hw/misc/zynq_slcr: add clock generation for uarts

Add some clocks to zynq_slcr
+ the main input clock (ps_clk)
+ the reference clock outputs for each uart (uart0 & 1)

This commit also transitional the slcr to multi-phase reset as it is
required to initialize the clocks correctly.

The clock frequencies are computed using the internal pll & uart configuration
registers and the input ps_clk frequency.

Signed-off-by: Damien Hedde <damien.hedde@greensocs.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Acked-by: Alistair Francis <alistair.francis@wdc.com>
Message-id: 20200406135251.157596-7-damien.hedde@greensocs.com
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Damien Hedde 2020-04-06 15:52:48 +02:00 committed by Peter Maydell
parent 31e5784a0d
commit 38867cb7ec
1 changed files with 168 additions and 4 deletions

View File

@ -22,6 +22,7 @@
#include "qemu/log.h" #include "qemu/log.h"
#include "qemu/module.h" #include "qemu/module.h"
#include "hw/registerfields.h" #include "hw/registerfields.h"
#include "hw/qdev-clock.h"
#ifndef ZYNQ_SLCR_ERR_DEBUG #ifndef ZYNQ_SLCR_ERR_DEBUG
#define ZYNQ_SLCR_ERR_DEBUG 0 #define ZYNQ_SLCR_ERR_DEBUG 0
@ -45,6 +46,12 @@ REG32(LOCKSTA, 0x00c)
REG32(ARM_PLL_CTRL, 0x100) REG32(ARM_PLL_CTRL, 0x100)
REG32(DDR_PLL_CTRL, 0x104) REG32(DDR_PLL_CTRL, 0x104)
REG32(IO_PLL_CTRL, 0x108) REG32(IO_PLL_CTRL, 0x108)
/* fields for [ARM|DDR|IO]_PLL_CTRL registers */
FIELD(xxx_PLL_CTRL, PLL_RESET, 0, 1)
FIELD(xxx_PLL_CTRL, PLL_PWRDWN, 1, 1)
FIELD(xxx_PLL_CTRL, PLL_BYPASS_QUAL, 3, 1)
FIELD(xxx_PLL_CTRL, PLL_BYPASS_FORCE, 4, 1)
FIELD(xxx_PLL_CTRL, PLL_FPDIV, 12, 7)
REG32(PLL_STATUS, 0x10c) REG32(PLL_STATUS, 0x10c)
REG32(ARM_PLL_CFG, 0x110) REG32(ARM_PLL_CFG, 0x110)
REG32(DDR_PLL_CFG, 0x114) REG32(DDR_PLL_CFG, 0x114)
@ -64,6 +71,10 @@ REG32(SMC_CLK_CTRL, 0x148)
REG32(LQSPI_CLK_CTRL, 0x14c) REG32(LQSPI_CLK_CTRL, 0x14c)
REG32(SDIO_CLK_CTRL, 0x150) REG32(SDIO_CLK_CTRL, 0x150)
REG32(UART_CLK_CTRL, 0x154) REG32(UART_CLK_CTRL, 0x154)
FIELD(UART_CLK_CTRL, CLKACT0, 0, 1)
FIELD(UART_CLK_CTRL, CLKACT1, 1, 1)
FIELD(UART_CLK_CTRL, SRCSEL, 4, 2)
FIELD(UART_CLK_CTRL, DIVISOR, 8, 6)
REG32(SPI_CLK_CTRL, 0x158) REG32(SPI_CLK_CTRL, 0x158)
REG32(CAN_CLK_CTRL, 0x15c) REG32(CAN_CLK_CTRL, 0x15c)
REG32(CAN_MIOCLK_CTRL, 0x160) REG32(CAN_MIOCLK_CTRL, 0x160)
@ -179,11 +190,127 @@ typedef struct ZynqSLCRState {
MemoryRegion iomem; MemoryRegion iomem;
uint32_t regs[ZYNQ_SLCR_NUM_REGS]; uint32_t regs[ZYNQ_SLCR_NUM_REGS];
Clock *ps_clk;
Clock *uart0_ref_clk;
Clock *uart1_ref_clk;
} ZynqSLCRState; } ZynqSLCRState;
static void zynq_slcr_reset(DeviceState *d) /*
* return the output frequency of ARM/DDR/IO pll
* using input frequency and PLL_CTRL register
*/
static uint64_t zynq_slcr_compute_pll(uint64_t input, uint32_t ctrl_reg)
{ {
ZynqSLCRState *s = ZYNQ_SLCR(d); uint32_t mult = ((ctrl_reg & R_xxx_PLL_CTRL_PLL_FPDIV_MASK) >>
R_xxx_PLL_CTRL_PLL_FPDIV_SHIFT);
/* first, check if pll is bypassed */
if (ctrl_reg & R_xxx_PLL_CTRL_PLL_BYPASS_FORCE_MASK) {
return input;
}
/* is pll disabled ? */
if (ctrl_reg & (R_xxx_PLL_CTRL_PLL_RESET_MASK |
R_xxx_PLL_CTRL_PLL_PWRDWN_MASK)) {
return 0;
}
/* frequency multiplier -> period division */
return input / mult;
}
/*
* return the output period of a clock given:
* + the periods in an array corresponding to input mux selector
* + the register xxx_CLK_CTRL value
* + enable bit index in ctrl register
*
* This function makes the assumption that the ctrl_reg value is organized as
* follows:
* + bits[13:8] clock frequency divisor
* + bits[5:4] clock mux selector (index in array)
* + bits[index] clock enable
*/
static uint64_t zynq_slcr_compute_clock(const uint64_t periods[],
uint32_t ctrl_reg,
unsigned index)
{
uint32_t srcsel = extract32(ctrl_reg, 4, 2); /* bits [5:4] */
uint32_t divisor = extract32(ctrl_reg, 8, 6); /* bits [13:8] */
/* first, check if clock is disabled */
if (((ctrl_reg >> index) & 1u) == 0) {
return 0;
}
/*
* according to the Zynq technical ref. manual UG585 v1.12.2 in
* Clocks chapter, section 25.10.1 page 705:
* "The 6-bit divider provides a divide range of 1 to 63"
* We follow here what is implemented in linux kernel and consider
* the 0 value as a bypass (no division).
*/
/* frequency divisor -> period multiplication */
return periods[srcsel] * (divisor ? divisor : 1u);
}
/*
* macro helper around zynq_slcr_compute_clock to avoid repeating
* the register name.
*/
#define ZYNQ_COMPUTE_CLK(state, plls, reg, enable_field) \
zynq_slcr_compute_clock((plls), (state)->regs[reg], \
reg ## _ ## enable_field ## _SHIFT)
/**
* Compute and set the ouputs clocks periods.
* But do not propagate them further. Connected clocks
* will not receive any updates (See zynq_slcr_compute_clocks())
*/
static void zynq_slcr_compute_clocks(ZynqSLCRState *s)
{
uint64_t ps_clk = clock_get(s->ps_clk);
/* consider outputs clocks are disabled while in reset */
if (device_is_in_reset(DEVICE(s))) {
ps_clk = 0;
}
uint64_t io_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_IO_PLL_CTRL]);
uint64_t arm_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_ARM_PLL_CTRL]);
uint64_t ddr_pll = zynq_slcr_compute_pll(ps_clk, s->regs[R_DDR_PLL_CTRL]);
uint64_t uart_mux[4] = {io_pll, io_pll, arm_pll, ddr_pll};
/* compute uartX reference clocks */
clock_set(s->uart0_ref_clk,
ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT0));
clock_set(s->uart1_ref_clk,
ZYNQ_COMPUTE_CLK(s, uart_mux, R_UART_CLK_CTRL, CLKACT1));
}
/**
* Propagate the outputs clocks.
* zynq_slcr_compute_clocks() should have been called before
* to configure them.
*/
static void zynq_slcr_propagate_clocks(ZynqSLCRState *s)
{
clock_propagate(s->uart0_ref_clk);
clock_propagate(s->uart1_ref_clk);
}
static void zynq_slcr_ps_clk_callback(void *opaque)
{
ZynqSLCRState *s = (ZynqSLCRState *) opaque;
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static void zynq_slcr_reset_init(Object *obj, ResetType type)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
int i; int i;
DB_PRINT("RESET\n"); DB_PRINT("RESET\n");
@ -277,6 +404,23 @@ static void zynq_slcr_reset(DeviceState *d)
s->regs[R_DDRIOB + 12] = 0x00000021; s->regs[R_DDRIOB + 12] = 0x00000021;
} }
static void zynq_slcr_reset_hold(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
/* will disable all output clocks */
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static void zynq_slcr_reset_exit(Object *obj)
{
ZynqSLCRState *s = ZYNQ_SLCR(obj);
/* will compute output clocks according to ps_clk and registers */
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
}
static bool zynq_slcr_check_offset(hwaddr offset, bool rnw) static bool zynq_slcr_check_offset(hwaddr offset, bool rnw)
{ {
@ -409,6 +553,13 @@ static void zynq_slcr_write(void *opaque, hwaddr offset,
qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
} }
break; break;
case R_IO_PLL_CTRL:
case R_ARM_PLL_CTRL:
case R_DDR_PLL_CTRL:
case R_UART_CLK_CTRL:
zynq_slcr_compute_clocks(s);
zynq_slcr_propagate_clocks(s);
break;
} }
} }
@ -418,6 +569,13 @@ static const MemoryRegionOps slcr_ops = {
.endianness = DEVICE_NATIVE_ENDIAN, .endianness = DEVICE_NATIVE_ENDIAN,
}; };
static const ClockPortInitArray zynq_slcr_clocks = {
QDEV_CLOCK_IN(ZynqSLCRState, ps_clk, zynq_slcr_ps_clk_callback),
QDEV_CLOCK_OUT(ZynqSLCRState, uart0_ref_clk),
QDEV_CLOCK_OUT(ZynqSLCRState, uart1_ref_clk),
QDEV_CLOCK_END
};
static void zynq_slcr_init(Object *obj) static void zynq_slcr_init(Object *obj)
{ {
ZynqSLCRState *s = ZYNQ_SLCR(obj); ZynqSLCRState *s = ZYNQ_SLCR(obj);
@ -425,14 +583,17 @@ static void zynq_slcr_init(Object *obj)
memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr", memory_region_init_io(&s->iomem, obj, &slcr_ops, s, "slcr",
ZYNQ_SLCR_MMIO_SIZE); ZYNQ_SLCR_MMIO_SIZE);
sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem); sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->iomem);
qdev_init_clocks(DEVICE(obj), zynq_slcr_clocks);
} }
static const VMStateDescription vmstate_zynq_slcr = { static const VMStateDescription vmstate_zynq_slcr = {
.name = "zynq_slcr", .name = "zynq_slcr",
.version_id = 2, .version_id = 3,
.minimum_version_id = 2, .minimum_version_id = 2,
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS), VMSTATE_UINT32_ARRAY(regs, ZynqSLCRState, ZYNQ_SLCR_NUM_REGS),
VMSTATE_CLOCK_V(ps_clk, ZynqSLCRState, 3),
VMSTATE_END_OF_LIST() VMSTATE_END_OF_LIST()
} }
}; };
@ -440,9 +601,12 @@ static const VMStateDescription vmstate_zynq_slcr = {
static void zynq_slcr_class_init(ObjectClass *klass, void *data) static void zynq_slcr_class_init(ObjectClass *klass, void *data)
{ {
DeviceClass *dc = DEVICE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass);
ResettableClass *rc = RESETTABLE_CLASS(klass);
dc->vmsd = &vmstate_zynq_slcr; dc->vmsd = &vmstate_zynq_slcr;
dc->reset = zynq_slcr_reset; rc->phases.enter = zynq_slcr_reset_init;
rc->phases.hold = zynq_slcr_reset_hold;
rc->phases.exit = zynq_slcr_reset_exit;
} }
static const TypeInfo zynq_slcr_info = { static const TypeInfo zynq_slcr_info = {