mirror of https://gitee.com/openkylin/qemu.git
coroutine: adding sigaltstack method (.c source)
This file is based in both coroutine-ucontext.c and pth_mctx.c (from the GNU Portable Threads library). The mechanism used to change stacks is the sigaltstack function (variant 2 of the pth library). v2: Some corrections. Moving global variables into thread storage (CoroutineThreadState). Signed-off-by: Alex Barcelo <abarcelo@ac.upc.edu> Signed-off-by: Kevin Wolf <kwolf@redhat.com>
This commit is contained in:
parent
250196f19c
commit
3194c8ceeb
|
@ -0,0 +1,334 @@
|
|||
/*
|
||||
* sigaltstack coroutine initialization code
|
||||
*
|
||||
* Copyright (C) 2006 Anthony Liguori <anthony@codemonkey.ws>
|
||||
* Copyright (C) 2011 Kevin Wolf <kwolf@redhat.com>
|
||||
* Copyright (C) 2012 Alex Barcelo <abarcelo@ac.upc.edu>
|
||||
** This file is partly based on pth_mctx.c, from the GNU Portable Threads
|
||||
** Copyright (c) 1999-2006 Ralf S. Engelschall <rse@engelschall.com>
|
||||
*
|
||||
* This library is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU Lesser General Public
|
||||
* License as published by the Free Software Foundation; either
|
||||
* version 2.1 of the License, or (at your option) any later version.
|
||||
*
|
||||
* This library is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||||
* Lesser General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU Lesser General Public
|
||||
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
/* XXX Is there a nicer way to disable glibc's stack check for longjmp? */
|
||||
#ifdef _FORTIFY_SOURCE
|
||||
#undef _FORTIFY_SOURCE
|
||||
#endif
|
||||
#include <stdlib.h>
|
||||
#include <setjmp.h>
|
||||
#include <stdint.h>
|
||||
#include <pthread.h>
|
||||
#include <signal.h>
|
||||
#include "qemu-common.h"
|
||||
#include "qemu-coroutine-int.h"
|
||||
|
||||
enum {
|
||||
/* Maximum free pool size prevents holding too many freed coroutines */
|
||||
POOL_MAX_SIZE = 64,
|
||||
};
|
||||
|
||||
/** Free list to speed up creation */
|
||||
static QSLIST_HEAD(, Coroutine) pool = QSLIST_HEAD_INITIALIZER(pool);
|
||||
static unsigned int pool_size;
|
||||
|
||||
typedef struct {
|
||||
Coroutine base;
|
||||
void *stack;
|
||||
jmp_buf env;
|
||||
} CoroutineUContext;
|
||||
|
||||
/**
|
||||
* Per-thread coroutine bookkeeping
|
||||
*/
|
||||
typedef struct {
|
||||
/** Currently executing coroutine */
|
||||
Coroutine *current;
|
||||
|
||||
/** The default coroutine */
|
||||
CoroutineUContext leader;
|
||||
|
||||
/** Information for the signal handler (trampoline) */
|
||||
jmp_buf tr_reenter;
|
||||
volatile sig_atomic_t tr_called;
|
||||
void *tr_handler;
|
||||
} CoroutineThreadState;
|
||||
|
||||
static pthread_key_t thread_state_key;
|
||||
|
||||
static CoroutineThreadState *coroutine_get_thread_state(void)
|
||||
{
|
||||
CoroutineThreadState *s = pthread_getspecific(thread_state_key);
|
||||
|
||||
if (!s) {
|
||||
s = g_malloc0(sizeof(*s));
|
||||
s->current = &s->leader.base;
|
||||
pthread_setspecific(thread_state_key, s);
|
||||
}
|
||||
return s;
|
||||
}
|
||||
|
||||
static void qemu_coroutine_thread_cleanup(void *opaque)
|
||||
{
|
||||
CoroutineThreadState *s = opaque;
|
||||
|
||||
g_free(s);
|
||||
}
|
||||
|
||||
static void __attribute__((destructor)) coroutine_cleanup(void)
|
||||
{
|
||||
Coroutine *co;
|
||||
Coroutine *tmp;
|
||||
|
||||
QSLIST_FOREACH_SAFE(co, &pool, pool_next, tmp) {
|
||||
g_free(DO_UPCAST(CoroutineUContext, base, co)->stack);
|
||||
g_free(co);
|
||||
}
|
||||
}
|
||||
|
||||
static void __attribute__((constructor)) coroutine_init(void)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = pthread_key_create(&thread_state_key, qemu_coroutine_thread_cleanup);
|
||||
if (ret != 0) {
|
||||
fprintf(stderr, "unable to create leader key: %s\n", strerror(errno));
|
||||
abort();
|
||||
}
|
||||
}
|
||||
|
||||
/* "boot" function
|
||||
* This is what starts the coroutine, is called from the trampoline
|
||||
* (from the signal handler when it is not signal handling, read ahead
|
||||
* for more information).
|
||||
*/
|
||||
static void coroutine_bootstrap(CoroutineUContext *self, Coroutine *co)
|
||||
{
|
||||
/* Initialize longjmp environment and switch back the caller */
|
||||
if (!setjmp(self->env)) {
|
||||
longjmp(*(jmp_buf *)co->entry_arg, 1);
|
||||
}
|
||||
|
||||
while (true) {
|
||||
co->entry(co->entry_arg);
|
||||
qemu_coroutine_switch(co, co->caller, COROUTINE_TERMINATE);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This is used as the signal handler. This is called with the brand new stack
|
||||
* (thanks to sigaltstack). We have to return, given that this is a signal
|
||||
* handler and the sigmask and some other things are changed.
|
||||
*/
|
||||
static void coroutine_trampoline(int signal)
|
||||
{
|
||||
CoroutineUContext *self;
|
||||
Coroutine *co;
|
||||
CoroutineThreadState *coTS;
|
||||
|
||||
/* Get the thread specific information */
|
||||
coTS = coroutine_get_thread_state();
|
||||
self = coTS->tr_handler;
|
||||
coTS->tr_called = 1;
|
||||
co = &self->base;
|
||||
|
||||
/*
|
||||
* Here we have to do a bit of a ping pong between the caller, given that
|
||||
* this is a signal handler and we have to do a return "soon". Then the
|
||||
* caller can reestablish everything and do a longjmp here again.
|
||||
*/
|
||||
if (!setjmp(coTS->tr_reenter)) {
|
||||
return;
|
||||
}
|
||||
|
||||
/*
|
||||
* Ok, the caller has longjmp'ed back to us, so now prepare
|
||||
* us for the real machine state switching. We have to jump
|
||||
* into another function here to get a new stack context for
|
||||
* the auto variables (which have to be auto-variables
|
||||
* because the start of the thread happens later). Else with
|
||||
* PIC (i.e. Position Independent Code which is used when PTH
|
||||
* is built as a shared library) most platforms would
|
||||
* horrible core dump as experience showed.
|
||||
*/
|
||||
coroutine_bootstrap(self, co);
|
||||
}
|
||||
|
||||
static Coroutine *coroutine_new(void)
|
||||
{
|
||||
const size_t stack_size = 1 << 20;
|
||||
CoroutineUContext *co;
|
||||
CoroutineThreadState *coTS;
|
||||
struct sigaction sa;
|
||||
struct sigaction osa;
|
||||
struct sigaltstack ss;
|
||||
struct sigaltstack oss;
|
||||
sigset_t sigs;
|
||||
sigset_t osigs;
|
||||
jmp_buf old_env;
|
||||
|
||||
/* The way to manipulate stack is with the sigaltstack function. We
|
||||
* prepare a stack, with it delivering a signal to ourselves and then
|
||||
* put setjmp/longjmp where needed.
|
||||
* This has been done keeping coroutine-ucontext as a model and with the
|
||||
* pth ideas (GNU Portable Threads). See coroutine-ucontext for the basics
|
||||
* of the coroutines and see pth_mctx.c (from the pth project) for the
|
||||
* sigaltstack way of manipulating stacks.
|
||||
*/
|
||||
|
||||
co = g_malloc0(sizeof(*co));
|
||||
co->stack = g_malloc(stack_size);
|
||||
co->base.entry_arg = &old_env; /* stash away our jmp_buf */
|
||||
|
||||
coTS = coroutine_get_thread_state();
|
||||
coTS->tr_handler = co;
|
||||
|
||||
/*
|
||||
* Preserve the SIGUSR2 signal state, block SIGUSR2,
|
||||
* and establish our signal handler. The signal will
|
||||
* later transfer control onto the signal stack.
|
||||
*/
|
||||
sigemptyset(&sigs);
|
||||
sigaddset(&sigs, SIGUSR2);
|
||||
pthread_sigmask(SIG_BLOCK, &sigs, &osigs);
|
||||
sa.sa_handler = coroutine_trampoline;
|
||||
sigfillset(&sa.sa_mask);
|
||||
sa.sa_flags = SA_ONSTACK;
|
||||
if (sigaction(SIGUSR2, &sa, &osa) != 0) {
|
||||
abort();
|
||||
}
|
||||
|
||||
/*
|
||||
* Set the new stack.
|
||||
*/
|
||||
ss.ss_sp = co->stack;
|
||||
ss.ss_size = stack_size;
|
||||
ss.ss_flags = 0;
|
||||
if (sigaltstack(&ss, &oss) < 0) {
|
||||
abort();
|
||||
}
|
||||
|
||||
/*
|
||||
* Now transfer control onto the signal stack and set it up.
|
||||
* It will return immediately via "return" after the setjmp()
|
||||
* was performed. Be careful here with race conditions. The
|
||||
* signal can be delivered the first time sigsuspend() is
|
||||
* called.
|
||||
*/
|
||||
coTS->tr_called = 0;
|
||||
kill(getpid(), SIGUSR2);
|
||||
sigfillset(&sigs);
|
||||
sigdelset(&sigs, SIGUSR2);
|
||||
while (!coTS->tr_called) {
|
||||
sigsuspend(&sigs);
|
||||
}
|
||||
|
||||
/*
|
||||
* Inform the system that we are back off the signal stack by
|
||||
* removing the alternative signal stack. Be careful here: It
|
||||
* first has to be disabled, before it can be removed.
|
||||
*/
|
||||
sigaltstack(NULL, &ss);
|
||||
ss.ss_flags = SS_DISABLE;
|
||||
if (sigaltstack(&ss, NULL) < 0) {
|
||||
abort();
|
||||
}
|
||||
sigaltstack(NULL, &ss);
|
||||
if (!(oss.ss_flags & SS_DISABLE)) {
|
||||
sigaltstack(&oss, NULL);
|
||||
}
|
||||
|
||||
/*
|
||||
* Restore the old SIGUSR2 signal handler and mask
|
||||
*/
|
||||
sigaction(SIGUSR2, &osa, NULL);
|
||||
pthread_sigmask(SIG_SETMASK, &osigs, NULL);
|
||||
|
||||
/*
|
||||
* Now enter the trampoline again, but this time not as a signal
|
||||
* handler. Instead we jump into it directly. The functionally
|
||||
* redundant ping-pong pointer arithmentic is neccessary to avoid
|
||||
* type-conversion warnings related to the `volatile' qualifier and
|
||||
* the fact that `jmp_buf' usually is an array type.
|
||||
*/
|
||||
if (!setjmp(old_env)) {
|
||||
longjmp(coTS->tr_reenter, 1);
|
||||
}
|
||||
|
||||
/*
|
||||
* Ok, we returned again, so now we're finished
|
||||
*/
|
||||
|
||||
return &co->base;
|
||||
}
|
||||
|
||||
Coroutine *qemu_coroutine_new(void)
|
||||
{
|
||||
Coroutine *co;
|
||||
|
||||
co = QSLIST_FIRST(&pool);
|
||||
if (co) {
|
||||
QSLIST_REMOVE_HEAD(&pool, pool_next);
|
||||
pool_size--;
|
||||
} else {
|
||||
co = coroutine_new();
|
||||
}
|
||||
return co;
|
||||
}
|
||||
|
||||
void qemu_coroutine_delete(Coroutine *co_)
|
||||
{
|
||||
CoroutineUContext *co = DO_UPCAST(CoroutineUContext, base, co_);
|
||||
|
||||
if (pool_size < POOL_MAX_SIZE) {
|
||||
QSLIST_INSERT_HEAD(&pool, &co->base, pool_next);
|
||||
co->base.caller = NULL;
|
||||
pool_size++;
|
||||
return;
|
||||
}
|
||||
|
||||
g_free(co->stack);
|
||||
g_free(co);
|
||||
}
|
||||
|
||||
CoroutineAction qemu_coroutine_switch(Coroutine *from_, Coroutine *to_,
|
||||
CoroutineAction action)
|
||||
{
|
||||
CoroutineUContext *from = DO_UPCAST(CoroutineUContext, base, from_);
|
||||
CoroutineUContext *to = DO_UPCAST(CoroutineUContext, base, to_);
|
||||
CoroutineThreadState *s = coroutine_get_thread_state();
|
||||
int ret;
|
||||
|
||||
s->current = to_;
|
||||
|
||||
ret = setjmp(from->env);
|
||||
if (ret == 0) {
|
||||
longjmp(to->env, action);
|
||||
}
|
||||
return ret;
|
||||
}
|
||||
|
||||
Coroutine *qemu_coroutine_self(void)
|
||||
{
|
||||
CoroutineThreadState *s = coroutine_get_thread_state();
|
||||
|
||||
return s->current;
|
||||
}
|
||||
|
||||
bool qemu_in_coroutine(void)
|
||||
{
|
||||
CoroutineThreadState *s = pthread_getspecific(thread_state_key);
|
||||
|
||||
return s && s->current->caller;
|
||||
}
|
||||
|
Loading…
Reference in New Issue