mirror of https://gitee.com/openkylin/qemu.git
vm86 emulation closer to Linux kernel code - added correct IRQ emulation for dosemu
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@136 c046a42c-6fe2-441c-8c8c-71466251a162
This commit is contained in:
parent
89e957e7a2
commit
46ddf5511d
|
@ -0,0 +1,407 @@
|
|||
/*
|
||||
* vm86 linux syscall support
|
||||
*
|
||||
* Copyright (c) 2003 Fabrice Bellard
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation; either version 2 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, write to the Free Software
|
||||
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
|
||||
*/
|
||||
#include <stdlib.h>
|
||||
#include <stdio.h>
|
||||
#include <stdarg.h>
|
||||
#include <string.h>
|
||||
#include <errno.h>
|
||||
#include <unistd.h>
|
||||
|
||||
#include "qemu.h"
|
||||
|
||||
//#define DEBUG_VM86
|
||||
|
||||
#define set_flags(X,new,mask) \
|
||||
((X) = ((X) & ~(mask)) | ((new) & (mask)))
|
||||
|
||||
#define SAFE_MASK (0xDD5)
|
||||
#define RETURN_MASK (0xDFF)
|
||||
|
||||
static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
|
||||
{
|
||||
return (tswap32(bitmap->__map[nr >> 5]) >> (nr & 0x1f)) & 1;
|
||||
}
|
||||
|
||||
static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val)
|
||||
{
|
||||
*(uint16_t *)(segptr + (reg16 & 0xffff)) = tswap16(val);
|
||||
}
|
||||
|
||||
static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val)
|
||||
{
|
||||
*(uint32_t *)(segptr + (reg16 & 0xffff)) = tswap32(val);
|
||||
}
|
||||
|
||||
static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16)
|
||||
{
|
||||
return tswap16(*(uint16_t *)(segptr + (reg16 & 0xffff)));
|
||||
}
|
||||
|
||||
static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16)
|
||||
{
|
||||
return tswap32(*(uint16_t *)(segptr + (reg16 & 0xffff)));
|
||||
}
|
||||
|
||||
void save_v86_state(CPUX86State *env)
|
||||
{
|
||||
TaskState *ts = env->opaque;
|
||||
|
||||
/* put the VM86 registers in the userspace register structure */
|
||||
ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]);
|
||||
ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
|
||||
ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
|
||||
ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]);
|
||||
ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]);
|
||||
ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]);
|
||||
ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
|
||||
ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]);
|
||||
ts->target_v86->regs.eip = tswap32(env->eip);
|
||||
ts->target_v86->regs.cs = tswap16(env->segs[R_CS]);
|
||||
ts->target_v86->regs.ss = tswap16(env->segs[R_SS]);
|
||||
ts->target_v86->regs.ds = tswap16(env->segs[R_DS]);
|
||||
ts->target_v86->regs.es = tswap16(env->segs[R_ES]);
|
||||
ts->target_v86->regs.fs = tswap16(env->segs[R_FS]);
|
||||
ts->target_v86->regs.gs = tswap16(env->segs[R_GS]);
|
||||
set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
|
||||
ts->target_v86->regs.eflags = tswap32(env->eflags);
|
||||
#ifdef DEBUG_VM86
|
||||
fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n",
|
||||
env->eflags, env->segs[R_CS], env->eip);
|
||||
#endif
|
||||
|
||||
/* restore 32 bit registers */
|
||||
env->regs[R_EAX] = ts->vm86_saved_regs.eax;
|
||||
env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
|
||||
env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
|
||||
env->regs[R_EDX] = ts->vm86_saved_regs.edx;
|
||||
env->regs[R_ESI] = ts->vm86_saved_regs.esi;
|
||||
env->regs[R_EDI] = ts->vm86_saved_regs.edi;
|
||||
env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
|
||||
env->regs[R_ESP] = ts->vm86_saved_regs.esp;
|
||||
env->eflags = ts->vm86_saved_regs.eflags;
|
||||
env->eip = ts->vm86_saved_regs.eip;
|
||||
|
||||
cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
|
||||
cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
|
||||
cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
|
||||
cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
|
||||
cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
|
||||
cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
|
||||
}
|
||||
|
||||
/* return from vm86 mode to 32 bit. The vm86() syscall will return
|
||||
'retval' */
|
||||
static inline void return_to_32bit(CPUX86State *env, int retval)
|
||||
{
|
||||
#ifdef DEBUG_VM86
|
||||
fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval);
|
||||
#endif
|
||||
save_v86_state(env);
|
||||
env->regs[R_EAX] = retval;
|
||||
}
|
||||
|
||||
static inline int set_IF(CPUX86State *env)
|
||||
{
|
||||
TaskState *ts = env->opaque;
|
||||
|
||||
ts->v86flags |= VIF_MASK;
|
||||
if (ts->v86flags & VIP_MASK) {
|
||||
return_to_32bit(env, TARGET_VM86_STI);
|
||||
return 1;
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline void clear_IF(CPUX86State *env)
|
||||
{
|
||||
TaskState *ts = env->opaque;
|
||||
|
||||
ts->v86flags &= ~VIF_MASK;
|
||||
}
|
||||
|
||||
static inline void clear_TF(CPUX86State *env)
|
||||
{
|
||||
env->eflags &= ~TF_MASK;
|
||||
}
|
||||
|
||||
static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
|
||||
{
|
||||
TaskState *ts = env->opaque;
|
||||
|
||||
set_flags(ts->v86flags, eflags, ts->v86mask);
|
||||
set_flags(env->eflags, eflags, SAFE_MASK);
|
||||
if (eflags & IF_MASK)
|
||||
return set_IF(env);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
|
||||
{
|
||||
TaskState *ts = env->opaque;
|
||||
|
||||
set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
|
||||
set_flags(env->eflags, flags, SAFE_MASK);
|
||||
if (flags & IF_MASK)
|
||||
return set_IF(env);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static inline unsigned int get_vflags(CPUX86State *env)
|
||||
{
|
||||
TaskState *ts = env->opaque;
|
||||
unsigned int flags;
|
||||
|
||||
flags = env->eflags & RETURN_MASK;
|
||||
if (ts->v86flags & VIF_MASK)
|
||||
flags |= IF_MASK;
|
||||
return flags | (ts->v86flags & ts->v86mask);
|
||||
}
|
||||
|
||||
#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
|
||||
|
||||
/* handle VM86 interrupt (NOTE: the CPU core currently does not
|
||||
support TSS interrupt revectoring, so this code is always executed) */
|
||||
void do_int(CPUX86State *env, int intno)
|
||||
{
|
||||
TaskState *ts = env->opaque;
|
||||
uint32_t *int_ptr, segoffs;
|
||||
uint8_t *ssp;
|
||||
unsigned int sp;
|
||||
|
||||
#if 1
|
||||
if (intno == 0xe6 && (env->regs[R_EAX] & 0xffff) == 0x00c0)
|
||||
loglevel = 1;
|
||||
#endif
|
||||
|
||||
if (env->segs[R_CS] == TARGET_BIOSSEG)
|
||||
goto cannot_handle;
|
||||
if (is_revectored(intno, &ts->target_v86->int_revectored))
|
||||
goto cannot_handle;
|
||||
if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff,
|
||||
&ts->target_v86->int21_revectored))
|
||||
goto cannot_handle;
|
||||
int_ptr = (uint32_t *)(intno << 2);
|
||||
segoffs = tswap32(*int_ptr);
|
||||
if ((segoffs >> 16) == TARGET_BIOSSEG)
|
||||
goto cannot_handle;
|
||||
#if defined(DEBUG_VM86)
|
||||
fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n",
|
||||
intno, segoffs >> 16, segoffs & 0xffff);
|
||||
#endif
|
||||
/* save old state */
|
||||
ssp = (uint8_t *)(env->segs[R_SS] << 4);
|
||||
sp = env->regs[R_ESP] & 0xffff;
|
||||
vm_putw(ssp, sp - 2, get_vflags(env));
|
||||
vm_putw(ssp, sp - 4, env->segs[R_CS]);
|
||||
vm_putw(ssp, sp - 6, env->eip);
|
||||
ADD16(env->regs[R_ESP], -6);
|
||||
/* goto interrupt handler */
|
||||
env->eip = segoffs & 0xffff;
|
||||
cpu_x86_load_seg(env, R_CS, segoffs >> 16);
|
||||
clear_TF(env);
|
||||
clear_IF(env);
|
||||
return;
|
||||
cannot_handle:
|
||||
#if defined(DEBUG_VM86)
|
||||
fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno);
|
||||
#endif
|
||||
return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
|
||||
}
|
||||
|
||||
#define CHECK_IF_IN_TRAP(disp) \
|
||||
if ((tswap32(ts->target_v86->vm86plus.flags) & TARGET_vm86dbg_active) && \
|
||||
(tswap32(ts->target_v86->vm86plus.flags) & TARGET_vm86dbg_TFpendig)) \
|
||||
vm_putw(ssp,sp + disp,vm_getw(ssp,sp + disp) | TF_MASK)
|
||||
|
||||
#define VM86_FAULT_RETURN \
|
||||
if ((tswap32(ts->target_v86->vm86plus.flags) & TARGET_force_return_for_pic) && \
|
||||
(ts->v86flags & (IF_MASK | VIF_MASK))) \
|
||||
return_to_32bit(env, TARGET_VM86_PICRETURN); \
|
||||
return
|
||||
|
||||
void handle_vm86_fault(CPUX86State *env)
|
||||
{
|
||||
TaskState *ts = env->opaque;
|
||||
uint8_t *csp, *pc, *ssp;
|
||||
unsigned int ip, sp;
|
||||
|
||||
csp = (uint8_t *)(env->segs[R_CS] << 4);
|
||||
ip = env->eip & 0xffff;
|
||||
pc = csp + ip;
|
||||
|
||||
ssp = (uint8_t *)(env->segs[R_SS] << 4);
|
||||
sp = env->regs[R_ESP] & 0xffff;
|
||||
|
||||
#if defined(DEBUG_VM86)
|
||||
fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n",
|
||||
env->segs[R_CS], env->eip, pc[0], pc[1]);
|
||||
#endif
|
||||
|
||||
/* VM86 mode */
|
||||
switch(pc[0]) {
|
||||
case 0x66:
|
||||
switch(pc[1]) {
|
||||
case 0x9c: /* pushfd */
|
||||
ADD16(env->eip, 2);
|
||||
ADD16(env->regs[R_ESP], -4);
|
||||
vm_putl(ssp, sp - 4, get_vflags(env));
|
||||
VM86_FAULT_RETURN;
|
||||
|
||||
case 0x9d: /* popfd */
|
||||
ADD16(env->eip, 2);
|
||||
ADD16(env->regs[R_ESP], 4);
|
||||
CHECK_IF_IN_TRAP(0);
|
||||
if (set_vflags_long(vm_getl(ssp, sp), env))
|
||||
return;
|
||||
VM86_FAULT_RETURN;
|
||||
|
||||
case 0xcf: /* iretd */
|
||||
ADD16(env->regs[R_ESP], 12);
|
||||
env->eip = vm_getl(ssp, sp) & 0xffff;
|
||||
cpu_x86_load_seg(env, R_CS, vm_getl(ssp, sp + 4) & 0xffff);
|
||||
CHECK_IF_IN_TRAP(8);
|
||||
if (set_vflags_long(vm_getl(ssp, sp + 8), env))
|
||||
return;
|
||||
VM86_FAULT_RETURN;
|
||||
|
||||
default:
|
||||
goto vm86_gpf;
|
||||
}
|
||||
break;
|
||||
case 0x9c: /* pushf */
|
||||
ADD16(env->eip, 1);
|
||||
ADD16(env->regs[R_ESP], -2);
|
||||
vm_putw(ssp, sp - 2, get_vflags(env));
|
||||
VM86_FAULT_RETURN;
|
||||
|
||||
case 0x9d: /* popf */
|
||||
ADD16(env->eip, 1);
|
||||
ADD16(env->regs[R_ESP], 2);
|
||||
CHECK_IF_IN_TRAP(0);
|
||||
if (set_vflags_short(vm_getw(ssp, sp), env))
|
||||
return;
|
||||
VM86_FAULT_RETURN;
|
||||
|
||||
case 0xcd: /* int */
|
||||
ADD16(env->eip, 2);
|
||||
do_int(env, pc[1]);
|
||||
break;
|
||||
|
||||
case 0xcf: /* iret */
|
||||
ADD16(env->regs[R_ESP], 6);
|
||||
env->eip = vm_getw(ssp, sp);
|
||||
cpu_x86_load_seg(env, R_CS, vm_getw(ssp, sp + 2));
|
||||
CHECK_IF_IN_TRAP(4);
|
||||
if (set_vflags_short(vm_getw(ssp, sp + 4), env))
|
||||
return;
|
||||
VM86_FAULT_RETURN;
|
||||
|
||||
case 0xfa: /* cli */
|
||||
ADD16(env->eip, 1);
|
||||
clear_IF(env);
|
||||
VM86_FAULT_RETURN;
|
||||
|
||||
case 0xfb: /* sti */
|
||||
ADD16(env->eip, 1);
|
||||
if (set_IF(env))
|
||||
return;
|
||||
VM86_FAULT_RETURN;
|
||||
|
||||
default:
|
||||
vm86_gpf:
|
||||
/* real VM86 GPF exception */
|
||||
return_to_32bit(env, TARGET_VM86_UNKNOWN);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
int do_vm86(CPUX86State *env, long subfunction,
|
||||
struct target_vm86plus_struct * target_v86)
|
||||
{
|
||||
TaskState *ts = env->opaque;
|
||||
int ret;
|
||||
|
||||
switch (subfunction) {
|
||||
case TARGET_VM86_REQUEST_IRQ:
|
||||
case TARGET_VM86_FREE_IRQ:
|
||||
case TARGET_VM86_GET_IRQ_BITS:
|
||||
case TARGET_VM86_GET_AND_RESET_IRQ:
|
||||
gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
|
||||
ret = -EINVAL;
|
||||
goto out;
|
||||
case TARGET_VM86_PLUS_INSTALL_CHECK:
|
||||
/* NOTE: on old vm86 stuff this will return the error
|
||||
from verify_area(), because the subfunction is
|
||||
interpreted as (invalid) address to vm86_struct.
|
||||
So the installation check works.
|
||||
*/
|
||||
ret = 0;
|
||||
goto out;
|
||||
}
|
||||
|
||||
ts->target_v86 = target_v86;
|
||||
/* save current CPU regs */
|
||||
ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
|
||||
ts->vm86_saved_regs.ebx = env->regs[R_EBX];
|
||||
ts->vm86_saved_regs.ecx = env->regs[R_ECX];
|
||||
ts->vm86_saved_regs.edx = env->regs[R_EDX];
|
||||
ts->vm86_saved_regs.esi = env->regs[R_ESI];
|
||||
ts->vm86_saved_regs.edi = env->regs[R_EDI];
|
||||
ts->vm86_saved_regs.ebp = env->regs[R_EBP];
|
||||
ts->vm86_saved_regs.esp = env->regs[R_ESP];
|
||||
ts->vm86_saved_regs.eflags = env->eflags;
|
||||
ts->vm86_saved_regs.eip = env->eip;
|
||||
ts->vm86_saved_regs.cs = env->segs[R_CS];
|
||||
ts->vm86_saved_regs.ss = env->segs[R_SS];
|
||||
ts->vm86_saved_regs.ds = env->segs[R_DS];
|
||||
ts->vm86_saved_regs.es = env->segs[R_ES];
|
||||
ts->vm86_saved_regs.fs = env->segs[R_FS];
|
||||
ts->vm86_saved_regs.gs = env->segs[R_GS];
|
||||
|
||||
/* build vm86 CPU state */
|
||||
ts->v86flags = tswap32(target_v86->regs.eflags);
|
||||
env->eflags = (env->eflags & ~SAFE_MASK) |
|
||||
(tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
|
||||
ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
|
||||
|
||||
env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
|
||||
env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
|
||||
env->regs[R_EDX] = tswap32(target_v86->regs.edx);
|
||||
env->regs[R_ESI] = tswap32(target_v86->regs.esi);
|
||||
env->regs[R_EDI] = tswap32(target_v86->regs.edi);
|
||||
env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
|
||||
env->regs[R_ESP] = tswap32(target_v86->regs.esp);
|
||||
env->eip = tswap32(target_v86->regs.eip);
|
||||
cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
|
||||
cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
|
||||
cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
|
||||
cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
|
||||
cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
|
||||
cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
|
||||
ret = tswap32(target_v86->regs.eax); /* eax will be restored at
|
||||
the end of the syscall */
|
||||
#ifdef DEBUG_VM86
|
||||
fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n", env->segs[R_CS], env->eip);
|
||||
#endif
|
||||
/* now the virtual CPU is ready for vm86 execution ! */
|
||||
out:
|
||||
return ret;
|
||||
}
|
||||
|
Loading…
Reference in New Issue