* bclr */
gen_op_not32(tmp, tmp);
gen_op_and32(dest, src1, tmp);
break;
case 3: /* bset */
gen_op_or32(dest, src1, tmp);
break;
default: /* btst */
break;
}
if (op)
DEST_EA(insn, opsize, dest, &addr);
}
DISAS_INSN(sats)
{
int reg;
int tmp;
int l1;
reg = DREG(insn, 0);
tmp = gen_new_qreg(QMODE_I32);
gen_flush_flags(s);
gen_op_and32(tmp, QREG_CC_DEST, gen_im32(CCF_V));
l1 = gen_new_label();
gen_op_jmp_z32(tmp, l1);
tmp = gen_new_qreg(QMODE_I32);
gen_op_shr32(tmp, reg, gen_im32(31));
gen_op_xor32(tmp, tmp, gen_im32(0x80000000));
gen_op_mov32(reg, tmp);
gen_set_label(l1);
gen_logic_cc(s, tmp);
}
static void gen_push(DisasContext *s, int val)
{
int tmp;
tmp = gen_new_qreg(QMODE_I32);
gen_op_sub32(tmp, QREG_SP, gen_im32(4));
gen_store(s, OS_LONG, tmp, val);
gen_op_mov32(QREG_SP, tmp);
}
DISAS_INSN(movem)
{
int addr;
int i;
uint16_t mask;
int reg;
int tmp;
int is_load;
mask = lduw_code(s->pc);
s->pc += 2;
tmp = gen_lea(s, insn, OS_LONG);
if (tmp == -1) {
gen_addr_fault(s);
return;
}
addr = gen_new_qreg(QMODE_I32);
gen_op_mov32(addr, tmp);
is_load = ((insn & 0x0400) != 0);
for (i = 0; i < 16; i++, mask >>= 1) {
if (mask & 1) {
if (i < 8)
reg = DREG(i, 0);
else
reg = AREG(i, 0);
if (is_load) {
tmp = gen_load(s, OS_LONG, addr, 0);
gen_op_mov32(reg, tmp);
} else {
gen_store(s, OS_LONG, addr, reg);
}
if (mask != 1)
gen_op_add32(addr, addr, gen_im32(4));
}
}
}
DISAS_INSN(bitop_im)
{
int opsize;
int op;
int src1;
uint32_t mask;
int bitnum;
int tmp;
int addr;
int dest;
if ((insn & 0x38) != 0)
opsize = OS_BYTE;
else
opsize = OS_LONG;
op = (insn >> 6) & 3;
bitnum = lduw_code(s->pc);
s->pc += 2;
if (bitnum & 0xff00) {
disas_undef(s, insn);
return;
}
SRC_EA(src1, opsize, 0, op ? &addr: NULL);
gen_flush_flags(s);
tmp = gen_new_qreg(QMODE_I32);
if (opsize == OS_BYTE)
bitnum &= 7;
else
bitnum &= 31;
mask = 1 << bitnum;
gen_op_btest(src1, gen_im32(mask));
if (op)
dest = gen_new_qreg(QMODE_I32);
else
dest = -1;
switch (op) {
case 1: /* bchg */
gen_op_xor32(dest, src1, gen_im32(mask));
break;
case 2: /* bclr */
gen_op_and32(dest, src1, gen_im32(~mask));
break;
case 3: /* bset */
gen_op_or32(dest, src1, gen_im32(mask));
break;
default: /* btst */
break;
}
if (op)
DEST_EA(insn, opsize, dest, &addr);
}
DISAS_INSN(arith_im)
{
int op;
int src1;
int dest;
int src2;
int addr;
op = (insn >> 9) & 7;
SRC_EA(src1, OS_LONG, 0, (op == 6) ? NULL : &addr);
src2 = gen_im32(read_im32(s));
dest = gen_new_qreg(QMODE_I32);
switch (op) {
case 0: /* ori */
gen_op_or32(dest, src1, src2);
gen_logic_cc(s, dest);
break;
case 1: /* andi */
gen_op_and32(dest, src1, src2);
gen_logic_cc(s, dest);
break;
case 2: /* subi */
gen_op_mov32(dest, src1);
gen_op_update_xflag_lt(dest, src2);
gen_op_sub32(dest, dest, src2);
gen_op_update_cc_add(dest, src2);
s->cc_op = CC_OP_SUB;
break;
case 3: /* addi */
gen_op_mov32(dest, src1);
gen_op_add32(dest, dest, src2);
gen_op_update_cc_add(dest, src2);
gen_op_update_xflag_lt(dest, src2);
s->cc_op = CC_OP_ADD;
break;
case 5: /* eori */
gen_op_xor32(dest, src1, src2);
gen_logic_cc(s, dest);
break;
case 6: /* cmpi */
gen_op_mov32(dest, src1);
gen_op_sub32(dest, dest, src2);
gen_op_update_cc_add(dest, src2);
s->cc_op = CC_OP_SUB;
break;
default:
abort();
}
if (op != 6) {
DEST_EA(insn, OS_LONG, dest, &addr);
}
}
DISAS_INSN(byterev)
{
int reg;
reg = DREG(insn, 0);
gen_op_bswap32(reg, reg);
}
DISAS_INSN(move)
{
int src;
int dest;
int op;
int opsize;
switch (insn >> 12) {
case 1: /* move.b */
opsize = OS_BYTE;
break;
case 2: /* move.l */
opsize = OS_LONG;
break;
case 3: /* move.w */
opsize = OS_WORD;
break;
default:
abort();
}
SRC_EA(src, opsize, -1, NULL);
op = (insn >> 6) & 7;
if (op == 1) {
/* movea */
/* The value will already have been sign extended. */
dest = AREG(insn, 9);
gen_op_mov32(dest, src);
} else {
/* normal move */
uint16_t dest_ea;
dest_ea = ((insn >> 9) & 7) | (op << 3);
DEST_EA(dest_ea, opsize, src, NULL);
/* This will be correct because loads sign extend. */
gen_logic_cc(s, src);
}
}
DISAS_INSN(negx)
{
int reg;
int dest;
int tmp;
gen_flush_flags(s);
reg = DREG(insn, 0);
dest = gen_new_qreg(QMODE_I32);
gen_op_mov32 (dest, gen_im32(0));
gen_op_subx_cc(dest, reg);
/* !Z is sticky. */
tmp = gen_new_qreg(QMODE_I32);
gen_op_mov32 (tmp, QREG_CC_DEST);
gen_op_update_cc_add(dest, reg);
gen_op_mov32(reg, dest);
s->cc_op = CC_OP_DYNAMIC;
gen_flush_flags(s);
gen_op_or32(tmp, tmp, gen_im32(~CCF_Z));
gen_op_and32(QREG_CC_DEST, QREG_CC_DEST, tmp);
s->cc_op = CC_OP_FLAGS;
}
DISAS_INSN(lea)
{
int reg;
int tmp;
reg = AREG(insn, 9);
tmp = gen_lea(s, insn, OS_LONG);
if (tmp == -1) {
gen_addr_fault(s);
return;
}
gen_op_mov32(reg, tmp);
}
DISAS_INSN(clr)
{
int opsize;
switch ((insn >> 6) & 3) {
case 0: /* clr.b */
opsize = OS_BYTE;
break;
case 1: /* clr.w */
opsize = OS_WORD;
break;
case 2: /* clr.l */
opsize = OS_LONG;
break;
default:
abort();
}
DEST_EA(insn, opsize, gen_im32(0), NULL);
gen_logic_cc(s, gen_im32(0));
}
static int gen_get_ccr(DisasContext *s)
{
int dest;
gen_flush_flags(s);
dest = gen_new_qreg(QMODE_I32);
gen_op_get_xflag(dest);
gen_op_shl32(dest, dest, gen_im32(4));
gen_op_or32(dest, dest, QREG_CC_DEST);
return dest;
}
DISAS_INSN(move_from_ccr)
{
int reg;
int ccr;
ccr = gen_get_ccr(s);
reg = DREG(insn, 0);
gen_partset_reg(OS_WORD, reg, ccr);
}
DISAS_INSN(neg)
{
int reg;
int src1;
reg = DREG(insn, 0);
src1 = gen_new_qreg(QMODE_I32);
gen_op_mov32(src1, reg);
gen_op_neg32(reg, src1);
s->cc_op = CC_OP_SUB;
gen_op_update_cc_add(reg, src1);
gen_op_update_xflag_lt(gen_im32(0), src1);
s->cc_op = CC_OP_SUB;
}
static void gen_set_sr_im(DisasContext *s, uint16_t val, int ccr_only)
{
gen_op_logic_cc(gen_im32(val & 0xf));
gen_op_update_xflag_tst(gen_im32((val & 0x10) >> 4));
if (!ccr_only) {
gen_op_set_sr(gen_im32(val & 0xff00));
}
}
static void gen_set_sr(DisasContext *s, uint16_t insn, int ccr_only)
{
int src1;
int reg;
s->cc_op = CC_OP_FLAGS;
if ((insn & 0x38) == 0)
{
src1 = gen_new_qreg(QMODE_I32);
reg = DREG(insn, 0);
gen_op_and32(src1, reg, gen_im32(0xf));
gen_op_logic_cc(src1);
gen_op_shr32(src1, reg, gen_im32(4));
gen_op_and32(src1, src1, gen_im32(1));
gen_op_update_xflag_tst(src1);
if (!ccr_only) {
gen_op_set_sr(reg);
}
}
else if ((insn & 0x3f) == 0x3c)
{
uint16_t val;
val = lduw_code(s->pc);
s->pc += 2;
gen_set_sr_im(s, val, ccr_only);
}
else
disas_undef(s, insn);
}
DISAS_INSN(move_to_ccr)
{
gen_set_sr(s, insn, 1);
}
DISAS_INSN(not)
{
int reg;
reg = DREG(insn, 0);
gen_op_not32(reg, reg);
gen_logic_cc(s, reg);
}
DISAS_INSN(swap)
{
int dest;
int src1;
int src2;
int reg;
dest = gen_new_qreg(QMODE_I32);
src1 = gen_new_qreg(QMODE_I32);
src2 = gen_new_qreg(QMODE_I32);
reg = DREG(insn, 0);
gen_op_shl32(src1, reg, gen_im32(16));
gen_op_shr32(src2, reg, gen_im32(16));
gen_op_or32(dest, src1, src2);
gen_op_mov32(reg, dest);
gen_logic_cc(s, dest);
}
DISAS_INSN(pea)
{
int tmp;
tmp = gen_lea(s, insn, OS_LONG);
if (tmp == -1) {
gen_addr_fault(s);
return;
}
gen_push(s, tmp);
}
DISAS_INSN(ext)
{
int reg;
int op;
int tmp;
reg = DREG(insn, 0);
op = (insn >> 6) & 7;
tmp = gen_new_qreg(QMODE_I32);
if (op == 3)
gen_op_ext16s32(tmp, reg);
else
gen_op_ext8s32(tmp, reg);
if (op == 2)
gen_partset_reg(OS_WORD, reg, tmp);
else
gen_op_mov32(reg, tmp);
gen_logic_cc(s, tmp);
}
DISAS_INSN(tst)
{
int opsize;
int tmp;
switch ((insn >> 6) & 3) {
case 0: /* tst.b */
opsize = OS_BYTE;
break;
case 1: /* tst.w */
opsize = OS_WORD;
break;
case 2: /* tst.l */
opsize = OS_LONG;
break;
default:
abort();
}
SRC_EA(tmp, opsize, -1, NULL);
gen_logic_cc(s, tmp);
}
DISAS_INSN(pulse)
{
/* Implemented as a NOP. */
}
DISAS_INSN(illegal)
{
gen_exception(s, s->pc - 2, EXCP_ILLEGAL);
}
/* ??? This should be atomic. */
DISAS_INSN(tas)
{
int dest;
int src1;
int addr;
dest = gen_new_qreg(QMODE_I32);
SRC_EA(src1, OS_BYTE, -1, &addr);
gen_logic_cc(s, src1);
gen_op_or32(dest, src1, gen_im32(0x80));
DEST_EA(insn, OS_BYTE, dest, &addr);
}
DISAS_INSN(mull)
{
uint16_t ext;
int reg;
int src1;
int dest;
/* The upper 32 bits of the product are discarded, so
muls.l and mulu.l are functionally equivalent. */
ext = lduw_code(s->pc);
s->pc += 2;
if (ext & 0x87ff) {
gen_exception(s, s->pc - 4, EXCP_UNSUPPORTED);
return;
}
reg = DREG(ext, 12);
SRC_EA(src1, OS_LONG, 0, NULL);
dest = gen_new_qreg(QMODE_I32);
gen_op_mul32(dest, src1, reg);
gen_op_mov32(reg, dest);
/* Unlike m68k, coldfire always clears the overflow bit. */
gen_logic_cc(s, dest);
}
DISAS_INSN(link)
{
int16_t offset;
int reg;
int tmp;
offset = ldsw_code(s->pc);
s->pc += 2;
reg = AREG(insn, 0);
tmp = gen_new_qreg(QMODE_I32);
gen_op_sub32(tmp, QREG_SP, gen_im32(4));
gen_store(s, OS_LONG, tmp, reg);
if (reg != QREG_SP)
gen_op_mov32(reg, tmp);
gen_op_add32(QREG_SP, tmp, gen_im32(offset));
}
DISAS_INSN(unlk)
{
int src;
int reg;
int tmp;
src = gen_new_qreg(QMODE_I32);
reg = AREG(insn, 0);
gen_op_mov32(src, reg);
tmp = gen_load(s, OS_LONG, src, 0);
gen_op_mov32(reg, tmp);
gen_op_add32(QREG_SP, src, gen_im32(4));
}
DISAS_INSN(nop)
{
}
DISAS_INSN(rts)
{
int tmp;
tmp = gen_load(s, OS_LONG, QREG_SP, 0);
gen_op_add32(QREG_SP, QREG_SP, gen_im32(4));
gen_jmp(s, tmp);
}
DISAS_INSN(jump)
{
int tmp;
/* Load the target address first to ensure correct exception
behavior. */
tmp = gen_lea(s, insn, OS_LONG);
if (tmp == -1) {
gen_addr_fault(s);
return;
}
if ((insn & 0x40) == 0) {
/* jsr */
gen_push(s, gen_im32(s->pc));
}
gen_jmp(s, tmp);
}
DISAS_INSN(addsubq)
{
int src1;
int src2;
int dest;
int val;
int addr;
SRC_EA(src1, OS_LONG, 0, &addr);
val = (insn >> 9) & 7;
if (val == 0)
val = 8;
src2 = gen_im32(val);
dest = gen_new_qreg(QMODE_I32);
gen_op_mov32(dest, src1);
if ((insn & 0x38) == 0x08) {
/* Don't update condition codes if the destination is an
address register. */
if (insn & 0x0100) {
gen_op_sub32(dest, dest, src2);
} else {
gen_op_add32(dest, dest, src2);
}
} else {
if (insn & 0x0100) {
gen_op_update_xflag_lt(dest, src2);
gen_op_sub32(dest, dest, src2);
s->cc_op = CC_OP_SUB;
} else {
gen_op_add32(dest, dest, src2);
gen_op_update_xflag_lt(dest, src2);
s->cc_op = CC_OP_ADD;
}
gen_op_update_cc_add(dest, src2);
}
DEST_EA(insn, OS_LONG, dest, &addr);
}
DISAS_INSN(tpf)
{
switch (insn & 7) {
case 2: /* One extension word. */
s->pc += 2;
break;
case 3: /* Two extension words. */
s->pc += 4;
break;
case 4: /* No extension words. */
break;
default:
disas_undef(s, insn);
}
}
DISAS_INSN(branch)
{
int32_t offset;
uint32_t base;
int op;
int l1;
base = s->pc;
op = (insn >> 8) & 0xf;
offset = (int8_t)insn;
if (offset == 0) {
offset = ldsw_code(s->pc);
s->pc += 2;
} else if (offset == -1) {
offset = read_im32(s);
}
if (op == 1) {
/* bsr */
gen_push(s, gen_im32(s->pc));
}
gen_flush_cc_op(s);
if (op > 1) {
/* Bcc */
l1 = gen_new_label();
gen_jmpcc(s, ((insn >> 8) & 0xf) ^ 1, l1);
gen_jmp_tb(s, 1, base + offset);
gen_set_label(l1);
gen_jmp_tb(s, 0, s->pc);
} else {
/* Unconditional branch. */
gen_jmp_tb(s, 0, base + offset);
}
}
DISAS_INSN(moveq)
{
int tmp;
tmp = gen_im32((int8_t)insn);
gen_op_mov32(DREG(insn, 9), tmp);
gen_logic_cc(s, tmp);
}
DISAS_INSN(mvzs)
{
int opsize;
int src;
int reg;
if (insn & 0x40)
opsize = OS_WORD;
else
opsize = OS_BYTE;
SRC_EA(src, opsize, (insn & 0x80) ? 0 : -1, NULL);
reg = DREG(insn, 9);
gen_op_mov32(reg, src);
gen_logic_cc(s, src);
}
DISAS_INSN(or)
{
int reg;
int dest;
int src;
int addr;
reg = DREG(insn, 9);
dest = gen_new_qreg(QMODE_I32);
if (insn & 0x100) {
SRC_EA(src, OS_LONG, 0, &addr);
gen_op_or32(dest, src, reg);
DEST_EA(insn, OS_LONG, dest, &addr);
} else {
SRC_EA(src, OS_LONG, 0, NULL);
gen_op_or32(dest, src, reg);
gen_op_mov32(reg, dest);
}
gen_logic_cc(s, dest);
}
DISAS_INSN(suba)
{
int src;
int reg;
SRC_EA(src, OS_LONG, 0, NULL);
reg = AREG(insn, 9);
gen_op_sub32(reg, reg, src);
}
DISAS_INSN(subx)
{
int reg;
int src;
int dest;
int tmp;
gen_flush_flags(s);
reg = DREG(insn, 9);
src = DREG(insn, 0);
dest = gen_new_qreg(QMODE_I32);
gen_op_mov32 (dest, reg);
gen_op_subx_cc(dest, src);
/* !Z is sticky. */
tmp = gen_new_qreg(QMODE_I32);
gen_op_mov32 (tmp, QREG_CC_DEST);
gen_op_update_cc_add(dest, src);
gen_op_mov32(reg, dest);
s->cc_op = CC_OP_DYNAMIC;
gen_flush_flags(s);
gen_op_or32(tmp, tmp, gen_im32(~CCF_Z));
gen_op_and32(QREG_CC_DEST, QREG_CC_DEST, tmp);
s->cc_op = CC_OP_FLAGS;
}
DISAS_INSN(mov3q)
{
int src;
int val;
val = (insn >> 9) & 7;
if (val == 0)
val = -1;
src = gen_im32(val);
gen_logic_cc(s, src);
DEST_EA(insn, OS_LONG, src, NULL);
}
DISAS_INSN(cmp)
{
int op;
int src;
int reg;
int dest;
int opsize;
op = (insn >> 6) & 3;
switch (op) {
case 0: /* cmp.b */
opsize = OS_BYTE;
s->cc_op = CC_OP_CMPB;
break;
case 1: /* cmp.w */
opsize = OS_WORD;
s->cc_op = CC_OP_CMPW;
break;
case 2: /* cmp.l */
opsize = OS_LONG;
s->cc_op = CC_OP_SUB;
break;
default:
abort();
}
SRC_EA(src, opsize, -1, NULL);
reg = DREG(insn, 9);
dest = gen_new_qreg(QMODE_I32);
gen_op_sub32(dest, reg, src);
gen_op_update_cc_add(dest, src);
}
DISAS_INSN(cmpa)
{
int opsize;
int src;
int reg;
int dest;
if (insn & 0x100) {
opsize = OS_LONG;
} else {
opsize = OS_WORD;
}
SRC_EA(src, opsize, -1, NULL);
reg = AREG(insn, 9);
dest = gen_new_qreg(QMODE_I32);
gen_op_sub32(dest, reg, src);
gen_op_update_cc_add(dest, src);
s->cc_op = CC_OP_SUB;
}
DISAS_INSN(eor)
{
int src;
int reg;
int dest;
int addr;
SRC_EA(src, OS_LONG, 0, &addr);
reg = DREG(insn, 9);
dest = gen_new_qreg(QMODE_I32);
gen_op_xor32(dest, src, reg);
gen_logic_cc(s, dest);
DEST_EA(insn, OS_LONG, dest, &addr);
}
DISAS_INSN(and)
{
int src;
int reg;
int dest;
int addr;
reg = DREG(insn, 9);
dest = gen_new_qreg(QMODE_I32);
if (insn & 0x100) {
SRC_EA(src, OS_LONG, 0, &addr);
gen_op_and32(dest, src, reg);
DEST_EA(insn, OS_LONG, dest, &addr);
} else {
SRC_EA(src, OS_LONG, 0, NULL);
gen_op_and32(dest, src, reg);
gen_op_mov32(reg, dest);
}
gen_logic_cc(s, dest);
}
DISAS_INSN(adda)
{
int src;
int reg;
SRC_EA(src, OS_LONG, 0, NULL);
reg = AREG(insn, 9);
gen_op_add32(reg, reg, src);
}
DISAS_INSN(addx)
{
int reg;
int src;
int dest;
int tmp;
gen_flush_flags(s);
reg = DREG(insn, 9);
src = DREG(insn, 0);
dest = gen_new_qreg(QMODE_I32);
gen_op_mov32 (dest, reg);
gen_op_addx_cc(dest, src);
/* !Z is sticky. */
tmp = gen_new_qreg(QMODE_I32);
gen_op_mov32 (tmp, QREG_CC_DEST);
gen_op_update_cc_add(dest, src);
gen_op_mov32(reg, dest);
s->cc_op = CC_OP_DYNAMIC;
gen_flush_flags(s);
gen_op_or32(tmp, tmp, gen_im32(~CCF_Z));
gen_op_and32(QREG_CC_DEST, QREG_CC_DEST, tmp);
s->cc_op = CC_OP_FLAGS;
}
DISAS_INSN(shift_im)
{
int reg;
int tmp;
reg = DREG(insn, 0);
tmp = (insn >> 9) & 7;
if (tmp == 0)
tmp = 8;
if (insn & 0x100) {
gen_op_shl_im_cc(reg, tmp);
s->cc_op = CC_OP_SHL;
} else {
if (insn & 8) {
gen_op_shr_im_cc(reg, tmp);
s->cc_op = CC_OP_SHR;
} else {
gen_op_sar_im_cc(reg, tmp);
s->cc_op = CC_OP_SAR;
}
}
}
DISAS_INSN(shift_reg)
{
int reg;
int src;
int tmp;
reg = DREG(insn, 0);
src = DREG(insn, 9);
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, src, gen_im32(63));
if (insn & 0x100) {
gen_op_shl_cc(reg, tmp);
s->cc_op = CC_OP_SHL;
} else {
if (insn & 8) {
gen_op_shr_cc(reg, tmp);
s->cc_op = CC_OP_SHR;
} else {
gen_op_sar_cc(reg, tmp);
s->cc_op = CC_OP_SAR;
}
}
}
DISAS_INSN(ff1)
{
int reg;
reg = DREG(insn, 0);
gen_logic_cc(s, reg);
gen_op_ff1(reg, reg);
}
static int gen_get_sr(DisasContext *s)
{
int ccr;
int sr;
ccr = gen_get_ccr(s);
sr = gen_new_qreg(QMODE_I32);
gen_op_and32(sr, QREG_SR, gen_im32(0xffe0));
gen_op_or32(sr, sr, ccr);
return sr;
}
DISAS_INSN(strldsr)
{
uint16_t ext;
uint32_t addr;
addr = s->pc - 2;
ext = lduw_code(s->pc);
s->pc += 2;
if (ext != 0x46FC) {
gen_exception(s, addr, EXCP_UNSUPPORTED);
return;
}
ext = lduw_code(s->pc);
s->pc += 2;
if (IS_USER(s) || (ext & SR_S) == 0) {
gen_exception(s, addr, EXCP_PRIVILEGE);
return;
}
gen_push(s, gen_get_sr(s));
gen_set_sr_im(s, ext, 0);
}
DISAS_INSN(move_from_sr)
{
int reg;
int sr;
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
sr = gen_get_sr(s);
reg = DREG(insn, 0);
gen_partset_reg(OS_WORD, reg, sr);
}
DISAS_INSN(move_to_sr)
{
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
gen_set_sr(s, insn, 0);
gen_lookup_tb(s);
}
DISAS_INSN(move_from_usp)
{
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
/* TODO: Implement USP. */
gen_exception(s, s->pc - 2, EXCP_ILLEGAL);
}
DISAS_INSN(move_to_usp)
{
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
/* TODO: Implement USP. */
gen_exception(s, s->pc - 2, EXCP_ILLEGAL);
}
DISAS_INSN(halt)
{
gen_jmp(s, gen_im32(s->pc));
gen_op_halt();
}
DISAS_INSN(stop)
{
uint16_t ext;
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
ext = lduw_code(s->pc);
s->pc += 2;
gen_set_sr_im(s, ext, 0);
gen_jmp(s, gen_im32(s->pc));
gen_op_stop();
}
DISAS_INSN(rte)
{
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
gen_exception(s, s->pc - 2, EXCP_RTE);
}
DISAS_INSN(movec)
{
uint16_t ext;
int reg;
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
ext = lduw_code(s->pc);
s->pc += 2;
if (ext & 0x8000) {
reg = AREG(ext, 12);
} else {
reg = DREG(ext, 12);
}
gen_op_movec(gen_im32(ext & 0xfff), reg);
gen_lookup_tb(s);
}
DISAS_INSN(intouch)
{
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
/* ICache fetch. Implement as no-op. */
}
DISAS_INSN(cpushl)
{
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
/* Cache push/invalidate. Implement as no-op. */
}
DISAS_INSN(wddata)
{
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
}
DISAS_INSN(wdebug)
{
if (IS_USER(s)) {
gen_exception(s, s->pc - 2, EXCP_PRIVILEGE);
return;
}
/* TODO: Implement wdebug. */
qemu_assert(0, "WDEBUG not implemented");
}
DISAS_INSN(trap)
{
gen_exception(s, s->pc - 2, EXCP_TRAP0 + (insn & 0xf));
}
/* ??? FP exceptions are not implemented. Most exceptions are deferred until
immediately before the next FP instruction is executed. */
DISAS_INSN(fpu)
{
uint16_t ext;
int opmode;
int src;
int dest;
int res;
int round;
int opsize;
ext = lduw_code(s->pc);
s->pc += 2;
opmode = ext & 0x7f;
switch ((ext >> 13) & 7) {
case 0: case 2:
break;
case 1:
goto undef;
case 3: /* fmove out */
src = FREG(ext, 7);
/* fmove */
/* ??? TODO: Proper behavior on overflow. */
switch ((ext >> 10) & 7) {
case 0:
opsize = OS_LONG;
res = gen_new_qreg(QMODE_I32);
gen_op_f64_to_i32(res, src);
break;
case 1:
opsize = OS_SINGLE;
res = gen_new_qreg(QMODE_F32);
gen_op_f64_to_f32(res, src);
break;
case 4:
opsize = OS_WORD;
res = gen_new_qreg(QMODE_I32);
gen_op_f64_to_i32(res, src);
break;
case 5:
opsize = OS_DOUBLE;
res = src;
break;
case 6:
opsize = OS_BYTE;
res = gen_new_qreg(QMODE_I32);
gen_op_f64_to_i32(res, src);
break;
default:
goto undef;
}
DEST_EA(insn, opsize, res, NULL);
return;
case 4: /* fmove to control register. */
switch ((ext >> 10) & 7) {
case 4: /* FPCR */
/* Not implemented. Ignore writes. */
break;
case 1: /* FPIAR */
case 2: /* FPSR */
default:
cpu_abort(NULL, "Unimplemented: fmove to control %d",
(ext >> 10) & 7);
}
break;
case 5: /* fmove from control register. */
switch ((ext >> 10) & 7) {
case 4: /* FPCR */
/* Not implemented. Always return zero. */
res = gen_im32(0);
break;
case 1: /* FPIAR */
case 2: /* FPSR */
default:
cpu_abort(NULL, "Unimplemented: fmove from control %d",
(ext >> 10) & 7);
goto undef;
}
DEST_EA(insn, OS_LONG, res, NULL);
break;
case 6: /* fmovem */
case 7:
{
int addr;
uint16_t mask;
if ((ext & 0x1f00) != 0x1000 || (ext & 0xff) == 0)
goto undef;
src = gen_lea(s, insn, OS_LONG);
if (src == -1) {
gen_addr_fault(s);
return;
}
addr = gen_new_qreg(QMODE_I32);
gen_op_mov32(addr, src);
mask = 0x80;
dest = QREG_F0;
while (mask) {
if (ext & mask) {
s->is_mem = 1;
if (ext & (1 << 13)) {
/* store */
gen_st(s, f64, addr, dest);
} else {
/* load */
gen_ld(s, f64, dest, addr);
}
if (ext & (mask - 1))
gen_op_add32(addr, addr, gen_im32(8));
}
mask >>= 1;
dest++;
}
}
return;
}
if (ext & (1 << 14)) {
int tmp;
/* Source effective address. */
switch ((ext >> 10) & 7) {
case 0: opsize = OS_LONG; break;
case 1: opsize = OS_SINGLE; break;
case 4: opsize = OS_WORD; break;
case 5: opsize = OS_DOUBLE; break;
case 6: opsize = OS_BYTE; break;
default:
goto undef;
}
SRC_EA(tmp, opsize, -1, NULL);
if (opsize == OS_DOUBLE) {
src = tmp;
} else {
src = gen_new_qreg(QMODE_F64);
switch (opsize) {
case OS_LONG:
case OS_WORD:
case OS_BYTE:
gen_op_i32_to_f64(src, tmp);
break;
case OS_SINGLE:
gen_op_f32_to_f64(src, tmp);
break;
}
}
} else {
/* Source register. */
src = FREG(ext, 10);
}
dest = FREG(ext, 7);
res = gen_new_qreg(QMODE_F64);
if (opmode != 0x3a)
gen_op_movf64(res, dest);
round = 1;
switch (opmode) {
case 0: case 0x40: case 0x44: /* fmove */
gen_op_movf64(res, src);
break;
case 1: /* fint */
gen_op_iround_f64(res, src);
round = 0;
break;
case 3: /* fintrz */
gen_op_itrunc_f64(res, src);
round = 0;
break;
case 4: case 0x41: case 0x45: /* fsqrt */
gen_op_sqrtf64(res, src);
break;
case 0x18: case 0x58: case 0x5c: /* fabs */
gen_op_absf64(res, src);
break;
case 0x1a: case 0x5a: case 0x5e: /* fneg */
gen_op_chsf64(res, src);
break;
case 0x20: case 0x60: case 0x64: /* fdiv */
gen_op_divf64(res, res, src);
break;
case 0x22: case 0x62: case 0x66: /* fadd */
gen_op_addf64(res, res, src);
break;
case 0x23: case 0x63: case 0x67: /* fmul */
gen_op_mulf64(res, res, src);
break;
case 0x28: case 0x68: case 0x6c: /* fsub */
gen_op_subf64(res, res, src);
break;
case 0x38: /* fcmp */
gen_op_sub_cmpf64(res, res, src);
dest = 0;
round = 0;
break;
case 0x3a: /* ftst */
gen_op_movf64(res, src);
dest = 0;
round = 0;
break;
default:
goto undef;
}
if (round) {
if (opmode & 0x40) {
if ((opmode & 0x4) != 0)
round = 0;
} else if ((s->fpcr & M68K_FPCR_PREC) == 0) {
round = 0;
}
}
if (round) {
int tmp;
tmp = gen_new_qreg(QMODE_F32);
gen_op_f64_to_f32(tmp, res);
gen_op_f32_to_f64(res, tmp);
}
gen_op_fp_result(res);
if (dest) {
gen_op_movf64(dest, res);
}
return;
undef:
s->pc -= 2;
disas_undef_fpu(s, insn);
}
DISAS_INSN(fbcc)
{
uint32_t offset;
uint32_t addr;
int flag;
int zero;
int l1;
addr = s->pc;
offset = ldsw_code(s->pc);
s->pc += 2;
if (insn & (1 << 6)) {
offset = (offset << 16) | lduw_code(s->pc);
s->pc += 2;
}
l1 = gen_new_label();
/* TODO: Raise BSUN exception. */
flag = gen_new_qreg(QMODE_I32);
zero = gen_new_qreg(QMODE_F64);
gen_op_zerof64(zero);
gen_op_compare_quietf64(flag, QREG_FP_RESULT, zero);
/* Jump to l1 if condition is true. */
switch (insn & 0xf) {
case 0: /* f */
break;
case 1: /* eq (=0) */
gen_op_jmp_z32(flag, l1);
break;
case 2: /* ogt (=1) */
gen_op_sub32(flag, flag, gen_im32(1));
gen_op_jmp_z32(flag, l1);
break;
case 3: /* oge (=0 or =1) */
gen_op_jmp_z32(flag, l1);
gen_op_sub32(flag, flag, gen_im32(1));
gen_op_jmp_z32(flag, l1);
break;
case 4: /* olt (=-1) */
gen_op_jmp_s32(flag, l1);
break;
case 5: /* ole (=-1 or =0) */
gen_op_jmp_s32(flag, l1);
gen_op_jmp_z32(flag, l1);
break;
case 6: /* ogl (=-1 or =1) */
gen_op_jmp_s32(flag, l1);
gen_op_sub32(flag, flag, gen_im32(1));
gen_op_jmp_z32(flag, l1);
break;
case 7: /* or (=2) */
gen_op_sub32(flag, flag, gen_im32(2));
gen_op_jmp_z32(flag, l1);
break;
case 8: /* un (<2) */
gen_op_sub32(flag, flag, gen_im32(2));
gen_op_jmp_s32(flag, l1);
break;
case 9: /* ueq (=0 or =2) */
gen_op_jmp_z32(flag, l1);
gen_op_sub32(flag, flag, gen_im32(2));
gen_op_jmp_z32(flag, l1);
break;
case 10: /* ugt (>0) */
/* ??? Add jmp_gtu. */
gen_op_sub32(flag, flag, gen_im32(1));
gen_op_jmp_ns32(flag, l1);
break;
case 11: /* uge (>=0) */
gen_op_jmp_ns32(flag, l1);
break;
case 12: /* ult (=-1 or =2) */
gen_op_jmp_s32(flag, l1);
gen_op_sub32(flag, flag, gen_im32(2));
gen_op_jmp_z32(flag, l1);
break;
case 13: /* ule (!=1) */
gen_op_sub32(flag, flag, gen_im32(1));
gen_op_jmp_nz32(flag, l1);
break;
case 14: /* ne (!=0) */
gen_op_jmp_nz32(flag, l1);
break;
case 15: /* t */
gen_op_mov32(flag, gen_im32(1));
break;
}
gen_jmp_tb(s, 0, s->pc);
gen_set_label(l1);
gen_jmp_tb(s, 1, addr + offset);
}
DISAS_INSN(frestore)
{
/* TODO: Implement frestore. */
qemu_assert(0, "FRESTORE not implemented");
}
DISAS_INSN(fsave)
{
/* TODO: Implement fsave. */
qemu_assert(0, "FSAVE not implemented");
}
static inline int gen_mac_extract_word(DisasContext *s, int val, int upper)
{
int tmp = gen_new_qreg(QMODE_I32);
if (s->env->macsr & MACSR_FI) {
if (upper)
gen_op_and32(tmp, val, gen_im32(0xffff0000));
else
gen_op_shl32(tmp, val, gen_im32(16));
} else if (s->env->macsr & MACSR_SU) {
if (upper)
gen_op_sar32(tmp, val, gen_im32(16));
else
gen_op_ext16s32(tmp, val);
} else {
if (upper)
gen_op_shr32(tmp, val, gen_im32(16));
else
gen_op_ext16u32(tmp, val);
}
return tmp;
}
DISAS_INSN(mac)
{
int rx;
int ry;
uint16_t ext;
int acc;
int l1;
int tmp;
int addr;
int loadval;
int dual;
int saved_flags = -1;
ext = lduw_code(s->pc);
s->pc += 2;
acc = ((insn >> 7) & 1) | ((ext >> 3) & 2);
dual = ((insn & 0x30) != 0 && (ext & 3) != 0);
if (dual && !m68k_feature(s->env, M68K_FEATURE_CF_EMAC_B)) {
disas_undef(s, insn);
return;
}
if (insn & 0x30) {
/* MAC with load. */
tmp = gen_lea(s, insn, OS_LONG);
addr = gen_new_qreg(QMODE_I32);
gen_op_and32(addr, tmp, QREG_MAC_MASK);
/* Load the value now to ensure correct exception behavior.
Perform writeback after reading the MAC inputs. */
loadval = gen_load(s, OS_LONG, addr, 0);
acc ^= 1;
rx = (ext & 0x8000) ? AREG(ext, 12) : DREG(insn, 12);
ry = (ext & 8) ? AREG(ext, 0) : DREG(ext, 0);
} else {
loadval = addr = -1;
rx = (insn & 0x40) ? AREG(insn, 9) : DREG(insn, 9);
ry = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0);
}
gen_op_mac_clear_flags();
l1 = -1;
if ((s->env->macsr & MACSR_OMC) != 0 && !dual) {
/* Skip the multiply if we know we will ignore it. */
l1 = gen_new_label();
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_MACSR, gen_im32(1 << (acc + 8)));
gen_op_jmp_nz32(tmp, l1);
}
if ((ext & 0x0800) == 0) {
/* Word. */
rx = gen_mac_extract_word(s, rx, (ext & 0x80) != 0);
ry = gen_mac_extract_word(s, ry, (ext & 0x40) != 0);
}
if (s->env->macsr & MACSR_FI) {
gen_op_macmulf(rx, ry);
} else {
if (s->env->macsr & MACSR_SU)
gen_op_macmuls(rx, ry);
else
gen_op_macmulu(rx, ry);
switch ((ext >> 9) & 3) {
case 1:
gen_op_macshl();
break;
case 3:
gen_op_macshr();
break;
}
}
if (dual) {
/* Save the overflow flag from the multiply. */
saved_flags = gen_new_qreg(QMODE_I32);
gen_op_mov32(saved_flags, QREG_MACSR);
}
if ((s->env->macsr & MACSR_OMC) != 0 && dual) {
/* Skip the accumulate if the value is already saturated. */
l1 = gen_new_label();
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_MACSR, gen_im32(MACSR_PAV0 << acc));
gen_op_jmp_nz32(tmp, l1);
}
if (insn & 0x100)
gen_op_macsub(acc);
else
gen_op_macadd(acc);
if (s->env->macsr & MACSR_FI)
gen_op_macsatf(acc);
else if (s->env->macsr & MACSR_SU)
gen_op_macsats(acc);
else
gen_op_macsatu(acc);
if (l1 != -1)
gen_set_label(l1);
if (dual) {
/* Dual accumulate variant. */
acc = (ext >> 2) & 3;
/* Restore the overflow flag from the multiplier. */
gen_op_mov32(QREG_MACSR, saved_flags);
if ((s->env->macsr & MACSR_OMC) != 0) {
/* Skip the accumulate if the value is already saturated. */
l1 = gen_new_label();
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, QREG_MACSR, gen_im32(MACSR_PAV0 << acc));
gen_op_jmp_nz32(tmp, l1);
}
if (ext & 2)
gen_op_macsub(acc);
else
gen_op_macadd(acc);
if (s->env->macsr & MACSR_FI)
gen_op_macsatf(acc);
else if (s->env->macsr & MACSR_SU)
gen_op_macsats(acc);
else
gen_op_macsatu(acc);
if (l1 != -1)
gen_set_label(l1);
}
gen_op_mac_set_flags(acc);
if (insn & 0x30) {
int rw;
rw = (insn & 0x40) ? AREG(insn, 9) : DREG(insn, 9);
gen_op_mov32(rw, loadval);
/* FIXME: Should address writeback happen with the masked or
unmasked value? */
switch ((insn >> 3) & 7) {
case 3: /* Post-increment. */
gen_op_add32(AREG(insn, 0), addr, gen_im32(4));
break;
case 4: /* Pre-decrement. */
gen_op_mov32(AREG(insn, 0), addr);
}
}
}
DISAS_INSN(from_mac)
{
int rx;
int acc;
rx = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0);
acc = (insn >> 9) & 3;
if (s->env->macsr & MACSR_FI) {
gen_op_get_macf(rx, acc);
} else if ((s->env->macsr & MACSR_OMC) == 0) {
gen_op_get_maci(rx, acc);
} else if (s->env->macsr & MACSR_SU) {
gen_op_get_macs(rx, acc);
} else {
gen_op_get_macu(rx, acc);
}
if (insn & 0x40)
gen_op_clear_mac(acc);
}
DISAS_INSN(move_mac)
{
int src;
int dest;
src = insn & 3;
dest = (insn >> 9) & 3;
gen_op_move_mac(dest, src);
gen_op_mac_clear_flags();
gen_op_mac_set_flags(dest);
}
DISAS_INSN(from_macsr)
{
int reg;
reg = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0);
gen_op_mov32(reg, QREG_MACSR);
}
DISAS_INSN(from_mask)
{
int reg;
reg = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0);
gen_op_mov32(reg, QREG_MAC_MASK);
}
DISAS_INSN(from_mext)
{
int reg;
int acc;
reg = (insn & 8) ? AREG(insn, 0) : DREG(insn, 0);
acc = (insn & 0x400) ? 2 : 0;
if (s->env->macsr & MACSR_FI)
gen_op_get_mac_extf(reg, acc);
else
gen_op_get_mac_exti(reg, acc);
}
DISAS_INSN(macsr_to_ccr)
{
gen_op_mov32(QREG_CC_X, gen_im32(0));
gen_op_and32(QREG_CC_DEST, QREG_MACSR, gen_im32(0xf));
s->cc_op = CC_OP_FLAGS;
}
DISAS_INSN(to_mac)
{
int acc;
int val;
acc = (insn >>9) & 3;
SRC_EA(val, OS_LONG, 0, NULL);
if (s->env->macsr & MACSR_FI) {
gen_op_set_macf(val, acc);
} else if (s->env->macsr & MACSR_SU) {
gen_op_set_macs(val, acc);
} else {
gen_op_set_macu(val, acc);
}
gen_op_mac_clear_flags();
gen_op_mac_set_flags(acc);
}
DISAS_INSN(to_macsr)
{
int val;
SRC_EA(val, OS_LONG, 0, NULL);
gen_op_set_macsr(val);
gen_lookup_tb(s);
}
DISAS_INSN(to_mask)
{
int val;
SRC_EA(val, OS_LONG, 0, NULL);
gen_op_or32(QREG_MAC_MASK, val, gen_im32(0xffff0000));
}
DISAS_INSN(to_mext)
{
int val;
int acc;
SRC_EA(val, OS_LONG, 0, NULL);
acc = (insn & 0x400) ? 2 : 0;
if (s->env->macsr & MACSR_FI)
gen_op_set_mac_extf(val, acc);
else if (s->env->macsr & MACSR_SU)
gen_op_set_mac_exts(val, acc);
else
gen_op_set_mac_extu(val, acc);
}
static disas_proc opcode_table[65536];
static void
register_opcode (disas_proc proc, uint16_t opcode, uint16_t mask)
{
int i;
int from;
int to;
/* Sanity check. All set bits must be included in the mask. */
if (opcode & ~mask) {
fprintf(stderr,
"qemu internal error: bogus opcode definition %04x/%04x\n",
opcode, mask);
abort();
}
/* This could probably be cleverer. For now just optimize the case where
the top bits are known. */
/* Find the first zero bit in the mask. */
i = 0x8000;
while ((i & mask) != 0)
i >>= 1;
/* Iterate over all combinations of this and lower bits. */
if (i == 0)
i = 1;
else
i <<= 1;
from = opcode & ~(i - 1);
to = from + i;
for (i = from; i < to; i++) {
if ((i & mask) == opcode)
opcode_table[i] = proc;
}
}
/* Register m68k opcode handlers. Order is important.
Later insn override earlier ones. */
void register_m68k_insns (CPUM68KState *env)
{
#define INSN(name, opcode, mask, feature) do { \
if (m68k_feature(env, M68K_FEATURE_##feature)) \
register_opcode(disas_##name, 0x##opcode, 0x##mask); \
} while(0)
INSN(undef, 0000, 0000, CF_ISA_A);
INSN(arith_im, 0080, fff8, CF_ISA_A);
INSN(bitrev, 00c0, fff8, CF_ISA_APLUSC);
INSN(bitop_reg, 0100, f1c0, CF_ISA_A);
INSN(bitop_reg, 0140, f1c0, CF_ISA_A);
INSN(bitop_reg, 0180, f1c0, CF_ISA_A);
INSN(bitop_reg, 01c0, f1c0, CF_ISA_A);
INSN(arith_im, 0280, fff8, CF_ISA_A);
INSN(byterev, 02c0, fff8, CF_ISA_APLUSC);
INSN(arith_im, 0480, fff8, CF_ISA_A);
INSN(ff1, 04c0, fff8, CF_ISA_APLUSC);
INSN(arith_im, 0680, fff8, CF_ISA_A);
INSN(bitop_im, 0800, ffc0, CF_ISA_A);
INSN(bitop_im, 0840, ffc0, CF_ISA_A);
INSN(bitop_im, 0880, ffc0, CF_ISA_A);
INSN(bitop_im, 08c0, ffc0, CF_ISA_A);
INSN(arith_im, 0a80, fff8, CF_ISA_A);
INSN(arith_im, 0c00, ff38, CF_ISA_A);
INSN(move, 1000, f000, CF_ISA_A);
INSN(move, 2000, f000, CF_ISA_A);
INSN(move, 3000, f000, CF_ISA_A);
INSN(strldsr, 40e7, ffff, CF_ISA_APLUSC);
INSN(negx, 4080, fff8, CF_ISA_A);
INSN(move_from_sr, 40c0, fff8, CF_ISA_A);
INSN(lea, 41c0, f1c0, CF_ISA_A);
INSN(clr, 4200, ff00, CF_ISA_A);
INSN(undef, 42c0, ffc0, CF_ISA_A);
INSN(move_from_ccr, 42c0, fff8, CF_ISA_A);
INSN(neg, 4480, fff8, CF_ISA_A);
INSN(move_to_ccr, 44c0, ffc0, CF_ISA_A);
INSN(not, 4680, fff8, CF_ISA_A);
INSN(move_to_sr, 46c0, ffc0, CF_ISA_A);
INSN(pea, 4840, ffc0, CF_ISA_A);
INSN(swap, 4840, fff8, CF_ISA_A);
INSN(movem, 48c0, fbc0, CF_ISA_A);
INSN(ext, 4880, fff8, CF_ISA_A);
INSN(ext, 48c0, fff8, CF_ISA_A);
INSN(ext, 49c0, fff8, CF_ISA_A);
INSN(tst, 4a00, ff00, CF_ISA_A);
INSN(tas, 4ac0, ffc0, CF_ISA_B);
INSN(halt, 4ac8, ffff, CF_ISA_A);
INSN(pulse, 4acc, ffff, CF_ISA_A);
INSN(illegal, 4afc, ffff, CF_ISA_A);
INSN(mull, 4c00, ffc0, CF_ISA_A);
INSN(divl, 4c40, ffc0, CF_ISA_A);
INSN(sats, 4c80, fff8, CF_ISA_B);
INSN(trap, 4e40, fff0, CF_ISA_A);
INSN(link, 4e50, fff8, CF_ISA_A);
INSN(unlk, 4e58, fff8, CF_ISA_A);
INSN(move_to_usp, 4e60, fff8, USP);
INSN(move_from_usp, 4e68, fff8, USP);
INSN(nop, 4e71, ffff, CF_ISA_A);
INSN(stop, 4e72, ffff, CF_ISA_A);
INSN(rte, 4e73, ffff, CF_ISA_A);
INSN(rts, 4e75, ffff, CF_ISA_A);
INSN(movec, 4e7b, ffff, CF_ISA_A);
INSN(jump, 4e80, ffc0, CF_ISA_A);
INSN(jump, 4ec0, ffc0, CF_ISA_A);
INSN(addsubq, 5180, f1c0, CF_ISA_A);
INSN(scc, 50c0, f0f8, CF_ISA_A);
INSN(addsubq, 5080, f1c0, CF_ISA_A);
INSN(tpf, 51f8, fff8, CF_ISA_A);
/* Branch instructions. */
INSN(branch, 6000, f000, CF_ISA_A);
/* Disable long branch instructions, then add back the ones we want. */
INSN(undef, 60ff, f0ff, CF_ISA_A); /* All long branches. */
INSN(branch, 60ff, f0ff, CF_ISA_B);
INSN(undef, 60ff, ffff, CF_ISA_B); /* bra.l */
INSN(branch, 60ff, ffff, BRAL);
INSN(moveq, 7000, f100, CF_ISA_A);
INSN(mvzs, 7100, f100, CF_ISA_B);
INSN(or, 8000, f000, CF_ISA_A);
INSN(divw, 80c0, f0c0, CF_ISA_A);
INSN(addsub, 9000, f000, CF_ISA_A);
INSN(subx, 9180, f1f8, CF_ISA_A);
INSN(suba, 91c0, f1c0, CF_ISA_A);
INSN(undef_mac, a000, f000, CF_ISA_A);
INSN(mac, a000, f100, CF_EMAC);
INSN(from_mac, a180, f9b0, CF_EMAC);
INSN(move_mac, a110, f9fc, CF_EMAC);
INSN(from_macsr,a980, f9f0, CF_EMAC);
INSN(from_mask, ad80, fff0, CF_EMAC);
INSN(from_mext, ab80, fbf0, CF_EMAC);
INSN(macsr_to_ccr, a9c0, ffff, CF_EMAC);
INSN(to_mac, a100, f9c0, CF_EMAC);
INSN(to_macsr, a900, ffc0, CF_EMAC);
INSN(to_mext, ab00, fbc0, CF_EMAC);
INSN(to_mask, ad00, ffc0, CF_EMAC);
INSN(mov3q, a140, f1c0, CF_ISA_B);
INSN(cmp, b000, f1c0, CF_ISA_B); /* cmp.b */
INSN(cmp, b040, f1c0, CF_ISA_B); /* cmp.w */
INSN(cmpa, b0c0, f1c0, CF_ISA_B); /* cmpa.w */
INSN(cmp, b080, f1c0, CF_ISA_A);
INSN(cmpa, b1c0, f1c0, CF_ISA_A);
INSN(eor, b180, f1c0, CF_ISA_A);
INSN(and, c000, f000, CF_ISA_A);
INSN(mulw, c0c0, f0c0, CF_ISA_A);
INSN(addsub, d000, f000, CF_ISA_A);
INSN(addx, d180, f1f8, CF_ISA_A);
INSN(adda, d1c0, f1c0, CF_ISA_A);
INSN(shift_im, e080, f0f0, CF_ISA_A);
INSN(shift_reg, e0a0, f0f0, CF_ISA_A);
INSN(undef_fpu, f000, f000, CF_ISA_A);
INSN(fpu, f200, ffc0, CF_FPU);
INSN(fbcc, f280, ffc0, CF_FPU);
INSN(frestore, f340, ffc0, CF_FPU);
INSN(fsave, f340, ffc0, CF_FPU);
INSN(intouch, f340, ffc0, CF_ISA_A);
INSN(cpushl, f428, ff38, CF_ISA_A);
INSN(wddata, fb00, ff00, CF_ISA_A);
INSN(wdebug, fbc0, ffc0, CF_ISA_A);
#undef INSN
}
/* ??? Some of this implementation is not exception safe. We should always
write back the result to memory before setting the condition codes. */
static void disas_m68k_insn(CPUState * env, DisasContext *s)
{
uint16_t insn;
insn = lduw_code(s->pc);
s->pc += 2;
opcode_table[insn](s, insn);
}
#if 0
/* Save the result of a floating point operation. */
static void expand_op_fp_result(qOP *qop)
{
gen_op_movf64(QREG_FP_RESULT, qop->args[0]);
}
/* Dummy op to indicate that the flags have been set. */
static void expand_op_flags_set(qOP *qop)
{
}
/* Convert the confition codes into CC_OP_FLAGS format. */
static void expand_op_flush_flags(qOP *qop)
{
int cc_opreg;
if (qop->args[0] == CC_OP_DYNAMIC)
cc_opreg = QREG_CC_OP;
else
cc_opreg = gen_im32(qop->args[0]);
gen_op_helper32(QREG_NULL, cc_opreg, HELPER_flush_flags);
}
/* Set CC_DEST after a logical or direct flag setting operation. */
static void expand_op_logic_cc(qOP *qop)
{
gen_op_mov32(QREG_CC_DEST, qop->args[0]);
}
/* Set CC_SRC and CC_DEST after an arithmetic operation. */
static void expand_op_update_cc_add(qOP *qop)
{
gen_op_mov32(QREG_CC_DEST, qop->args[0]);
gen_op_mov32(QREG_CC_SRC, qop->args[1]);
}
/* Update the X flag. */
static void expand_op_update_xflag(qOP *qop)
{
int arg0;
int arg1;
arg0 = qop->args[0];
arg1 = qop->args[1];
if (arg1 == QREG_NULL) {
/* CC_X = arg0. */
gen_op_mov32(QREG_CC_X, arg0);
} else {
/* CC_X = arg0 < (unsigned)arg1. */
gen_op_set_ltu32(QREG_CC_X, arg0, arg1);
}
}
/* Set arg0 to the contents of the X flag. */
static void expand_op_get_xflag(qOP *qop)
{
gen_op_mov32(qop->args[0], QREG_CC_X);
}
/* Expand a shift by immediate. The ISA only allows shifts by 1-8, so we
already know the shift is within range. */
static inline void expand_shift_im(qOP *qop, int right, int arith)
{
int val;
int reg;
int tmp;
int im;
reg = qop->args[0];
im = qop->args[1];
tmp = gen_im32(im);
val = gen_new_qreg(QMODE_I32);
gen_op_mov32(val, reg);
gen_op_mov32(QREG_CC_DEST, val);
gen_op_mov32(QREG_CC_SRC, tmp);
if (right) {
if (arith) {
gen_op_sar32(reg, val, tmp);
} else {
gen_op_shr32(reg, val, tmp);
}
if (im == 1)
tmp = QREG_NULL;
else
tmp = gen_im32(im - 1);
} else {
gen_op_shl32(reg, val, tmp);
tmp = gen_im32(32 - im);
}
if (tmp != QREG_NULL)
gen_op_shr32(val, val, tmp);
gen_op_and32(QREG_CC_X, val, gen_im32(1));
}
static void expand_op_shl_im_cc(qOP *qop)
{
expand_shift_im(qop, 0, 0);
}
static void expand_op_shr_im_cc(qOP *qop)
{
expand_shift_im(qop, 1, 0);
}
static void expand_op_sar_im_cc(qOP *qop)
{
expand_shift_im(qop, 1, 1);
}
/* Expand a shift by register. */
/* ??? This gives incorrect answers for shifts by 0 or >= 32 */
static inline void expand_shift_reg(qOP *qop, int right, int arith)
{
int val;
int reg;
int shift;
int tmp;
reg = qop->args[0];
shift = qop->args[1];
val = gen_new_qreg(QMODE_I32);
gen_op_mov32(val, reg);
gen_op_mov32(QREG_CC_DEST, val);
gen_op_mov32(QREG_CC_SRC, shift);
tmp = gen_new_qreg(QMODE_I32);
if (right) {
if (arith) {
gen_op_sar32(reg, val, shift);
} else {
gen_op_shr32(reg, val, shift);
}
gen_op_sub32(tmp, shift, gen_im32(1));
} else {
gen_op_shl32(reg, val, shift);
gen_op_sub32(tmp, gen_im32(31), shift);
}
gen_op_shl32(val, val, tmp);
gen_op_and32(QREG_CC_X, val, gen_im32(1));
}
static void expand_op_shl_cc(qOP *qop)
{
expand_shift_reg(qop, 0, 0);
}
static void expand_op_shr_cc(qOP *qop)
{
expand_shift_reg(qop, 1, 0);
}
static void expand_op_sar_cc(qOP *qop)
{
expand_shift_reg(qop, 1, 1);
}
/* Set the Z flag to (arg0 & arg1) == 0. */
static void expand_op_btest(qOP *qop)
{
int tmp;
int l1;
l1 = gen_new_label();
tmp = gen_new_qreg(QMODE_I32);
gen_op_and32(tmp, qop->args[0], qop->args[1]);
gen_op_and32(QREG_CC_DEST, QREG_CC_DEST, gen_im32(~(uint32_t)CCF_Z));
gen_op_jmp_nz32(tmp, l1);
gen_op_or32(QREG_CC_DEST, QREG_CC_DEST, gen_im32(CCF_Z));
gen_op_label(l1);
}
/* arg0 += arg1 + CC_X */
static void expand_op_addx_cc(qOP *qop)
{
int arg0 = qop->args[0];
int arg1 = qop->args[1];
int l1, l2;
gen_op_add32 (arg0, arg0, arg1);
l1 = gen_new_label();
l2 = gen_new_label();
gen_op_jmp_z32(QREG_CC_X, l1);
gen_op_add32(arg0, arg0, gen_im32(1));
gen_op_mov32(QREG_CC_OP, gen_im32(CC_OP_ADDX));
gen_op_set_leu32(QREG_CC_X, arg0, arg1);
gen_op_jmp(l2);
gen_set_label(l1);
gen_op_mov32(QREG_CC_OP, gen_im32(CC_OP_ADD));
gen_op_set_ltu32(QREG_CC_X, arg0, arg1);
gen_set_label(l2);
}
/* arg0 -= arg1 + CC_X */
static void expand_op_subx_cc(qOP *qop)
{
int arg0 = qop->args[0];
int arg1 = qop->args[1];
int l1, l2;
l1 = gen_new_label();
l2 = gen_new_label();
gen_op_jmp_z32(QREG_CC_X, l1);
gen_op_set_leu32(QREG_CC_X, arg0, arg1);
gen_op_sub32(arg0, arg0, gen_im32(1));
gen_op_mov32(QREG_CC_OP, gen_im32(CC_OP_SUBX));
gen_op_jmp(l2);
gen_set_label(l1);
gen_op_set_ltu32(QREG_CC_X, arg0, arg1);
gen_op_mov32(QREG_CC_OP, gen_im32(CC_OP_SUB));
gen_set_label(l2);
gen_op_sub32 (arg0, arg0, arg1);
}
/* Expand target specific ops to generic qops. */
static void expand_target_qops(void)
{
qOP *qop;
qOP *next;
int c;
/* Copy the list of qops, expanding target specific ops as we go. */
qop = gen_first_qop;
gen_first_qop = NULL;
gen_last_qop = NULL;
for (; qop; qop = next) {
c = qop->opcode;
next = qop->next;
if (c < FIRST_TARGET_OP) {
qop->prev = gen_last_qop;
qop->next = NULL;
if (gen_last_qop)
gen_last_qop->next = qop;
else
gen_first_qop = qop;
gen_last_qop = qop;
continue;
}
switch (c) {
#define DEF(name, nargs, barrier) \
case INDEX_op_##name: \
expand_op_##name(qop); \
break;
#include "qop-target.def"
#undef DEF
default:
cpu_abort(NULL, "Unexpanded target qop");
}
}
}
/* ??? Implement this. */
static void
optimize_flags(void)
{
}
#endif
/* generate intermediate code for basic block 'tb'. */
static inline int
gen_intermediate_code_internal(CPUState *env, TranslationBlock *tb,
int search_pc)
{
DisasContext dc1, *dc = &dc1;
uint16_t *gen_opc_end;
int j, lj;
target_ulong pc_start;
int pc_offset;
int last_cc_op;
/* generate intermediate code */
pc_start = tb->pc;
dc->tb = tb;
gen_opc_ptr = gen_opc_buf;
gen_opc_end = gen_opc_buf + OPC_MAX_SIZE;
gen_opparam_ptr = gen_opparam_buf;
dc->env = env;
dc->is_jmp = DISAS_NEXT;
dc->pc = pc_start;
dc->cc_op = CC_OP_DYNAMIC;
dc->singlestep_enabled = env->singlestep_enabled;
dc->fpcr = env->fpcr;
dc->user = (env->sr & SR_S) == 0;
dc->is_mem = 0;
nb_gen_labels = 0;
lj = -1;
do {
free_qreg = 0;
pc_offset = dc->pc - pc_start;
gen_throws_exception = NULL;
if (env->nb_breakpoints > 0) {
for(j = 0; j < env->nb_breakpoints; j++) {
if (env->breakpoints[j] == dc->pc) {
gen_exception(dc, dc->pc, EXCP_DEBUG);
dc->is_jmp = DISAS_JUMP;
break;
}
}
if (dc->is_jmp)
break;
}
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
if (lj < j) {
lj++;
while (lj < j)
gen_opc_instr_start[lj++] = 0;
}
gen_opc_pc[lj] = dc->pc;
gen_opc_instr_start[lj] = 1;
}
last_cc_op = dc->cc_op;
dc->insn_pc = dc->pc;
disas_m68k_insn(env, dc);
/* Terminate the TB on memory ops if watchpoints are present. */
/* FIXME: This should be replacd by the deterministic execution
* IRQ raising bits. */
if (dc->is_mem && env->nb_watchpoints)
break;
} while (!dc->is_jmp && gen_opc_ptr < gen_opc_end &&
!env->singlestep_enabled &&
(pc_offset) < (TARGET_PAGE_SIZE - 32));
if (__builtin_expect(env->singlestep_enabled, 0)) {
/* Make sure the pc is updated, and raise a debug exception. */
if (!dc->is_jmp) {
gen_flush_cc_op(dc);
gen_op_mov32(QREG_PC, gen_im32((long)dc->pc));
}
gen_op_raise_exception(EXCP_DEBUG);
} else {
switch(dc->is_jmp) {
case DISAS_NEXT:
gen_flush_cc_op(dc);
gen_jmp_tb(dc, 0, dc->pc);
break;
default:
case DISAS_JUMP:
case DISAS_UPDATE:
gen_flush_cc_op(dc);
/* indicate that the hash table must be used to find the next TB */
gen_op_mov32(QREG_T0, gen_im32(0));
gen_op_exit_tb();
break;
case DISAS_TB_JUMP:
/* nothing more to generate */
break;
}
}
*gen_opc_ptr = INDEX_op_end;
#ifdef DEBUG_DISAS
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "----------------\n");
fprintf(logfile, "IN: %s\n", lookup_symbol(pc_start));
target_disas(logfile, pc_start, dc->pc - pc_start, 0);
fprintf(logfile, "\n");
if (loglevel & (CPU_LOG_TB_OP)) {
fprintf(logfile, "OP:\n");
dump_ops(gen_opc_buf, gen_opparam_buf);
fprintf(logfile, "\n");
}
}
#endif
if (search_pc) {
j = gen_opc_ptr - gen_opc_buf;
lj++;
while (lj <= j)
gen_opc_instr_start[lj++] = 0;
} else {
tb->size = dc->pc - pc_start;
}
//optimize_flags();
//expand_target_qops();
return 0;
}
int gen_intermediate_code(CPUState *env, TranslationBlock *tb)
{
return gen_intermediate_code_internal(env, tb, 0);
}
int gen_intermediate_code_pc(CPUState *env, TranslationBlock *tb)
{
return gen_intermediate_code_internal(env, tb, 1);
}
void cpu_reset(CPUM68KState *env)
{
memset(env, 0, offsetof(CPUM68KState, breakpoints));
#if !defined (CONFIG_USER_ONLY)
env->sr = 0x2700;
#endif
m68k_switch_sp(env);
/* ??? FP regs should be initialized to NaN. */
env->cc_op = CC_OP_FLAGS;
/* TODO: We should set PC from the interrupt vector. */
env->pc = 0;
tlb_flush(env, 1);
}
CPUM68KState *cpu_m68k_init(void)
{
CPUM68KState *env;
env = malloc(sizeof(CPUM68KState));
if (!env)
return NULL;
cpu_exec_init(env);
cpu_reset(env);
return env;
}
void cpu_m68k_close(CPUM68KState *env)
{
free(env);
}
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags)
{
int i;
uint16_t sr;
CPU_DoubleU u;
for (i = 0; i < 8; i++)
{
u.d = env->fregs[i];
cpu_fprintf (f, "D%d = %08x A%d = %08x F%d = %08x%08x (%12g)\n",
i, env->dregs[i], i, env->aregs[i],
i, u.l.upper, u.l.lower, u.d);
}
cpu_fprintf (f, "PC = %08x ", env->pc);
sr = env->sr;
cpu_fprintf (f, "SR = %04x %c%c%c%c%c ", sr, (sr & 0x10) ? 'X' : '-',
(sr & CCF_N) ? 'N' : '-', (sr & CCF_Z) ? 'Z' : '-',
(sr & CCF_V) ? 'V' : '-', (sr & CCF_C) ? 'C' : '-');
cpu_fprintf (f, "FPRESULT = %12g\n", env->fp_result);
}