target-arm queue:

* Implement more of ARMv6-M support
  * Support direct execution from non-RAM regions;
    use this to implmeent execution from small (<1K) MPU regions
  * GICv2: implement the virtualization extensions
  * support a virtualization-capable GICv2 in the virt and
    xlnx-zynqmp boards
  * arm: Fix return code of arm_load_elf() so we can detect
    failure to load the file correctly
  * Implement HCR_EL2.TGE ("trap general exceptions") bit
  * Implement tailchaining for M profile cores
  * Fix bugs in SVE compare, saturating add/sub, WHILE, MOVZ
 -----BEGIN PGP SIGNATURE-----
 Version: GnuPG v1
 
 iQIcBAABCAAGBQJbcwIKAAoJEDwlJe0UNgzeuPgP/AkaCDTTa3DLKI+udn/PswpS
 tpr6vdLbR6I+d4KXJ/jVfOMW1LEASZnnl1WGr3Ztad4cqBb1EQLgKtIgCuvl9pXl
 p51saKgPt/Lrh/aZRMc/G18eM93u/UvyVw3pfAe/b7Uq3C3gc2Rbr/oZHGtmLq70
 Rc2hJPC0ERadPbBBlWhI2lPw2VK860akyJpXf1jTv5iRXbT7n81dSYC8JrVoFnkX
 ldJ8YQOvdRFyuqdfglWQniKFV8OrIzHrog/oqq6Gu3HkB6o0B0zKA54D9KEOEcRE
 EgJ4Yx/PISrZ5DmXlSosFJ8NfYaRb6IW1JalkintY5AlN9kDlQge9NXVGgsMQtVp
 Fpa8zarXYAiaHEeFEa7JiOi6zjUD7UhkNIFs5JjFNSYFaf5e2bJCeaP/H90yXFqH
 jjRDLMFuc1/dGCPOr7YcsHN0KunlkHSqJvdNVt6HEIBcXblKBQ3Aqd03WhBVwvSo
 /Y5H75mtyJoHgN5WtkRNq5Deh4AtV7f+nOqA+4D+rNGIipBDlkIVktLVh1c7sIlM
 4OLF7syVY4XvJd30qBOiVpua0A0mBqIpLM8ZdHJddGIHkhgYs4KB1NVpfpPYYDwC
 aP0NIroPsZZ7MG6nUjAzd5tpVNdRuEs1+mnru7aayTMPS18YRVrtjFqTe+72UZsP
 eAG1J9eQtq3l3ef3JfPU
 =ZGAS
 -----END PGP SIGNATURE-----

Merge remote-tracking branch 'remotes/pmaydell/tags/pull-target-arm-20180814' into staging

target-arm queue:
 * Implement more of ARMv6-M support
 * Support direct execution from non-RAM regions;
   use this to implmeent execution from small (<1K) MPU regions
 * GICv2: implement the virtualization extensions
 * support a virtualization-capable GICv2 in the virt and
   xlnx-zynqmp boards
 * arm: Fix return code of arm_load_elf() so we can detect
   failure to load the file correctly
 * Implement HCR_EL2.TGE ("trap general exceptions") bit
 * Implement tailchaining for M profile cores
 * Fix bugs in SVE compare, saturating add/sub, WHILE, MOVZ

# gpg: Signature made Tue 14 Aug 2018 17:23:38 BST
# gpg:                using RSA key 3C2525ED14360CDE
# gpg: Good signature from "Peter Maydell <peter.maydell@linaro.org>"
# gpg:                 aka "Peter Maydell <pmaydell@gmail.com>"
# gpg:                 aka "Peter Maydell <pmaydell@chiark.greenend.org.uk>"
# Primary key fingerprint: E1A5 C593 CD41 9DE2 8E83  15CF 3C25 25ED 1436 0CDE

* remotes/pmaydell/tags/pull-target-arm-20180814: (45 commits)
  target/arm: Fix typo in helper_sve_movz_d
  target/arm: Reorganize SVE WHILE
  target/arm: Fix typo in do_sat_addsub_64
  target/arm: Fix sign of sve_cmpeq_ppzw/sve_cmpne_ppzw
  target/arm: Implement tailchaining for M profile cores
  target/arm: Restore M-profile CONTROL.SPSEL before any tailchaining
  target/arm: Initialize exc_secure correctly in do_v7m_exception_exit()
  target/arm: Improve exception-taken logging
  target/arm: Treat SCTLR_EL1.M as if it were zero when HCR_EL2.TGE is set
  target/arm: Provide accessor functions for HCR_EL2.{IMO, FMO, AMO}
  target/arm: Honour HCR_EL2.TGE when raising synchronous exceptions
  target/arm: Honour HCR_EL2.TGE and MDCR_EL2.TDE in debug register access checks
  target/arm: Mask virtual interrupts if HCR_EL2.TGE is set
  arm: Fix return code of arm_load_elf
  arm/virt: Add support for GICv2 virtualization extensions
  xlnx-zynqmp: Improve GIC wiring and MMIO mapping
  intc/arm_gic: Improve traces
  intc/arm_gic: Implement maintenance interrupt generation
  intc/arm_gic: Implement gic_update_virt() function
  intc/arm_gic: Implement the virtual interface registers
  ...

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
Peter Maydell 2018-08-15 12:00:53 +01:00
commit 48a539df4a
30 changed files with 1724 additions and 498 deletions

View File

@ -332,6 +332,9 @@ TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
desc.trace_vcpu_dstate = *cpu->trace_dstate; desc.trace_vcpu_dstate = *cpu->trace_dstate;
desc.pc = pc; desc.pc = pc;
phys_pc = get_page_addr_code(desc.env, pc); phys_pc = get_page_addr_code(desc.env, pc);
if (phys_pc == -1) {
return NULL;
}
desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);

View File

@ -741,39 +741,6 @@ void tlb_set_page(CPUState *cpu, target_ulong vaddr,
prot, mmu_idx, size); prot, mmu_idx, size);
} }
static void report_bad_exec(CPUState *cpu, target_ulong addr)
{
/* Accidentally executing outside RAM or ROM is quite common for
* several user-error situations, so report it in a way that
* makes it clear that this isn't a QEMU bug and provide suggestions
* about what a user could do to fix things.
*/
error_report("Trying to execute code outside RAM or ROM at 0x"
TARGET_FMT_lx, addr);
error_printf("This usually means one of the following happened:\n\n"
"(1) You told QEMU to execute a kernel for the wrong machine "
"type, and it crashed on startup (eg trying to run a "
"raspberry pi kernel on a versatilepb QEMU machine)\n"
"(2) You didn't give QEMU a kernel or BIOS filename at all, "
"and QEMU executed a ROM full of no-op instructions until "
"it fell off the end\n"
"(3) Your guest kernel has a bug and crashed by jumping "
"off into nowhere\n\n"
"This is almost always one of the first two, so check your "
"command line and that you are using the right type of kernel "
"for this machine.\n"
"If you think option (3) is likely then you can try debugging "
"your guest with the -d debug options; in particular "
"-d guest_errors will cause the log to include a dump of the "
"guest register state at this point.\n\n"
"Execution cannot continue; stopping here.\n\n");
/* Report also to the logs, with more detail including register dump */
qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code "
"outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
}
static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
{ {
ram_addr_t ram_addr; ram_addr_t ram_addr;
@ -789,7 +756,7 @@ static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
int mmu_idx, int mmu_idx,
target_ulong addr, uintptr_t retaddr, target_ulong addr, uintptr_t retaddr,
bool recheck, int size) bool recheck, MMUAccessType access_type, int size)
{ {
CPUState *cpu = ENV_GET_CPU(env); CPUState *cpu = ENV_GET_CPU(env);
hwaddr mr_offset; hwaddr mr_offset;
@ -831,6 +798,7 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
} }
cpu->mem_io_vaddr = addr; cpu->mem_io_vaddr = addr;
cpu->mem_io_access_type = access_type;
if (mr->global_locking && !qemu_mutex_iothread_locked()) { if (mr->global_locking && !qemu_mutex_iothread_locked()) {
qemu_mutex_lock_iothread(); qemu_mutex_lock_iothread();
@ -843,7 +811,7 @@ static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
section->offset_within_address_space - section->offset_within_address_space -
section->offset_within_region; section->offset_within_region;
cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_LOAD, cpu_transaction_failed(cpu, physaddr, addr, size, access_type,
mmu_idx, iotlbentry->attrs, r, retaddr); mmu_idx, iotlbentry->attrs, r, retaddr);
} }
if (locked) { if (locked) {
@ -958,11 +926,6 @@ tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
{ {
int mmu_idx, index; int mmu_idx, index;
void *p; void *p;
MemoryRegion *mr;
MemoryRegionSection *section;
CPUState *cpu = ENV_GET_CPU(env);
CPUIOTLBEntry *iotlbentry;
hwaddr physaddr, mr_offset;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = cpu_mmu_index(env, true); mmu_idx = cpu_mmu_index(env, true);
@ -973,69 +936,19 @@ tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
assert(tlb_hit(env->tlb_table[mmu_idx][index].addr_code, addr)); assert(tlb_hit(env->tlb_table[mmu_idx][index].addr_code, addr));
} }
if (unlikely(env->tlb_table[mmu_idx][index].addr_code & TLB_RECHECK)) { if (unlikely(env->tlb_table[mmu_idx][index].addr_code &
(TLB_RECHECK | TLB_MMIO))) {
/* /*
* This is a TLB_RECHECK access, where the MMU protection * Return -1 if we can't translate and execute from an entire
* covers a smaller range than a target page, and we must * page of RAM here, which will cause us to execute by loading
* repeat the MMU check here. This tlb_fill() call might * and translating one insn at a time, without caching:
* longjump out if this access should cause a guest exception. * - TLB_RECHECK: means the MMU protection covers a smaller range
*/ * than a target page, so we must redo the MMU check every insn
int index; * - TLB_MMIO: region is not backed by RAM
target_ulong tlb_addr;
tlb_fill(cpu, addr, 0, MMU_INST_FETCH, mmu_idx, 0);
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
tlb_addr = env->tlb_table[mmu_idx][index].addr_code;
if (!(tlb_addr & ~(TARGET_PAGE_MASK | TLB_RECHECK))) {
/* RAM access. We can't handle this, so for now just stop */
cpu_abort(cpu, "Unable to handle guest executing from RAM within "
"a small MPU region at 0x" TARGET_FMT_lx, addr);
}
/*
* Fall through to handle IO accesses (which will almost certainly
* also result in failure)
*/ */
return -1;
} }
iotlbentry = &env->iotlb[mmu_idx][index];
section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
mr = section->mr;
if (memory_region_is_unassigned(mr)) {
qemu_mutex_lock_iothread();
if (memory_region_request_mmio_ptr(mr, addr)) {
qemu_mutex_unlock_iothread();
/* A MemoryRegion is potentially added so re-run the
* get_page_addr_code.
*/
return get_page_addr_code(env, addr);
}
qemu_mutex_unlock_iothread();
/* Give the new-style cpu_transaction_failed() hook first chance
* to handle this.
* This is not the ideal place to detect and generate CPU
* exceptions for instruction fetch failure (for instance
* we don't know the length of the access that the CPU would
* use, and it would be better to go ahead and try the access
* and use the MemTXResult it produced). However it is the
* simplest place we have currently available for the check.
*/
mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
physaddr = mr_offset +
section->offset_within_address_space -
section->offset_within_region;
cpu_transaction_failed(cpu, physaddr, addr, 0, MMU_INST_FETCH, mmu_idx,
iotlbentry->attrs, MEMTX_DECODE_ERROR, 0);
cpu_unassigned_access(cpu, addr, false, true, 0, 4);
/* The CPU's unassigned access hook might have longjumped out
* with an exception. If it didn't (or there was no hook) then
* we can't proceed further.
*/
report_bad_exec(cpu, addr);
exit(1);
}
p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend); p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend);
return qemu_ram_addr_from_host_nofail(p); return qemu_ram_addr_from_host_nofail(p);
} }

View File

@ -99,11 +99,12 @@ static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
size_t mmu_idx, size_t index, size_t mmu_idx, size_t index,
target_ulong addr, target_ulong addr,
uintptr_t retaddr, uintptr_t retaddr,
bool recheck) bool recheck,
MMUAccessType access_type)
{ {
CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index]; CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, recheck, return io_readx(env, iotlbentry, mmu_idx, addr, retaddr, recheck,
DATA_SIZE); access_type, DATA_SIZE);
} }
#endif #endif
@ -140,7 +141,8 @@ WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
/* ??? Note that the io helpers always read data in the target /* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */ byte ordering. We should push the LE/BE request down into io. */
res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr, res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
tlb_addr & TLB_RECHECK); tlb_addr & TLB_RECHECK,
READ_ACCESS_TYPE);
res = TGT_LE(res); res = TGT_LE(res);
return res; return res;
} }
@ -207,7 +209,8 @@ WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
/* ??? Note that the io helpers always read data in the target /* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */ byte ordering. We should push the LE/BE request down into io. */
res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr, res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr,
tlb_addr & TLB_RECHECK); tlb_addr & TLB_RECHECK,
READ_ACCESS_TYPE);
res = TGT_BE(res); res = TGT_BE(res);
return res; return res;
} }

View File

@ -1493,7 +1493,7 @@ static void tb_phys_invalidate__locked(TranslationBlock *tb)
*/ */
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr) void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{ {
if (page_addr == -1) { if (page_addr == -1 && tb->page_addr[0] != -1) {
page_lock_tb(tb); page_lock_tb(tb);
do_tb_phys_invalidate(tb, true); do_tb_phys_invalidate(tb, true);
page_unlock_tb(tb); page_unlock_tb(tb);
@ -1608,6 +1608,17 @@ tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
assert_memory_lock(); assert_memory_lock();
if (phys_pc == -1) {
/*
* If the TB is not associated with a physical RAM page then
* it must be a temporary one-insn TB, and we have nothing to do
* except fill in the page_addr[] fields.
*/
assert(tb->cflags & CF_NOCACHE);
tb->page_addr[0] = tb->page_addr[1] = -1;
return tb;
}
/* /*
* Add the TB to the page list, acquiring first the pages's locks. * Add the TB to the page list, acquiring first the pages's locks.
* We keep the locks held until after inserting the TB in the hash table, * We keep the locks held until after inserting the TB in the hash table,
@ -1677,6 +1688,12 @@ TranslationBlock *tb_gen_code(CPUState *cpu,
phys_pc = get_page_addr_code(env, pc); phys_pc = get_page_addr_code(env, pc);
if (phys_pc == -1) {
/* Generate a temporary TB with 1 insn in it */
cflags &= ~CF_COUNT_MASK;
cflags |= CF_NOCACHE | 1;
}
buffer_overflow: buffer_overflow:
tb = tb_alloc(pc); tb = tb_alloc(pc);
if (unlikely(!tb)) { if (unlikely(!tb)) {
@ -2121,7 +2138,9 @@ void tb_check_watchpoint(CPUState *cpu)
cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
addr = get_page_addr_code(env, pc); addr = get_page_addr_code(env, pc);
tb_invalidate_phys_range(addr, addr + 1); if (addr != -1) {
tb_invalidate_phys_range(addr, addr + 1);
}
} }
} }

6
exec.c
View File

@ -402,12 +402,6 @@ static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr addr)
} }
} }
bool memory_region_is_unassigned(MemoryRegion *mr)
{
return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
&& mr != &io_mem_watch;
}
/* Called from RCU critical section */ /* Called from RCU critical section */
static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d, static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
hwaddr addr, hwaddr addr,

View File

@ -818,9 +818,9 @@ static int do_arm_linux_init(Object *obj, void *opaque)
return 0; return 0;
} }
static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry, static int64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
uint64_t *lowaddr, uint64_t *highaddr, uint64_t *lowaddr, uint64_t *highaddr,
int elf_machine, AddressSpace *as) int elf_machine, AddressSpace *as)
{ {
bool elf_is64; bool elf_is64;
union { union {
@ -829,7 +829,7 @@ static uint64_t arm_load_elf(struct arm_boot_info *info, uint64_t *pentry,
} elf_header; } elf_header;
int data_swab = 0; int data_swab = 0;
bool big_endian; bool big_endian;
uint64_t ret = -1; int64_t ret = -1;
Error *err = NULL; Error *err = NULL;

View File

@ -659,6 +659,8 @@ build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
gicc->length = sizeof(*gicc); gicc->length = sizeof(*gicc);
if (vms->gic_version == 2) { if (vms->gic_version == 2) {
gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base); gicc->base_address = cpu_to_le64(memmap[VIRT_GIC_CPU].base);
gicc->gich_base_address = cpu_to_le64(memmap[VIRT_GIC_HYP].base);
gicc->gicv_base_address = cpu_to_le64(memmap[VIRT_GIC_VCPU].base);
} }
gicc->cpu_interface_number = cpu_to_le32(i); gicc->cpu_interface_number = cpu_to_le32(i);
gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity); gicc->arm_mpidr = cpu_to_le64(armcpu->mp_affinity);
@ -668,8 +670,8 @@ build_madt(GArray *table_data, BIOSLinker *linker, VirtMachineState *vms)
if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) { if (arm_feature(&armcpu->env, ARM_FEATURE_PMU)) {
gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ)); gicc->performance_interrupt = cpu_to_le32(PPI(VIRTUAL_PMU_IRQ));
} }
if (vms->virt && vms->gic_version == 3) { if (vms->virt) {
gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GICV3_MAINT_IRQ)); gicc->vgic_interrupt = cpu_to_le32(PPI(ARCH_GIC_MAINT_IRQ));
} }
} }

View File

@ -131,6 +131,8 @@ static const MemMapEntry a15memmap[] = {
[VIRT_GIC_DIST] = { 0x08000000, 0x00010000 }, [VIRT_GIC_DIST] = { 0x08000000, 0x00010000 },
[VIRT_GIC_CPU] = { 0x08010000, 0x00010000 }, [VIRT_GIC_CPU] = { 0x08010000, 0x00010000 },
[VIRT_GIC_V2M] = { 0x08020000, 0x00001000 }, [VIRT_GIC_V2M] = { 0x08020000, 0x00001000 },
[VIRT_GIC_HYP] = { 0x08030000, 0x00010000 },
[VIRT_GIC_VCPU] = { 0x08040000, 0x00010000 },
/* The space in between here is reserved for GICv3 CPU/vCPU/HYP */ /* The space in between here is reserved for GICv3 CPU/vCPU/HYP */
[VIRT_GIC_ITS] = { 0x08080000, 0x00020000 }, [VIRT_GIC_ITS] = { 0x08080000, 0x00020000 },
/* This redistributor space allows up to 2*64kB*123 CPUs */ /* This redistributor space allows up to 2*64kB*123 CPUs */
@ -440,18 +442,33 @@ static void fdt_add_gic_node(VirtMachineState *vms)
if (vms->virt) { if (vms->virt) {
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts", qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_PPI, ARCH_GICV3_MAINT_IRQ, GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
GIC_FDT_IRQ_FLAGS_LEVEL_HI); GIC_FDT_IRQ_FLAGS_LEVEL_HI);
} }
} else { } else {
/* 'cortex-a15-gic' means 'GIC v2' */ /* 'cortex-a15-gic' means 'GIC v2' */
qemu_fdt_setprop_string(vms->fdt, nodename, "compatible", qemu_fdt_setprop_string(vms->fdt, nodename, "compatible",
"arm,cortex-a15-gic"); "arm,cortex-a15-gic");
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg", if (!vms->virt) {
2, vms->memmap[VIRT_GIC_DIST].base, qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, vms->memmap[VIRT_GIC_DIST].size, 2, vms->memmap[VIRT_GIC_DIST].base,
2, vms->memmap[VIRT_GIC_CPU].base, 2, vms->memmap[VIRT_GIC_DIST].size,
2, vms->memmap[VIRT_GIC_CPU].size); 2, vms->memmap[VIRT_GIC_CPU].base,
2, vms->memmap[VIRT_GIC_CPU].size);
} else {
qemu_fdt_setprop_sized_cells(vms->fdt, nodename, "reg",
2, vms->memmap[VIRT_GIC_DIST].base,
2, vms->memmap[VIRT_GIC_DIST].size,
2, vms->memmap[VIRT_GIC_CPU].base,
2, vms->memmap[VIRT_GIC_CPU].size,
2, vms->memmap[VIRT_GIC_HYP].base,
2, vms->memmap[VIRT_GIC_HYP].size,
2, vms->memmap[VIRT_GIC_VCPU].base,
2, vms->memmap[VIRT_GIC_VCPU].size);
qemu_fdt_setprop_cells(vms->fdt, nodename, "interrupts",
GIC_FDT_IRQ_TYPE_PPI, ARCH_GIC_MAINT_IRQ,
GIC_FDT_IRQ_FLAGS_LEVEL_HI);
}
} }
qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle); qemu_fdt_setprop_cell(vms->fdt, nodename, "phandle", vms->gic_phandle);
@ -573,6 +590,11 @@ static void create_gic(VirtMachineState *vms, qemu_irq *pic)
qdev_prop_set_uint32(gicdev, "redist-region-count[1]", qdev_prop_set_uint32(gicdev, "redist-region-count[1]",
MIN(smp_cpus - redist0_count, redist1_capacity)); MIN(smp_cpus - redist0_count, redist1_capacity));
} }
} else {
if (!kvm_irqchip_in_kernel()) {
qdev_prop_set_bit(gicdev, "has-virtualization-extensions",
vms->virt);
}
} }
qdev_init_nofail(gicdev); qdev_init_nofail(gicdev);
gicbusdev = SYS_BUS_DEVICE(gicdev); gicbusdev = SYS_BUS_DEVICE(gicdev);
@ -584,6 +606,10 @@ static void create_gic(VirtMachineState *vms, qemu_irq *pic)
} }
} else { } else {
sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base); sysbus_mmio_map(gicbusdev, 1, vms->memmap[VIRT_GIC_CPU].base);
if (vms->virt) {
sysbus_mmio_map(gicbusdev, 2, vms->memmap[VIRT_GIC_HYP].base);
sysbus_mmio_map(gicbusdev, 3, vms->memmap[VIRT_GIC_VCPU].base);
}
} }
/* Wire the outputs from each CPU's generic timer and the GICv3 /* Wire the outputs from each CPU's generic timer and the GICv3
@ -610,9 +636,17 @@ static void create_gic(VirtMachineState *vms, qemu_irq *pic)
ppibase + timer_irq[irq])); ppibase + timer_irq[irq]));
} }
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt", 0, if (type == 3) {
qdev_get_gpio_in(gicdev, ppibase qemu_irq irq = qdev_get_gpio_in(gicdev,
+ ARCH_GICV3_MAINT_IRQ)); ppibase + ARCH_GIC_MAINT_IRQ);
qdev_connect_gpio_out_named(cpudev, "gicv3-maintenance-interrupt",
0, irq);
} else if (vms->virt) {
qemu_irq irq = qdev_get_gpio_in(gicdev,
ppibase + ARCH_GIC_MAINT_IRQ);
sysbus_connect_irq(gicbusdev, i + 4 * smp_cpus, irq);
}
qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0, qdev_connect_gpio_out_named(cpudev, "pmu-interrupt", 0,
qdev_get_gpio_in(gicdev, ppibase qdev_get_gpio_in(gicdev, ppibase
+ VIRTUAL_PMU_IRQ)); + VIRTUAL_PMU_IRQ));

View File

@ -29,12 +29,17 @@
#define ARM_PHYS_TIMER_PPI 30 #define ARM_PHYS_TIMER_PPI 30
#define ARM_VIRT_TIMER_PPI 27 #define ARM_VIRT_TIMER_PPI 27
#define ARM_HYP_TIMER_PPI 26
#define ARM_SEC_TIMER_PPI 29
#define GIC_MAINTENANCE_PPI 25
#define GEM_REVISION 0x40070106 #define GEM_REVISION 0x40070106
#define GIC_BASE_ADDR 0xf9000000 #define GIC_BASE_ADDR 0xf9000000
#define GIC_DIST_ADDR 0xf9010000 #define GIC_DIST_ADDR 0xf9010000
#define GIC_CPU_ADDR 0xf9020000 #define GIC_CPU_ADDR 0xf9020000
#define GIC_VIFACE_ADDR 0xf9040000
#define GIC_VCPU_ADDR 0xf9060000
#define SATA_INTR 133 #define SATA_INTR 133
#define SATA_ADDR 0xFD0C0000 #define SATA_ADDR 0xFD0C0000
@ -111,11 +116,54 @@ static const int adma_ch_intr[XLNX_ZYNQMP_NUM_ADMA_CH] = {
typedef struct XlnxZynqMPGICRegion { typedef struct XlnxZynqMPGICRegion {
int region_index; int region_index;
uint32_t address; uint32_t address;
uint32_t offset;
bool virt;
} XlnxZynqMPGICRegion; } XlnxZynqMPGICRegion;
static const XlnxZynqMPGICRegion xlnx_zynqmp_gic_regions[] = { static const XlnxZynqMPGICRegion xlnx_zynqmp_gic_regions[] = {
{ .region_index = 0, .address = GIC_DIST_ADDR, }, /* Distributor */
{ .region_index = 1, .address = GIC_CPU_ADDR, }, {
.region_index = 0,
.address = GIC_DIST_ADDR,
.offset = 0,
.virt = false
},
/* CPU interface */
{
.region_index = 1,
.address = GIC_CPU_ADDR,
.offset = 0,
.virt = false
},
{
.region_index = 1,
.address = GIC_CPU_ADDR + 0x10000,
.offset = 0x1000,
.virt = false
},
/* Virtual interface */
{
.region_index = 2,
.address = GIC_VIFACE_ADDR,
.offset = 0,
.virt = true
},
/* Virtual CPU interface */
{
.region_index = 3,
.address = GIC_VCPU_ADDR,
.offset = 0,
.virt = true
},
{
.region_index = 3,
.address = GIC_VCPU_ADDR + 0x10000,
.offset = 0x1000,
.virt = true
},
}; };
static inline int arm_gic_ppi_index(int cpu_nr, int ppi_index) static inline int arm_gic_ppi_index(int cpu_nr, int ppi_index)
@ -281,6 +329,9 @@ static void xlnx_zynqmp_realize(DeviceState *dev, Error **errp)
qdev_prop_set_uint32(DEVICE(&s->gic), "num-irq", GIC_NUM_SPI_INTR + 32); qdev_prop_set_uint32(DEVICE(&s->gic), "num-irq", GIC_NUM_SPI_INTR + 32);
qdev_prop_set_uint32(DEVICE(&s->gic), "revision", 2); qdev_prop_set_uint32(DEVICE(&s->gic), "revision", 2);
qdev_prop_set_uint32(DEVICE(&s->gic), "num-cpu", num_apus); qdev_prop_set_uint32(DEVICE(&s->gic), "num-cpu", num_apus);
qdev_prop_set_bit(DEVICE(&s->gic), "has-security-extensions", s->secure);
qdev_prop_set_bit(DEVICE(&s->gic),
"has-virtualization-extensions", s->virt);
/* Realize APUs before realizing the GIC. KVM requires this. */ /* Realize APUs before realizing the GIC. KVM requires this. */
for (i = 0; i < num_apus; i++) { for (i = 0; i < num_apus; i++) {
@ -325,19 +376,23 @@ static void xlnx_zynqmp_realize(DeviceState *dev, Error **errp)
for (i = 0; i < XLNX_ZYNQMP_GIC_REGIONS; i++) { for (i = 0; i < XLNX_ZYNQMP_GIC_REGIONS; i++) {
SysBusDevice *gic = SYS_BUS_DEVICE(&s->gic); SysBusDevice *gic = SYS_BUS_DEVICE(&s->gic);
const XlnxZynqMPGICRegion *r = &xlnx_zynqmp_gic_regions[i]; const XlnxZynqMPGICRegion *r = &xlnx_zynqmp_gic_regions[i];
MemoryRegion *mr = sysbus_mmio_get_region(gic, r->region_index); MemoryRegion *mr;
uint32_t addr = r->address; uint32_t addr = r->address;
int j; int j;
sysbus_mmio_map(gic, r->region_index, addr); if (r->virt && !s->virt) {
continue;
}
mr = sysbus_mmio_get_region(gic, r->region_index);
for (j = 0; j < XLNX_ZYNQMP_GIC_ALIASES; j++) { for (j = 0; j < XLNX_ZYNQMP_GIC_ALIASES; j++) {
MemoryRegion *alias = &s->gic_mr[i][j]; MemoryRegion *alias = &s->gic_mr[i][j];
addr += XLNX_ZYNQMP_GIC_REGION_SIZE;
memory_region_init_alias(alias, OBJECT(s), "zynqmp-gic-alias", mr, memory_region_init_alias(alias, OBJECT(s), "zynqmp-gic-alias", mr,
0, XLNX_ZYNQMP_GIC_REGION_SIZE); r->offset, XLNX_ZYNQMP_GIC_REGION_SIZE);
memory_region_add_subregion(system_memory, addr, alias); memory_region_add_subregion(system_memory, addr, alias);
addr += XLNX_ZYNQMP_GIC_REGION_SIZE;
} }
} }
@ -347,12 +402,33 @@ static void xlnx_zynqmp_realize(DeviceState *dev, Error **errp)
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i, sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i,
qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]), qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]),
ARM_CPU_IRQ)); ARM_CPU_IRQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus,
qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]),
ARM_CPU_FIQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus * 2,
qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]),
ARM_CPU_VIRQ));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus * 3,
qdev_get_gpio_in(DEVICE(&s->apu_cpu[i]),
ARM_CPU_VFIQ));
irq = qdev_get_gpio_in(DEVICE(&s->gic), irq = qdev_get_gpio_in(DEVICE(&s->gic),
arm_gic_ppi_index(i, ARM_PHYS_TIMER_PPI)); arm_gic_ppi_index(i, ARM_PHYS_TIMER_PPI));
qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), 0, irq); qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_PHYS, irq);
irq = qdev_get_gpio_in(DEVICE(&s->gic), irq = qdev_get_gpio_in(DEVICE(&s->gic),
arm_gic_ppi_index(i, ARM_VIRT_TIMER_PPI)); arm_gic_ppi_index(i, ARM_VIRT_TIMER_PPI));
qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), 1, irq); qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_VIRT, irq);
irq = qdev_get_gpio_in(DEVICE(&s->gic),
arm_gic_ppi_index(i, ARM_HYP_TIMER_PPI));
qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_HYP, irq);
irq = qdev_get_gpio_in(DEVICE(&s->gic),
arm_gic_ppi_index(i, ARM_SEC_TIMER_PPI));
qdev_connect_gpio_out(DEVICE(&s->apu_cpu[i]), GTIMER_SEC, irq);
if (s->virt) {
irq = qdev_get_gpio_in(DEVICE(&s->gic),
arm_gic_ppi_index(i, GIC_MAINTENANCE_PPI));
sysbus_connect_irq(SYS_BUS_DEVICE(&s->gic), i + num_apus * 4, irq);
}
} }
if (s->has_rpu) { if (s->has_rpu) {

File diff suppressed because it is too large Load Diff

View File

@ -46,6 +46,13 @@ static int gic_post_load(void *opaque, int version_id)
return 0; return 0;
} }
static bool gic_virt_state_needed(void *opaque)
{
GICState *s = (GICState *)opaque;
return s->virt_extn;
}
static const VMStateDescription vmstate_gic_irq_state = { static const VMStateDescription vmstate_gic_irq_state = {
.name = "arm_gic_irq_state", .name = "arm_gic_irq_state",
.version_id = 1, .version_id = 1,
@ -62,6 +69,30 @@ static const VMStateDescription vmstate_gic_irq_state = {
} }
}; };
static const VMStateDescription vmstate_gic_virt_state = {
.name = "arm_gic_virt_state",
.version_id = 1,
.minimum_version_id = 1,
.needed = gic_virt_state_needed,
.fields = (VMStateField[]) {
/* Virtual interface */
VMSTATE_UINT32_ARRAY(h_hcr, GICState, GIC_NCPU),
VMSTATE_UINT32_ARRAY(h_misr, GICState, GIC_NCPU),
VMSTATE_UINT32_2DARRAY(h_lr, GICState, GIC_MAX_LR, GIC_NCPU),
VMSTATE_UINT32_ARRAY(h_apr, GICState, GIC_NCPU),
/* Virtual CPU interfaces */
VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, GIC_NCPU, GIC_NCPU),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_gic = { static const VMStateDescription vmstate_gic = {
.name = "arm_gic", .name = "arm_gic",
.version_id = 12, .version_id = 12,
@ -70,26 +101,31 @@ static const VMStateDescription vmstate_gic = {
.post_load = gic_post_load, .post_load = gic_post_load,
.fields = (VMStateField[]) { .fields = (VMStateField[]) {
VMSTATE_UINT32(ctlr, GICState), VMSTATE_UINT32(ctlr, GICState),
VMSTATE_UINT32_ARRAY(cpu_ctlr, GICState, GIC_NCPU), VMSTATE_UINT32_SUB_ARRAY(cpu_ctlr, GICState, 0, GIC_NCPU),
VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1, VMSTATE_STRUCT_ARRAY(irq_state, GICState, GIC_MAXIRQ, 1,
vmstate_gic_irq_state, gic_irq_state), vmstate_gic_irq_state, gic_irq_state),
VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ), VMSTATE_UINT8_ARRAY(irq_target, GICState, GIC_MAXIRQ),
VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU), VMSTATE_UINT8_2DARRAY(priority1, GICState, GIC_INTERNAL, GIC_NCPU),
VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL), VMSTATE_UINT8_ARRAY(priority2, GICState, GIC_MAXIRQ - GIC_INTERNAL),
VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU), VMSTATE_UINT8_2DARRAY(sgi_pending, GICState, GIC_NR_SGIS, GIC_NCPU),
VMSTATE_UINT16_ARRAY(priority_mask, GICState, GIC_NCPU), VMSTATE_UINT16_SUB_ARRAY(priority_mask, GICState, 0, GIC_NCPU),
VMSTATE_UINT16_ARRAY(running_priority, GICState, GIC_NCPU), VMSTATE_UINT16_SUB_ARRAY(running_priority, GICState, 0, GIC_NCPU),
VMSTATE_UINT16_ARRAY(current_pending, GICState, GIC_NCPU), VMSTATE_UINT16_SUB_ARRAY(current_pending, GICState, 0, GIC_NCPU),
VMSTATE_UINT8_ARRAY(bpr, GICState, GIC_NCPU), VMSTATE_UINT8_SUB_ARRAY(bpr, GICState, 0, GIC_NCPU),
VMSTATE_UINT8_ARRAY(abpr, GICState, GIC_NCPU), VMSTATE_UINT8_SUB_ARRAY(abpr, GICState, 0, GIC_NCPU),
VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU), VMSTATE_UINT32_2DARRAY(apr, GICState, GIC_NR_APRS, GIC_NCPU),
VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU), VMSTATE_UINT32_2DARRAY(nsapr, GICState, GIC_NR_APRS, GIC_NCPU),
VMSTATE_END_OF_LIST() VMSTATE_END_OF_LIST()
},
.subsections = (const VMStateDescription * []) {
&vmstate_gic_virt_state,
NULL
} }
}; };
void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler, void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
const MemoryRegionOps *ops) const MemoryRegionOps *ops,
const MemoryRegionOps *virt_ops)
{ {
SysBusDevice *sbd = SYS_BUS_DEVICE(s); SysBusDevice *sbd = SYS_BUS_DEVICE(s);
int i = s->num_irq - GIC_INTERNAL; int i = s->num_irq - GIC_INTERNAL;
@ -116,6 +152,11 @@ void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
for (i = 0; i < s->num_cpu; i++) { for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->parent_vfiq[i]); sysbus_init_irq(sbd, &s->parent_vfiq[i]);
} }
if (s->virt_extn) {
for (i = 0; i < s->num_cpu; i++) {
sysbus_init_irq(sbd, &s->maintenance_irq[i]);
}
}
/* Distributor */ /* Distributor */
memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000); memory_region_init_io(&s->iomem, OBJECT(s), ops, s, "gic_dist", 0x1000);
@ -127,6 +168,17 @@ void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL, memory_region_init_io(&s->cpuiomem[0], OBJECT(s), ops ? &ops[1] : NULL,
s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100); s, "gic_cpu", s->revision == 2 ? 0x2000 : 0x100);
sysbus_init_mmio(sbd, &s->cpuiomem[0]); sysbus_init_mmio(sbd, &s->cpuiomem[0]);
if (s->virt_extn) {
memory_region_init_io(&s->vifaceiomem[0], OBJECT(s), virt_ops,
s, "gic_viface", 0x1000);
sysbus_init_mmio(sbd, &s->vifaceiomem[0]);
memory_region_init_io(&s->vcpuiomem, OBJECT(s),
virt_ops ? &virt_ops[1] : NULL,
s, "gic_vcpu", 0x2000);
sysbus_init_mmio(sbd, &s->vcpuiomem);
}
} }
static void arm_gic_common_realize(DeviceState *dev, Error **errp) static void arm_gic_common_realize(DeviceState *dev, Error **errp)
@ -163,6 +215,48 @@ static void arm_gic_common_realize(DeviceState *dev, Error **errp)
"the security extensions"); "the security extensions");
return; return;
} }
if (s->virt_extn) {
if (s->revision != 2) {
error_setg(errp, "GIC virtualization extensions are only "
"supported by revision 2");
return;
}
/* For now, set the number of implemented LRs to 4, as found in most
* real GICv2. This could be promoted as a QOM property if we need to
* emulate a variant with another num_lrs.
*/
s->num_lrs = 4;
}
}
static inline void arm_gic_common_reset_irq_state(GICState *s, int first_cpu,
int resetprio)
{
int i, j;
for (i = first_cpu; i < first_cpu + s->num_cpu; i++) {
if (s->revision == REV_11MPCORE) {
s->priority_mask[i] = 0xf0;
} else {
s->priority_mask[i] = resetprio;
}
s->current_pending[i] = 1023;
s->running_priority[i] = 0x100;
s->cpu_ctlr[i] = 0;
s->bpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
s->abpr[i] = gic_is_vcpu(i) ? GIC_VIRT_MIN_ABPR : GIC_MIN_ABPR;
if (!gic_is_vcpu(i)) {
for (j = 0; j < GIC_INTERNAL; j++) {
s->priority1[j][i] = resetprio;
}
for (j = 0; j < GIC_NR_SGIS; j++) {
s->sgi_pending[j][i] = 0;
}
}
}
} }
static void arm_gic_common_reset(DeviceState *dev) static void arm_gic_common_reset(DeviceState *dev)
@ -185,27 +279,18 @@ static void arm_gic_common_reset(DeviceState *dev)
} }
memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state)); memset(s->irq_state, 0, GIC_MAXIRQ * sizeof(gic_irq_state));
for (i = 0 ; i < s->num_cpu; i++) { arm_gic_common_reset_irq_state(s, 0, resetprio);
if (s->revision == REV_11MPCORE) {
s->priority_mask[i] = 0xf0; if (s->virt_extn) {
} else { /* vCPU states are stored at indexes GIC_NCPU .. GIC_NCPU+num_cpu.
s->priority_mask[i] = resetprio; * The exposed vCPU interface does not have security extensions.
} */
s->current_pending[i] = 1023; arm_gic_common_reset_irq_state(s, GIC_NCPU, 0);
s->running_priority[i] = 0x100;
s->cpu_ctlr[i] = 0;
s->bpr[i] = GIC_MIN_BPR;
s->abpr[i] = GIC_MIN_ABPR;
for (j = 0; j < GIC_INTERNAL; j++) {
s->priority1[j][i] = resetprio;
}
for (j = 0; j < GIC_NR_SGIS; j++) {
s->sgi_pending[j][i] = 0;
}
} }
for (i = 0; i < GIC_NR_SGIS; i++) { for (i = 0; i < GIC_NR_SGIS; i++) {
GIC_SET_ENABLED(i, ALL_CPU_MASK); GIC_DIST_SET_ENABLED(i, ALL_CPU_MASK);
GIC_SET_EDGE_TRIGGER(i); GIC_DIST_SET_EDGE_TRIGGER(i);
} }
for (i = 0; i < ARRAY_SIZE(s->priority2); i++) { for (i = 0; i < ARRAY_SIZE(s->priority2); i++) {
@ -222,7 +307,20 @@ static void arm_gic_common_reset(DeviceState *dev)
} }
if (s->security_extn && s->irq_reset_nonsecure) { if (s->security_extn && s->irq_reset_nonsecure) {
for (i = 0; i < GIC_MAXIRQ; i++) { for (i = 0; i < GIC_MAXIRQ; i++) {
GIC_SET_GROUP(i, ALL_CPU_MASK); GIC_DIST_SET_GROUP(i, ALL_CPU_MASK);
}
}
if (s->virt_extn) {
for (i = 0; i < s->num_lrs; i++) {
for (j = 0; j < s->num_cpu; j++) {
s->h_lr[i][j] = 0;
}
}
for (i = 0; i < s->num_cpu; i++) {
s->h_hcr[i] = 0;
s->h_misr[i] = 0;
} }
} }
@ -255,6 +353,8 @@ static Property arm_gic_common_properties[] = {
DEFINE_PROP_UINT32("revision", GICState, revision, 1), DEFINE_PROP_UINT32("revision", GICState, revision, 1),
/* True if the GIC should implement the security extensions */ /* True if the GIC should implement the security extensions */
DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0), DEFINE_PROP_BOOL("has-security-extensions", GICState, security_extn, 0),
/* True if the GIC should implement the virtualization extensions */
DEFINE_PROP_BOOL("has-virtualization-extensions", GICState, virt_extn, 0),
DEFINE_PROP_END_OF_LIST(), DEFINE_PROP_END_OF_LIST(),
}; };

View File

@ -140,10 +140,10 @@ static void translate_group(GICState *s, int irq, int cpu,
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (to_kernel) { if (to_kernel) {
*field = GIC_TEST_GROUP(irq, cm); *field = GIC_DIST_TEST_GROUP(irq, cm);
} else { } else {
if (*field & 1) { if (*field & 1) {
GIC_SET_GROUP(irq, cm); GIC_DIST_SET_GROUP(irq, cm);
} }
} }
} }
@ -154,10 +154,10 @@ static void translate_enabled(GICState *s, int irq, int cpu,
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (to_kernel) { if (to_kernel) {
*field = GIC_TEST_ENABLED(irq, cm); *field = GIC_DIST_TEST_ENABLED(irq, cm);
} else { } else {
if (*field & 1) { if (*field & 1) {
GIC_SET_ENABLED(irq, cm); GIC_DIST_SET_ENABLED(irq, cm);
} }
} }
} }
@ -171,7 +171,7 @@ static void translate_pending(GICState *s, int irq, int cpu,
*field = gic_test_pending(s, irq, cm); *field = gic_test_pending(s, irq, cm);
} else { } else {
if (*field & 1) { if (*field & 1) {
GIC_SET_PENDING(irq, cm); GIC_DIST_SET_PENDING(irq, cm);
/* TODO: Capture is level-line is held high in the kernel */ /* TODO: Capture is level-line is held high in the kernel */
} }
} }
@ -183,10 +183,10 @@ static void translate_active(GICState *s, int irq, int cpu,
int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK; int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
if (to_kernel) { if (to_kernel) {
*field = GIC_TEST_ACTIVE(irq, cm); *field = GIC_DIST_TEST_ACTIVE(irq, cm);
} else { } else {
if (*field & 1) { if (*field & 1) {
GIC_SET_ACTIVE(irq, cm); GIC_DIST_SET_ACTIVE(irq, cm);
} }
} }
} }
@ -195,10 +195,10 @@ static void translate_trigger(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel) uint32_t *field, bool to_kernel)
{ {
if (to_kernel) { if (to_kernel) {
*field = (GIC_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0; *field = (GIC_DIST_TEST_EDGE_TRIGGER(irq)) ? 0x2 : 0x0;
} else { } else {
if (*field & 0x2) { if (*field & 0x2) {
GIC_SET_EDGE_TRIGGER(irq); GIC_DIST_SET_EDGE_TRIGGER(irq);
} }
} }
} }
@ -207,9 +207,10 @@ static void translate_priority(GICState *s, int irq, int cpu,
uint32_t *field, bool to_kernel) uint32_t *field, bool to_kernel)
{ {
if (to_kernel) { if (to_kernel) {
*field = GIC_GET_PRIORITY(irq, cpu) & 0xff; *field = GIC_DIST_GET_PRIORITY(irq, cpu) & 0xff;
} else { } else {
gic_set_priority(s, cpu, irq, *field & 0xff, MEMTXATTRS_UNSPECIFIED); gic_dist_set_priority(s, cpu, irq,
*field & 0xff, MEMTXATTRS_UNSPECIFIED);
} }
} }
@ -510,6 +511,12 @@ static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
return; return;
} }
if (s->virt_extn) {
error_setg(errp, "the in-kernel VGIC does not implement the "
"virtualization extensions");
return;
}
if (!kvm_arm_gic_can_save_restore(s)) { if (!kvm_arm_gic_can_save_restore(s)) {
error_setg(&s->migration_blocker, "This operating system kernel does " error_setg(&s->migration_blocker, "This operating system kernel does "
"not support vGICv2 migration"); "not support vGICv2 migration");
@ -521,7 +528,7 @@ static void kvm_arm_gic_realize(DeviceState *dev, Error **errp)
} }
} }
gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL); gic_init_irqs_and_mmio(s, kvm_arm_gicv2_set_irq, NULL, NULL);
for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) { for (i = 0; i < s->num_irq - GIC_INTERNAL; i++) {
qemu_irq irq = qdev_get_gpio_in(dev, i); qemu_irq irq = qdev_get_gpio_in(dev, i);

View File

@ -85,7 +85,10 @@ static bool icv_access(CPUARMState *env, int hcr_flags)
* * access if NS EL1 and either IMO or FMO == 1: * * access if NS EL1 and either IMO or FMO == 1:
* CTLR, DIR, PMR, RPR * CTLR, DIR, PMR, RPR
*/ */
return (env->cp15.hcr_el2 & hcr_flags) && arm_current_el(env) == 1 bool flagmatch = ((hcr_flags & HCR_IMO) && arm_hcr_el2_imo(env)) ||
((hcr_flags & HCR_FMO) && arm_hcr_el2_fmo(env));
return flagmatch && arm_current_el(env) == 1
&& !arm_is_secure_below_el3(env); && !arm_is_secure_below_el3(env);
} }
@ -1549,8 +1552,8 @@ static void icc_dir_write(CPUARMState *env, const ARMCPRegInfo *ri,
/* No need to include !IsSecure in route_*_to_el2 as it's only /* No need to include !IsSecure in route_*_to_el2 as it's only
* tested in cases where we know !IsSecure is true. * tested in cases where we know !IsSecure is true.
*/ */
route_fiq_to_el2 = env->cp15.hcr_el2 & HCR_FMO; route_fiq_to_el2 = arm_hcr_el2_fmo(env);
route_irq_to_el2 = env->cp15.hcr_el2 & HCR_IMO; route_irq_to_el2 = arm_hcr_el2_imo(env);
switch (arm_current_el(env)) { switch (arm_current_el(env)) {
case 3: case 3:
@ -1893,7 +1896,7 @@ static CPAccessResult gicv3_irqfiq_access(CPUARMState *env,
switch (el) { switch (el) {
case 1: case 1:
if (arm_is_secure_below_el3(env) || if (arm_is_secure_below_el3(env) ||
((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) == 0)) { (arm_hcr_el2_imo(env) == 0 && arm_hcr_el2_fmo(env) == 0)) {
r = CP_ACCESS_TRAP_EL3; r = CP_ACCESS_TRAP_EL3;
} }
break; break;
@ -1933,7 +1936,7 @@ static CPAccessResult gicv3_dir_access(CPUARMState *env,
static CPAccessResult gicv3_sgi_access(CPUARMState *env, static CPAccessResult gicv3_sgi_access(CPUARMState *env,
const ARMCPRegInfo *ri, bool isread) const ARMCPRegInfo *ri, bool isread)
{ {
if ((env->cp15.hcr_el2 & (HCR_IMO | HCR_FMO)) && if ((arm_hcr_el2_imo(env) || arm_hcr_el2_fmo(env)) &&
arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) { arm_current_el(env) == 1 && !arm_is_secure_below_el3(env)) {
/* Takes priority over a possible EL3 trap */ /* Takes priority over a possible EL3 trap */
return CP_ACCESS_TRAP_EL2; return CP_ACCESS_TRAP_EL2;
@ -1958,8 +1961,7 @@ static CPAccessResult gicv3_fiq_access(CPUARMState *env,
if (env->cp15.scr_el3 & SCR_FIQ) { if (env->cp15.scr_el3 & SCR_FIQ) {
switch (el) { switch (el) {
case 1: case 1:
if (arm_is_secure_below_el3(env) || if (arm_is_secure_below_el3(env) || !arm_hcr_el2_fmo(env)) {
((env->cp15.hcr_el2 & HCR_FMO) == 0)) {
r = CP_ACCESS_TRAP_EL3; r = CP_ACCESS_TRAP_EL3;
} }
break; break;
@ -1998,8 +2000,7 @@ static CPAccessResult gicv3_irq_access(CPUARMState *env,
if (env->cp15.scr_el3 & SCR_IRQ) { if (env->cp15.scr_el3 & SCR_IRQ) {
switch (el) { switch (el) {
case 1: case 1:
if (arm_is_secure_below_el3(env) || if (arm_is_secure_below_el3(env) || !arm_hcr_el2_imo(env)) {
((env->cp15.hcr_el2 & HCR_IMO) == 0)) {
r = CP_ACCESS_TRAP_EL3; r = CP_ACCESS_TRAP_EL3;
} }
break; break;

View File

@ -420,6 +420,8 @@ static void set_prio(NVICState *s, unsigned irq, bool secure, uint8_t prio)
assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */ assert(irq > ARMV7M_EXCP_NMI); /* only use for configurable prios */
assert(irq < s->num_irq); assert(irq < s->num_irq);
prio &= MAKE_64BIT_MASK(8 - s->num_prio_bits, s->num_prio_bits);
if (secure) { if (secure) {
assert(exc_is_banked(irq)); assert(exc_is_banked(irq));
s->sec_vectors[irq].prio = prio; s->sec_vectors[irq].prio = prio;
@ -779,6 +781,9 @@ static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
switch (offset) { switch (offset) {
case 4: /* Interrupt Control Type. */ case 4: /* Interrupt Control Type. */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1; return ((s->num_irq - NVIC_FIRST_IRQ) / 32) - 1;
case 0xc: /* CPPWR */ case 0xc: /* CPPWR */
if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) { if (!arm_feature(&cpu->env, ARM_FEATURE_V8)) {
@ -867,6 +872,9 @@ static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
} }
return val; return val;
case 0xd10: /* System Control. */ case 0xd10: /* System Control. */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
return cpu->env.v7m.scr[attrs.secure]; return cpu->env.v7m.scr[attrs.secure];
case 0xd14: /* Configuration Control. */ case 0xd14: /* Configuration Control. */
/* The BFHFNMIGN bit is the only non-banked bit; we /* The BFHFNMIGN bit is the only non-banked bit; we
@ -876,6 +884,9 @@ static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK; val |= cpu->env.v7m.ccr[M_REG_NS] & R_V7M_CCR_BFHFNMIGN_MASK;
return val; return val;
case 0xd24: /* System Handler Control and State (SHCSR) */ case 0xd24: /* System Handler Control and State (SHCSR) */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
val = 0; val = 0;
if (attrs.secure) { if (attrs.secure) {
if (s->sec_vectors[ARMV7M_EXCP_MEM].active) { if (s->sec_vectors[ARMV7M_EXCP_MEM].active) {
@ -988,12 +999,21 @@ static uint32_t nvic_readl(NVICState *s, uint32_t offset, MemTxAttrs attrs)
} }
return val; return val;
case 0xd2c: /* Hard Fault Status. */ case 0xd2c: /* Hard Fault Status. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->env.v7m.hfsr; return cpu->env.v7m.hfsr;
case 0xd30: /* Debug Fault Status. */ case 0xd30: /* Debug Fault Status. */
return cpu->env.v7m.dfsr; return cpu->env.v7m.dfsr;
case 0xd34: /* MMFAR MemManage Fault Address */ case 0xd34: /* MMFAR MemManage Fault Address */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->env.v7m.mmfar[attrs.secure]; return cpu->env.v7m.mmfar[attrs.secure];
case 0xd38: /* Bus Fault Address. */ case 0xd38: /* Bus Fault Address. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
return cpu->env.v7m.bfar; return cpu->env.v7m.bfar;
case 0xd3c: /* Aux Fault Status. */ case 0xd3c: /* Aux Fault Status. */
/* TODO: Implement fault status registers. */ /* TODO: Implement fault status registers. */
@ -1263,9 +1283,12 @@ static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
"Setting VECTRESET when not in DEBUG mode " "Setting VECTRESET when not in DEBUG mode "
"is UNPREDICTABLE\n"); "is UNPREDICTABLE\n");
} }
s->prigroup[attrs.secure] = extract32(value, if (arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
R_V7M_AIRCR_PRIGROUP_SHIFT, s->prigroup[attrs.secure] =
R_V7M_AIRCR_PRIGROUP_LENGTH); extract32(value,
R_V7M_AIRCR_PRIGROUP_SHIFT,
R_V7M_AIRCR_PRIGROUP_LENGTH);
}
if (attrs.secure) { if (attrs.secure) {
/* These bits are only writable by secure */ /* These bits are only writable by secure */
cpu->env.v7m.aircr = value & cpu->env.v7m.aircr = value &
@ -1288,6 +1311,9 @@ static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
} }
break; break;
case 0xd10: /* System Control. */ case 0xd10: /* System Control. */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
/* We don't implement deep-sleep so these bits are RAZ/WI. /* We don't implement deep-sleep so these bits are RAZ/WI.
* The other bits in the register are banked. * The other bits in the register are banked.
* QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which * QEMU's implementation ignores SEVONPEND and SLEEPONEXIT, which
@ -1297,6 +1323,10 @@ static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
cpu->env.v7m.scr[attrs.secure] = value; cpu->env.v7m.scr[attrs.secure] = value;
break; break;
case 0xd14: /* Configuration Control. */ case 0xd14: /* Configuration Control. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
/* Enforce RAZ/WI on reserved and must-RAZ/WI bits */ /* Enforce RAZ/WI on reserved and must-RAZ/WI bits */
value &= (R_V7M_CCR_STKALIGN_MASK | value &= (R_V7M_CCR_STKALIGN_MASK |
R_V7M_CCR_BFHFNMIGN_MASK | R_V7M_CCR_BFHFNMIGN_MASK |
@ -1321,6 +1351,9 @@ static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
cpu->env.v7m.ccr[attrs.secure] = value; cpu->env.v7m.ccr[attrs.secure] = value;
break; break;
case 0xd24: /* System Handler Control and State (SHCSR) */ case 0xd24: /* System Handler Control and State (SHCSR) */
if (!arm_feature(&cpu->env, ARM_FEATURE_V7)) {
goto bad_offset;
}
if (attrs.secure) { if (attrs.secure) {
s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0; s->sec_vectors[ARMV7M_EXCP_MEM].active = (value & (1 << 0)) != 0;
/* Secure HardFault active bit cannot be written */ /* Secure HardFault active bit cannot be written */
@ -1389,15 +1422,24 @@ static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
nvic_irq_update(s); nvic_irq_update(s);
break; break;
case 0xd2c: /* Hard Fault Status. */ case 0xd2c: /* Hard Fault Status. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
cpu->env.v7m.hfsr &= ~value; /* W1C */ cpu->env.v7m.hfsr &= ~value; /* W1C */
break; break;
case 0xd30: /* Debug Fault Status. */ case 0xd30: /* Debug Fault Status. */
cpu->env.v7m.dfsr &= ~value; /* W1C */ cpu->env.v7m.dfsr &= ~value; /* W1C */
break; break;
case 0xd34: /* Mem Manage Address. */ case 0xd34: /* Mem Manage Address. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
cpu->env.v7m.mmfar[attrs.secure] = value; cpu->env.v7m.mmfar[attrs.secure] = value;
return; return;
case 0xd38: /* Bus Fault Address. */ case 0xd38: /* Bus Fault Address. */
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
cpu->env.v7m.bfar = value; cpu->env.v7m.bfar = value;
return; return;
case 0xd3c: /* Aux Fault Status. */ case 0xd3c: /* Aux Fault Status. */
@ -1627,6 +1669,11 @@ static void nvic_writel(NVICState *s, uint32_t offset, uint32_t value,
case 0xf00: /* Software Triggered Interrupt Register */ case 0xf00: /* Software Triggered Interrupt Register */
{ {
int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ; int excnum = (value & 0x1ff) + NVIC_FIRST_IRQ;
if (!arm_feature(&cpu->env, ARM_FEATURE_M_MAIN)) {
goto bad_offset;
}
if (excnum < s->num_irq) { if (excnum < s->num_irq) {
armv7m_nvic_set_pending(s, excnum, false); armv7m_nvic_set_pending(s, excnum, false);
} }
@ -1752,6 +1799,11 @@ static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
break; break;
case 0x300 ... 0x33f: /* NVIC Active */ case 0x300 ... 0x33f: /* NVIC Active */
val = 0; val = 0;
if (!arm_feature(&s->cpu->env, ARM_FEATURE_V7)) {
break;
}
startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */ startvec = 8 * (offset - 0x300) + NVIC_FIRST_IRQ; /* vector # */
for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) { for (i = 0, end = size * 8; i < end && startvec + i < s->num_irq; i++) {
@ -1771,7 +1823,13 @@ static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
} }
} }
break; break;
case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ case 0xd18: /* System Handler Priority (SHPR1) */
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
val = 0;
break;
}
/* fall through */
case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
val = 0; val = 0;
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
unsigned hdlidx = (offset - 0xd14) + i; unsigned hdlidx = (offset - 0xd14) + i;
@ -1784,6 +1842,10 @@ static MemTxResult nvic_sysreg_read(void *opaque, hwaddr addr,
} }
break; break;
case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
val = 0;
break;
};
/* The BFSR bits [15:8] are shared between security states /* The BFSR bits [15:8] are shared between security states
* and we store them in the NS copy * and we store them in the NS copy
*/ */
@ -1876,7 +1938,12 @@ static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
} }
nvic_irq_update(s); nvic_irq_update(s);
return MEMTX_OK; return MEMTX_OK;
case 0xd18 ... 0xd23: /* System Handler Priority (SHPR1, SHPR2, SHPR3) */ case 0xd18: /* System Handler Priority (SHPR1) */
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
return MEMTX_OK;
}
/* fall through */
case 0xd1c ... 0xd23: /* System Handler Priority (SHPR2, SHPR3) */
for (i = 0; i < size; i++) { for (i = 0; i < size; i++) {
unsigned hdlidx = (offset - 0xd14) + i; unsigned hdlidx = (offset - 0xd14) + i;
int newprio = extract32(value, i * 8, 8); int newprio = extract32(value, i * 8, 8);
@ -1890,6 +1957,9 @@ static MemTxResult nvic_sysreg_write(void *opaque, hwaddr addr,
nvic_irq_update(s); nvic_irq_update(s);
return MEMTX_OK; return MEMTX_OK;
case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */ case 0xd28 ... 0xd2b: /* Configurable Fault Status (CFSR) */
if (!arm_feature(&s->cpu->env, ARM_FEATURE_M_MAIN)) {
return MEMTX_OK;
}
/* All bits are W1C, so construct 32 bit value with 0s in /* All bits are W1C, so construct 32 bit value with 0s in
* the parts not written by the access size * the parts not written by the access size
*/ */
@ -2203,6 +2273,8 @@ static void armv7m_nvic_realize(DeviceState *dev, Error **errp)
/* include space for internal exception vectors */ /* include space for internal exception vectors */
s->num_irq += NVIC_FIRST_IRQ; s->num_irq += NVIC_FIRST_IRQ;
s->num_prio_bits = arm_feature(&s->cpu->env, ARM_FEATURE_V7) ? 8 : 2;
object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true, object_property_set_bool(OBJECT(&s->systick[M_REG_NS]), true,
"realized", &err); "realized", &err);
if (err != NULL) { if (err != NULL) {

View File

@ -21,36 +21,38 @@
#ifndef QEMU_ARM_GIC_INTERNAL_H #ifndef QEMU_ARM_GIC_INTERNAL_H
#define QEMU_ARM_GIC_INTERNAL_H #define QEMU_ARM_GIC_INTERNAL_H
#include "hw/registerfields.h"
#include "hw/intc/arm_gic.h" #include "hw/intc/arm_gic.h"
#define ALL_CPU_MASK ((unsigned)(((1 << GIC_NCPU) - 1))) #define ALL_CPU_MASK ((unsigned)(((1 << GIC_NCPU) - 1)))
#define GIC_BASE_IRQ 0 #define GIC_BASE_IRQ 0
#define GIC_SET_ENABLED(irq, cm) s->irq_state[irq].enabled |= (cm) #define GIC_DIST_SET_ENABLED(irq, cm) (s->irq_state[irq].enabled |= (cm))
#define GIC_CLEAR_ENABLED(irq, cm) s->irq_state[irq].enabled &= ~(cm) #define GIC_DIST_CLEAR_ENABLED(irq, cm) (s->irq_state[irq].enabled &= ~(cm))
#define GIC_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0) #define GIC_DIST_TEST_ENABLED(irq, cm) ((s->irq_state[irq].enabled & (cm)) != 0)
#define GIC_SET_PENDING(irq, cm) s->irq_state[irq].pending |= (cm) #define GIC_DIST_SET_PENDING(irq, cm) (s->irq_state[irq].pending |= (cm))
#define GIC_CLEAR_PENDING(irq, cm) s->irq_state[irq].pending &= ~(cm) #define GIC_DIST_CLEAR_PENDING(irq, cm) (s->irq_state[irq].pending &= ~(cm))
#define GIC_SET_ACTIVE(irq, cm) s->irq_state[irq].active |= (cm) #define GIC_DIST_SET_ACTIVE(irq, cm) (s->irq_state[irq].active |= (cm))
#define GIC_CLEAR_ACTIVE(irq, cm) s->irq_state[irq].active &= ~(cm) #define GIC_DIST_CLEAR_ACTIVE(irq, cm) (s->irq_state[irq].active &= ~(cm))
#define GIC_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0) #define GIC_DIST_TEST_ACTIVE(irq, cm) ((s->irq_state[irq].active & (cm)) != 0)
#define GIC_SET_MODEL(irq) s->irq_state[irq].model = true #define GIC_DIST_SET_MODEL(irq) (s->irq_state[irq].model = true)
#define GIC_CLEAR_MODEL(irq) s->irq_state[irq].model = false #define GIC_DIST_CLEAR_MODEL(irq) (s->irq_state[irq].model = false)
#define GIC_TEST_MODEL(irq) s->irq_state[irq].model #define GIC_DIST_TEST_MODEL(irq) (s->irq_state[irq].model)
#define GIC_SET_LEVEL(irq, cm) s->irq_state[irq].level |= (cm) #define GIC_DIST_SET_LEVEL(irq, cm) (s->irq_state[irq].level |= (cm))
#define GIC_CLEAR_LEVEL(irq, cm) s->irq_state[irq].level &= ~(cm) #define GIC_DIST_CLEAR_LEVEL(irq, cm) (s->irq_state[irq].level &= ~(cm))
#define GIC_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0) #define GIC_DIST_TEST_LEVEL(irq, cm) ((s->irq_state[irq].level & (cm)) != 0)
#define GIC_SET_EDGE_TRIGGER(irq) s->irq_state[irq].edge_trigger = true #define GIC_DIST_SET_EDGE_TRIGGER(irq) (s->irq_state[irq].edge_trigger = true)
#define GIC_CLEAR_EDGE_TRIGGER(irq) s->irq_state[irq].edge_trigger = false #define GIC_DIST_CLEAR_EDGE_TRIGGER(irq) \
#define GIC_TEST_EDGE_TRIGGER(irq) (s->irq_state[irq].edge_trigger) (s->irq_state[irq].edge_trigger = false)
#define GIC_GET_PRIORITY(irq, cpu) (((irq) < GIC_INTERNAL) ? \ #define GIC_DIST_TEST_EDGE_TRIGGER(irq) (s->irq_state[irq].edge_trigger)
#define GIC_DIST_GET_PRIORITY(irq, cpu) (((irq) < GIC_INTERNAL) ? \
s->priority1[irq][cpu] : \ s->priority1[irq][cpu] : \
s->priority2[(irq) - GIC_INTERNAL]) s->priority2[(irq) - GIC_INTERNAL])
#define GIC_TARGET(irq) s->irq_target[irq] #define GIC_DIST_TARGET(irq) (s->irq_target[irq])
#define GIC_CLEAR_GROUP(irq, cm) (s->irq_state[irq].group &= ~(cm)) #define GIC_DIST_CLEAR_GROUP(irq, cm) (s->irq_state[irq].group &= ~(cm))
#define GIC_SET_GROUP(irq, cm) (s->irq_state[irq].group |= (cm)) #define GIC_DIST_SET_GROUP(irq, cm) (s->irq_state[irq].group |= (cm))
#define GIC_TEST_GROUP(irq, cm) ((s->irq_state[irq].group & (cm)) != 0) #define GIC_DIST_TEST_GROUP(irq, cm) ((s->irq_state[irq].group & (cm)) != 0)
#define GICD_CTLR_EN_GRP0 (1U << 0) #define GICD_CTLR_EN_GRP0 (1U << 0)
#define GICD_CTLR_EN_GRP1 (1U << 1) #define GICD_CTLR_EN_GRP1 (1U << 1)
@ -63,6 +65,91 @@
#define GICC_CTLR_EOIMODE (1U << 9) #define GICC_CTLR_EOIMODE (1U << 9)
#define GICC_CTLR_EOIMODE_NS (1U << 10) #define GICC_CTLR_EOIMODE_NS (1U << 10)
REG32(GICH_HCR, 0x0)
FIELD(GICH_HCR, EN, 0, 1)
FIELD(GICH_HCR, UIE, 1, 1)
FIELD(GICH_HCR, LRENPIE, 2, 1)
FIELD(GICH_HCR, NPIE, 3, 1)
FIELD(GICH_HCR, VGRP0EIE, 4, 1)
FIELD(GICH_HCR, VGRP0DIE, 5, 1)
FIELD(GICH_HCR, VGRP1EIE, 6, 1)
FIELD(GICH_HCR, VGRP1DIE, 7, 1)
FIELD(GICH_HCR, EOICount, 27, 5)
#define GICH_HCR_MASK \
(R_GICH_HCR_EN_MASK | R_GICH_HCR_UIE_MASK | \
R_GICH_HCR_LRENPIE_MASK | R_GICH_HCR_NPIE_MASK | \
R_GICH_HCR_VGRP0EIE_MASK | R_GICH_HCR_VGRP0DIE_MASK | \
R_GICH_HCR_VGRP1EIE_MASK | R_GICH_HCR_VGRP1DIE_MASK | \
R_GICH_HCR_EOICount_MASK)
REG32(GICH_VTR, 0x4)
FIELD(GICH_VTR, ListRegs, 0, 6)
FIELD(GICH_VTR, PREbits, 26, 3)
FIELD(GICH_VTR, PRIbits, 29, 3)
REG32(GICH_VMCR, 0x8)
FIELD(GICH_VMCR, VMCCtlr, 0, 10)
FIELD(GICH_VMCR, VMABP, 18, 3)
FIELD(GICH_VMCR, VMBP, 21, 3)
FIELD(GICH_VMCR, VMPriMask, 27, 5)
REG32(GICH_MISR, 0x10)
FIELD(GICH_MISR, EOI, 0, 1)
FIELD(GICH_MISR, U, 1, 1)
FIELD(GICH_MISR, LRENP, 2, 1)
FIELD(GICH_MISR, NP, 3, 1)
FIELD(GICH_MISR, VGrp0E, 4, 1)
FIELD(GICH_MISR, VGrp0D, 5, 1)
FIELD(GICH_MISR, VGrp1E, 6, 1)
FIELD(GICH_MISR, VGrp1D, 7, 1)
REG32(GICH_EISR0, 0x20)
REG32(GICH_EISR1, 0x24)
REG32(GICH_ELRSR0, 0x30)
REG32(GICH_ELRSR1, 0x34)
REG32(GICH_APR, 0xf0)
REG32(GICH_LR0, 0x100)
FIELD(GICH_LR0, VirtualID, 0, 10)
FIELD(GICH_LR0, PhysicalID, 10, 10)
FIELD(GICH_LR0, CPUID, 10, 3)
FIELD(GICH_LR0, EOI, 19, 1)
FIELD(GICH_LR0, Priority, 23, 5)
FIELD(GICH_LR0, State, 28, 2)
FIELD(GICH_LR0, Grp1, 30, 1)
FIELD(GICH_LR0, HW, 31, 1)
/* Last LR register */
REG32(GICH_LR63, 0x1fc)
#define GICH_LR_MASK \
(R_GICH_LR0_VirtualID_MASK | R_GICH_LR0_PhysicalID_MASK | \
R_GICH_LR0_CPUID_MASK | R_GICH_LR0_EOI_MASK | \
R_GICH_LR0_Priority_MASK | R_GICH_LR0_State_MASK | \
R_GICH_LR0_Grp1_MASK | R_GICH_LR0_HW_MASK)
#define GICH_LR_STATE_INVALID 0
#define GICH_LR_STATE_PENDING 1
#define GICH_LR_STATE_ACTIVE 2
#define GICH_LR_STATE_ACTIVE_PENDING 3
#define GICH_LR_VIRT_ID(entry) (FIELD_EX32(entry, GICH_LR0, VirtualID))
#define GICH_LR_PHYS_ID(entry) (FIELD_EX32(entry, GICH_LR0, PhysicalID))
#define GICH_LR_CPUID(entry) (FIELD_EX32(entry, GICH_LR0, CPUID))
#define GICH_LR_EOI(entry) (FIELD_EX32(entry, GICH_LR0, EOI))
#define GICH_LR_PRIORITY(entry) (FIELD_EX32(entry, GICH_LR0, Priority) << 3)
#define GICH_LR_STATE(entry) (FIELD_EX32(entry, GICH_LR0, State))
#define GICH_LR_GROUP(entry) (FIELD_EX32(entry, GICH_LR0, Grp1))
#define GICH_LR_HW(entry) (FIELD_EX32(entry, GICH_LR0, HW))
#define GICH_LR_CLEAR_PENDING(entry) \
((entry) &= ~(GICH_LR_STATE_PENDING << R_GICH_LR0_State_SHIFT))
#define GICH_LR_SET_ACTIVE(entry) \
((entry) |= (GICH_LR_STATE_ACTIVE << R_GICH_LR0_State_SHIFT))
#define GICH_LR_CLEAR_ACTIVE(entry) \
((entry) &= ~(GICH_LR_STATE_ACTIVE << R_GICH_LR0_State_SHIFT))
/* Valid bits for GICC_CTLR for GICv1, v1 with security extensions, /* Valid bits for GICC_CTLR for GICv1, v1 with security extensions,
* GICv2 and GICv2 with security extensions: * GICv2 and GICv2 with security extensions:
*/ */
@ -74,13 +161,9 @@
/* The special cases for the revision property: */ /* The special cases for the revision property: */
#define REV_11MPCORE 0 #define REV_11MPCORE 0
void gic_set_pending_private(GICState *s, int cpu, int irq);
uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs); uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs);
void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs); void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
void gic_update(GICState *s); MemTxAttrs attrs);
void gic_init_irqs_and_distributor(GICState *s);
void gic_set_priority(GICState *s, int cpu, int irq, uint8_t val,
MemTxAttrs attrs);
static inline bool gic_test_pending(GICState *s, int irq, int cm) static inline bool gic_test_pending(GICState *s, int irq, int cm)
{ {
@ -93,7 +176,148 @@ static inline bool gic_test_pending(GICState *s, int irq, int cm)
* GICD_ISPENDR to set the state pending. * GICD_ISPENDR to set the state pending.
*/ */
return (s->irq_state[irq].pending & cm) || return (s->irq_state[irq].pending & cm) ||
(!GIC_TEST_EDGE_TRIGGER(irq) && GIC_TEST_LEVEL(irq, cm)); (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_LEVEL(irq, cm));
}
}
static inline bool gic_is_vcpu(int cpu)
{
return cpu >= GIC_NCPU;
}
static inline int gic_get_vcpu_real_id(int cpu)
{
return (cpu >= GIC_NCPU) ? (cpu - GIC_NCPU) : cpu;
}
/* Return true if the given vIRQ state exists in a LR and is either active or
* pending and active.
*
* This function is used to check that a guest's `end of interrupt' or
* `interrupts deactivation' request is valid, and matches with a LR of an
* already acknowledged vIRQ (i.e. has the active bit set in its state).
*/
static inline bool gic_virq_is_valid(GICState *s, int irq, int vcpu)
{
int cpu = gic_get_vcpu_real_id(vcpu);
int lr_idx;
for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
uint32_t *entry = &s->h_lr[lr_idx][cpu];
if ((GICH_LR_VIRT_ID(*entry) == irq) &&
(GICH_LR_STATE(*entry) & GICH_LR_STATE_ACTIVE)) {
return true;
}
}
return false;
}
/* Return a pointer on the LR entry matching the given vIRQ.
*
* This function is used to retrieve an LR for which we know for sure that the
* corresponding vIRQ exists in the current context (i.e. its current state is
* not `invalid'):
* - Either the corresponding vIRQ has been validated with gic_virq_is_valid()
* so it is `active' or `active and pending',
* - Or it was pending and has been selected by gic_get_best_virq(). It is now
* `pending', `active' or `active and pending', depending on what the guest
* already did with this vIRQ.
*
* Having multiple LRs with the same VirtualID leads to UNPREDICTABLE
* behaviour in the GIC. We choose to return the first one that matches.
*/
static inline uint32_t *gic_get_lr_entry(GICState *s, int irq, int vcpu)
{
int cpu = gic_get_vcpu_real_id(vcpu);
int lr_idx;
for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
uint32_t *entry = &s->h_lr[lr_idx][cpu];
if ((GICH_LR_VIRT_ID(*entry) == irq) &&
(GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID)) {
return entry;
}
}
g_assert_not_reached();
}
static inline bool gic_test_group(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
return GICH_LR_GROUP(*entry);
} else {
return GIC_DIST_TEST_GROUP(irq, 1 << cpu);
}
}
static inline void gic_clear_pending(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
GICH_LR_CLEAR_PENDING(*entry);
} else {
/* Clear pending state for both level and edge triggered
* interrupts. (level triggered interrupts with an active line
* remain pending, see gic_test_pending)
*/
GIC_DIST_CLEAR_PENDING(irq, GIC_DIST_TEST_MODEL(irq) ? ALL_CPU_MASK
: (1 << cpu));
}
}
static inline void gic_set_active(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
GICH_LR_SET_ACTIVE(*entry);
} else {
GIC_DIST_SET_ACTIVE(irq, 1 << cpu);
}
}
static inline void gic_clear_active(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
GICH_LR_CLEAR_ACTIVE(*entry);
if (GICH_LR_HW(*entry)) {
/* Hardware interrupt. We must forward the deactivation request to
* the distributor.
*/
int phys_irq = GICH_LR_PHYS_ID(*entry);
int rcpu = gic_get_vcpu_real_id(cpu);
if (phys_irq < GIC_NR_SGIS || phys_irq >= GIC_MAXIRQ) {
/* UNPREDICTABLE behaviour, we choose to ignore the request */
return;
}
/* This is equivalent to a NS write to DIR on the physical CPU
* interface. Hence group0 interrupt deactivation is ignored if
* the GIC is secure.
*/
if (!s->security_extn || GIC_DIST_TEST_GROUP(phys_irq, 1 << rcpu)) {
GIC_DIST_CLEAR_ACTIVE(phys_irq, 1 << rcpu);
}
}
} else {
GIC_DIST_CLEAR_ACTIVE(irq, 1 << cpu);
}
}
static inline int gic_get_priority(GICState *s, int irq, int cpu)
{
if (gic_is_vcpu(cpu)) {
uint32_t *entry = gic_get_lr_entry(s, irq, cpu);
return GICH_LR_PRIORITY(*entry);
} else {
return GIC_DIST_GET_PRIORITY(irq, cpu);
} }
} }

View File

@ -92,9 +92,17 @@ aspeed_vic_write(uint64_t offset, unsigned size, uint32_t data) "To 0x%" PRIx64
gic_enable_irq(int irq) "irq %d enabled" gic_enable_irq(int irq) "irq %d enabled"
gic_disable_irq(int irq) "irq %d disabled" gic_disable_irq(int irq) "irq %d disabled"
gic_set_irq(int irq, int level, int cpumask, int target) "irq %d level %d cpumask 0x%x target 0x%x" gic_set_irq(int irq, int level, int cpumask, int target) "irq %d level %d cpumask 0x%x target 0x%x"
gic_update_bestirq(int cpu, int irq, int prio, int priority_mask, int running_priority) "cpu %d irq %d priority %d cpu priority mask %d cpu running priority %d" gic_update_bestirq(const char *s, int cpu, int irq, int prio, int priority_mask, int running_priority) "%s %d irq %d priority %d cpu priority mask %d cpu running priority %d"
gic_update_set_irq(int cpu, const char *name, int level) "cpu[%d]: %s = %d" gic_update_set_irq(int cpu, const char *name, int level) "cpu[%d]: %s = %d"
gic_acknowledge_irq(int cpu, int irq) "cpu %d acknowledged irq %d" gic_acknowledge_irq(const char *s, int cpu, int irq) "%s %d acknowledged irq %d"
gic_cpu_write(const char *s, int cpu, int addr, uint32_t val) "%s %d iface write at 0x%08x 0x%08" PRIx32
gic_cpu_read(const char *s, int cpu, int addr, uint32_t val) "%s %d iface read at 0x%08x: 0x%08" PRIx32
gic_hyp_read(int addr, uint32_t val) "hyp read at 0x%08x: 0x%08" PRIx32
gic_hyp_write(int addr, uint32_t val) "hyp write at 0x%08x: 0x%08" PRIx32
gic_dist_read(int addr, unsigned int size, uint32_t val) "dist read at 0x%08x size %u: 0x%08" PRIx32
gic_dist_write(int addr, unsigned int size, uint32_t val) "dist write at 0x%08x size %u: 0x%08" PRIx32
gic_lr_entry(int cpu, int entry, uint32_t val) "cpu %d: new lr entry %d: 0x%08" PRIx32
gic_update_maintenance_irq(int cpu, int val) "cpu %d: maintenance = %d"
# hw/intc/arm_gicv3_cpuif.c # hw/intc/arm_gicv3_cpuif.c
gicv3_icc_pmr_read(uint32_t cpu, uint64_t val) "GICv3 ICC_PMR read cpu 0x%x value 0x%" PRIx64 gicv3_icc_pmr_read(uint32_t cpu, uint64_t val) "GICv3 ICC_PMR read cpu 0x%x value 0x%" PRIx64

View File

@ -502,8 +502,6 @@ hwaddr memory_region_section_get_iotlb(CPUState *cpu,
hwaddr paddr, hwaddr xlat, hwaddr paddr, hwaddr xlat,
int prot, int prot,
target_ulong *address); target_ulong *address);
bool memory_region_is_unassigned(MemoryRegion *mr);
#endif #endif
/* vl.c */ /* vl.c */

View File

@ -42,7 +42,7 @@
#define NUM_VIRTIO_TRANSPORTS 32 #define NUM_VIRTIO_TRANSPORTS 32
#define NUM_SMMU_IRQS 4 #define NUM_SMMU_IRQS 4
#define ARCH_GICV3_MAINT_IRQ 9 #define ARCH_GIC_MAINT_IRQ 9
#define ARCH_TIMER_VIRT_IRQ 11 #define ARCH_TIMER_VIRT_IRQ 11
#define ARCH_TIMER_S_EL1_IRQ 13 #define ARCH_TIMER_S_EL1_IRQ 13
@ -60,6 +60,8 @@ enum {
VIRT_GIC_DIST, VIRT_GIC_DIST,
VIRT_GIC_CPU, VIRT_GIC_CPU,
VIRT_GIC_V2M, VIRT_GIC_V2M,
VIRT_GIC_HYP,
VIRT_GIC_VCPU,
VIRT_GIC_ITS, VIRT_GIC_ITS,
VIRT_GIC_REDIST, VIRT_GIC_REDIST,
VIRT_GIC_REDIST2, VIRT_GIC_REDIST2,

View File

@ -53,7 +53,7 @@
#define XLNX_ZYNQMP_OCM_RAM_0_ADDRESS 0xFFFC0000 #define XLNX_ZYNQMP_OCM_RAM_0_ADDRESS 0xFFFC0000
#define XLNX_ZYNQMP_OCM_RAM_SIZE 0x10000 #define XLNX_ZYNQMP_OCM_RAM_SIZE 0x10000
#define XLNX_ZYNQMP_GIC_REGIONS 2 #define XLNX_ZYNQMP_GIC_REGIONS 6
/* ZynqMP maps the ARM GIC regions (GICC, GICD ...) at consecutive 64k offsets /* ZynqMP maps the ARM GIC regions (GICC, GICD ...) at consecutive 64k offsets
* and under-decodes the 64k region. This mirrors the 4k regions to every 4k * and under-decodes the 64k region. This mirrors the 4k regions to every 4k
@ -62,7 +62,7 @@
*/ */
#define XLNX_ZYNQMP_GIC_REGION_SIZE 0x1000 #define XLNX_ZYNQMP_GIC_REGION_SIZE 0x1000
#define XLNX_ZYNQMP_GIC_ALIASES (0x10000 / XLNX_ZYNQMP_GIC_REGION_SIZE - 1) #define XLNX_ZYNQMP_GIC_ALIASES (0x10000 / XLNX_ZYNQMP_GIC_REGION_SIZE)
#define XLNX_ZYNQMP_MAX_LOW_RAM_SIZE 0x80000000ull #define XLNX_ZYNQMP_MAX_LOW_RAM_SIZE 0x80000000ull

View File

@ -30,6 +30,8 @@
#define GIC_NR_SGIS 16 #define GIC_NR_SGIS 16
/* Maximum number of possible CPU interfaces, determined by GIC architecture */ /* Maximum number of possible CPU interfaces, determined by GIC architecture */
#define GIC_NCPU 8 #define GIC_NCPU 8
/* Maximum number of possible CPU interfaces with their respective vCPU */
#define GIC_NCPU_VCPU (GIC_NCPU * 2)
#define MAX_NR_GROUP_PRIO 128 #define MAX_NR_GROUP_PRIO 128
#define GIC_NR_APRS (MAX_NR_GROUP_PRIO / 32) #define GIC_NR_APRS (MAX_NR_GROUP_PRIO / 32)
@ -37,6 +39,17 @@
#define GIC_MIN_BPR 0 #define GIC_MIN_BPR 0
#define GIC_MIN_ABPR (GIC_MIN_BPR + 1) #define GIC_MIN_ABPR (GIC_MIN_BPR + 1)
/* Architectural maximum number of list registers in the virtual interface */
#define GIC_MAX_LR 64
/* Only 32 priority levels and 32 preemption levels in the vCPU interfaces */
#define GIC_VIRT_MAX_GROUP_PRIO_BITS 5
#define GIC_VIRT_MAX_NR_GROUP_PRIO (1 << GIC_VIRT_MAX_GROUP_PRIO_BITS)
#define GIC_VIRT_NR_APRS (GIC_VIRT_MAX_NR_GROUP_PRIO / 32)
#define GIC_VIRT_MIN_BPR 2
#define GIC_VIRT_MIN_ABPR (GIC_VIRT_MIN_BPR + 1)
typedef struct gic_irq_state { typedef struct gic_irq_state {
/* The enable bits are only banked for per-cpu interrupts. */ /* The enable bits are only banked for per-cpu interrupts. */
uint8_t enabled; uint8_t enabled;
@ -57,6 +70,8 @@ typedef struct GICState {
qemu_irq parent_fiq[GIC_NCPU]; qemu_irq parent_fiq[GIC_NCPU];
qemu_irq parent_virq[GIC_NCPU]; qemu_irq parent_virq[GIC_NCPU];
qemu_irq parent_vfiq[GIC_NCPU]; qemu_irq parent_vfiq[GIC_NCPU];
qemu_irq maintenance_irq[GIC_NCPU];
/* GICD_CTLR; for a GIC with the security extensions the NS banked version /* GICD_CTLR; for a GIC with the security extensions the NS banked version
* of this register is just an alias of bit 1 of the S banked version. * of this register is just an alias of bit 1 of the S banked version.
*/ */
@ -64,7 +79,7 @@ typedef struct GICState {
/* GICC_CTLR; again, the NS banked version is just aliases of bits of /* GICC_CTLR; again, the NS banked version is just aliases of bits of
* the S banked register, so our state only needs to store the S version. * the S banked register, so our state only needs to store the S version.
*/ */
uint32_t cpu_ctlr[GIC_NCPU]; uint32_t cpu_ctlr[GIC_NCPU_VCPU];
gic_irq_state irq_state[GIC_MAXIRQ]; gic_irq_state irq_state[GIC_MAXIRQ];
uint8_t irq_target[GIC_MAXIRQ]; uint8_t irq_target[GIC_MAXIRQ];
@ -78,9 +93,9 @@ typedef struct GICState {
*/ */
uint8_t sgi_pending[GIC_NR_SGIS][GIC_NCPU]; uint8_t sgi_pending[GIC_NR_SGIS][GIC_NCPU];
uint16_t priority_mask[GIC_NCPU]; uint16_t priority_mask[GIC_NCPU_VCPU];
uint16_t running_priority[GIC_NCPU]; uint16_t running_priority[GIC_NCPU_VCPU];
uint16_t current_pending[GIC_NCPU]; uint16_t current_pending[GIC_NCPU_VCPU];
/* If we present the GICv2 without security extensions to a guest, /* If we present the GICv2 without security extensions to a guest,
* the guest can configure the GICC_CTLR to configure group 1 binary point * the guest can configure the GICC_CTLR to configure group 1 binary point
@ -88,8 +103,8 @@ typedef struct GICState {
* For a GIC with Security Extensions we use use bpr for the * For a GIC with Security Extensions we use use bpr for the
* secure copy and abpr as storage for the non-secure copy of the register. * secure copy and abpr as storage for the non-secure copy of the register.
*/ */
uint8_t bpr[GIC_NCPU]; uint8_t bpr[GIC_NCPU_VCPU];
uint8_t abpr[GIC_NCPU]; uint8_t abpr[GIC_NCPU_VCPU];
/* The APR is implementation defined, so we choose a layout identical to /* The APR is implementation defined, so we choose a layout identical to
* the KVM ABI layout for QEMU's implementation of the gic: * the KVM ABI layout for QEMU's implementation of the gic:
@ -100,6 +115,15 @@ typedef struct GICState {
uint32_t apr[GIC_NR_APRS][GIC_NCPU]; uint32_t apr[GIC_NR_APRS][GIC_NCPU];
uint32_t nsapr[GIC_NR_APRS][GIC_NCPU]; uint32_t nsapr[GIC_NR_APRS][GIC_NCPU];
/* Virtual interface control registers */
uint32_t h_hcr[GIC_NCPU];
uint32_t h_misr[GIC_NCPU];
uint32_t h_lr[GIC_MAX_LR][GIC_NCPU];
uint32_t h_apr[GIC_NCPU];
/* Number of LRs implemented in this GIC instance */
uint32_t num_lrs;
uint32_t num_cpu; uint32_t num_cpu;
MemoryRegion iomem; /* Distributor */ MemoryRegion iomem; /* Distributor */
@ -108,9 +132,13 @@ typedef struct GICState {
*/ */
struct GICState *backref[GIC_NCPU]; struct GICState *backref[GIC_NCPU];
MemoryRegion cpuiomem[GIC_NCPU + 1]; /* CPU interfaces */ MemoryRegion cpuiomem[GIC_NCPU + 1]; /* CPU interfaces */
MemoryRegion vifaceiomem[GIC_NCPU + 1]; /* Virtual interfaces */
MemoryRegion vcpuiomem; /* vCPU interface */
uint32_t num_irq; uint32_t num_irq;
uint32_t revision; uint32_t revision;
bool security_extn; bool security_extn;
bool virt_extn;
bool irq_reset_nonsecure; /* configure IRQs as group 1 (NS) on reset? */ bool irq_reset_nonsecure; /* configure IRQs as group 1 (NS) on reset? */
int dev_fd; /* kvm device fd if backed by kvm vgic support */ int dev_fd; /* kvm device fd if backed by kvm vgic support */
Error *migration_blocker; Error *migration_blocker;
@ -134,6 +162,7 @@ typedef struct ARMGICCommonClass {
} ARMGICCommonClass; } ARMGICCommonClass;
void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler, void gic_init_irqs_and_mmio(GICState *s, qemu_irq_handler handler,
const MemoryRegionOps *ops); const MemoryRegionOps *ops,
const MemoryRegionOps *virt_ops);
#endif #endif

View File

@ -57,6 +57,7 @@ typedef struct NVICState {
VecInfo sec_vectors[NVIC_INTERNAL_VECTORS]; VecInfo sec_vectors[NVIC_INTERNAL_VECTORS];
/* The PRIGROUP field in AIRCR is banked */ /* The PRIGROUP field in AIRCR is banked */
uint32_t prigroup[M_REG_NUM_BANKS]; uint32_t prigroup[M_REG_NUM_BANKS];
uint8_t num_prio_bits;
/* v8M NVIC_ITNS state (stored as a bool per bit) */ /* v8M NVIC_ITNS state (stored as a bool per bit) */
bool itns[NVIC_MAX_VECTORS]; bool itns[NVIC_MAX_VECTORS];

View File

@ -923,6 +923,9 @@ extern const VMStateInfo vmstate_info_qtailq;
#define VMSTATE_UINT16_ARRAY(_f, _s, _n) \ #define VMSTATE_UINT16_ARRAY(_f, _s, _n) \
VMSTATE_UINT16_ARRAY_V(_f, _s, _n, 0) VMSTATE_UINT16_ARRAY_V(_f, _s, _n, 0)
#define VMSTATE_UINT16_SUB_ARRAY(_f, _s, _start, _num) \
VMSTATE_SUB_ARRAY(_f, _s, _start, _num, 0, vmstate_info_uint16, uint16_t)
#define VMSTATE_UINT16_2DARRAY(_f, _s, _n1, _n2) \ #define VMSTATE_UINT16_2DARRAY(_f, _s, _n1, _n2) \
VMSTATE_UINT16_2DARRAY_V(_f, _s, _n1, _n2, 0) VMSTATE_UINT16_2DARRAY_V(_f, _s, _n1, _n2, 0)

View File

@ -386,6 +386,12 @@ struct CPUState {
*/ */
uintptr_t mem_io_pc; uintptr_t mem_io_pc;
vaddr mem_io_vaddr; vaddr mem_io_vaddr;
/*
* This is only needed for the legacy cpu_unassigned_access() hook;
* when all targets using it have been converted to use
* cpu_transaction_failed() instead it can be removed.
*/
MMUAccessType mem_io_access_type;
int kvm_fd; int kvm_fd;
struct KVMState *kvm_state; struct KVMState *kvm_state;

View File

@ -1249,7 +1249,8 @@ static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
printf("Unassigned mem read " TARGET_FMT_plx "\n", addr); printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif #endif
if (current_cpu != NULL) { if (current_cpu != NULL) {
cpu_unassigned_access(current_cpu, addr, false, false, 0, size); bool is_exec = current_cpu->mem_io_access_type == MMU_INST_FETCH;
cpu_unassigned_access(current_cpu, addr, false, is_exec, 0, size);
} }
return 0; return 0;
} }

View File

@ -231,6 +231,10 @@ static void arm_cpu_reset(CPUState *s)
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK; env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK; env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
} }
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
}
/* Unlike A/R profile, M profile defines the reset LR value */ /* Unlike A/R profile, M profile defines the reset LR value */
env->regs[14] = 0xffffffff; env->regs[14] = 0xffffffff;

View File

@ -1229,6 +1229,12 @@ static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
#define HCR_RW (1ULL << 31) #define HCR_RW (1ULL << 31)
#define HCR_CD (1ULL << 32) #define HCR_CD (1ULL << 32)
#define HCR_ID (1ULL << 33) #define HCR_ID (1ULL << 33)
#define HCR_E2H (1ULL << 34)
/*
* When we actually implement ARMv8.1-VHE we should add HCR_E2H to
* HCR_MASK and then clear it again if the feature bit is not set in
* hcr_write().
*/
#define HCR_MASK ((1ULL << 34) - 1) #define HCR_MASK ((1ULL << 34) - 1)
#define SCR_NS (1U << 0) #define SCR_NS (1U << 0)
@ -2234,6 +2240,54 @@ bool write_cpustate_to_list(ARMCPU *cpu);
# define TARGET_VIRT_ADDR_SPACE_BITS 32 # define TARGET_VIRT_ADDR_SPACE_BITS 32
#endif #endif
/**
* arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
* Depending on the values of HCR_EL2.E2H and TGE, this may be
* "behaves as 1 for all purposes other than direct read/write" or
* "behaves as 0 for all purposes other than direct read/write"
*/
static inline bool arm_hcr_el2_imo(CPUARMState *env)
{
switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
case HCR_TGE:
return true;
case HCR_TGE | HCR_E2H:
return false;
default:
return env->cp15.hcr_el2 & HCR_IMO;
}
}
/**
* arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
*/
static inline bool arm_hcr_el2_fmo(CPUARMState *env)
{
switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
case HCR_TGE:
return true;
case HCR_TGE | HCR_E2H:
return false;
default:
return env->cp15.hcr_el2 & HCR_FMO;
}
}
/**
* arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
*/
static inline bool arm_hcr_el2_amo(CPUARMState *env)
{
switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
case HCR_TGE:
return true;
case HCR_TGE | HCR_E2H:
return false;
default:
return env->cp15.hcr_el2 & HCR_AMO;
}
}
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx, static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
unsigned int target_el) unsigned int target_el)
{ {
@ -2261,13 +2315,13 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
break; break;
case EXCP_VFIQ: case EXCP_VFIQ:
if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) { if (secure || !arm_hcr_el2_fmo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
/* VFIQs are only taken when hypervized and non-secure. */ /* VFIQs are only taken when hypervized and non-secure. */
return false; return false;
} }
return !(env->daif & PSTATE_F); return !(env->daif & PSTATE_F);
case EXCP_VIRQ: case EXCP_VIRQ:
if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) { if (secure || !arm_hcr_el2_imo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
/* VIRQs are only taken when hypervized and non-secure. */ /* VIRQs are only taken when hypervized and non-secure. */
return false; return false;
} }
@ -2306,7 +2360,7 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
* to the CPSR.F setting otherwise we further assess the state * to the CPSR.F setting otherwise we further assess the state
* below. * below.
*/ */
hcr = (env->cp15.hcr_el2 & HCR_FMO); hcr = arm_hcr_el2_fmo(env);
scr = (env->cp15.scr_el3 & SCR_FIQ); scr = (env->cp15.scr_el3 & SCR_FIQ);
/* When EL3 is 32-bit, the SCR.FW bit controls whether the /* When EL3 is 32-bit, the SCR.FW bit controls whether the
@ -2323,7 +2377,7 @@ static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
* when setting the target EL, so it does not have a further * when setting the target EL, so it does not have a further
* affect here. * affect here.
*/ */
hcr = (env->cp15.hcr_el2 & HCR_IMO); hcr = arm_hcr_el2_imo(env);
scr = false; scr = false;
break; break;
default: default:

View File

@ -444,9 +444,11 @@ static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread) bool isread)
{ {
int el = arm_current_el(env); int el = arm_current_el(env);
bool mdcr_el2_tdosa = (env->cp15.mdcr_el2 & MDCR_TDOSA) ||
(env->cp15.mdcr_el2 & MDCR_TDE) ||
(env->cp15.hcr_el2 & HCR_TGE);
if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDOSA) if (el < 2 && mdcr_el2_tdosa && !arm_is_secure_below_el3(env)) {
&& !arm_is_secure_below_el3(env)) {
return CP_ACCESS_TRAP_EL2; return CP_ACCESS_TRAP_EL2;
} }
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) { if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
@ -462,9 +464,11 @@ static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread) bool isread)
{ {
int el = arm_current_el(env); int el = arm_current_el(env);
bool mdcr_el2_tdra = (env->cp15.mdcr_el2 & MDCR_TDRA) ||
(env->cp15.mdcr_el2 & MDCR_TDE) ||
(env->cp15.hcr_el2 & HCR_TGE);
if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDRA) if (el < 2 && mdcr_el2_tdra && !arm_is_secure_below_el3(env)) {
&& !arm_is_secure_below_el3(env)) {
return CP_ACCESS_TRAP_EL2; return CP_ACCESS_TRAP_EL2;
} }
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
@ -480,9 +484,11 @@ static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
bool isread) bool isread)
{ {
int el = arm_current_el(env); int el = arm_current_el(env);
bool mdcr_el2_tda = (env->cp15.mdcr_el2 & MDCR_TDA) ||
(env->cp15.mdcr_el2 & MDCR_TDE) ||
(env->cp15.hcr_el2 & HCR_TGE);
if (el < 2 && (env->cp15.mdcr_el2 & MDCR_TDA) if (el < 2 && mdcr_el2_tda && !arm_is_secure_below_el3(env)) {
&& !arm_is_secure_below_el3(env)) {
return CP_ACCESS_TRAP_EL2; return CP_ACCESS_TRAP_EL2;
} }
if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) { if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
@ -6330,15 +6336,15 @@ uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
switch (excp_idx) { switch (excp_idx) {
case EXCP_IRQ: case EXCP_IRQ:
scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ); scr = ((env->cp15.scr_el3 & SCR_IRQ) == SCR_IRQ);
hcr = ((env->cp15.hcr_el2 & HCR_IMO) == HCR_IMO); hcr = arm_hcr_el2_imo(env);
break; break;
case EXCP_FIQ: case EXCP_FIQ:
scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ); scr = ((env->cp15.scr_el3 & SCR_FIQ) == SCR_FIQ);
hcr = ((env->cp15.hcr_el2 & HCR_FMO) == HCR_FMO); hcr = arm_hcr_el2_fmo(env);
break; break;
default: default:
scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA); scr = ((env->cp15.scr_el3 & SCR_EA) == SCR_EA);
hcr = ((env->cp15.hcr_el2 & HCR_AMO) == HCR_AMO); hcr = arm_hcr_el2_amo(env);
break; break;
}; };
@ -6834,6 +6840,8 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
bool push_failed = false; bool push_failed = false;
armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure); armv7m_nvic_get_pending_irq_info(env->nvic, &exc, &targets_secure);
qemu_log_mask(CPU_LOG_INT, "...taking pending %s exception %d\n",
targets_secure ? "secure" : "nonsecure", exc);
if (arm_feature(env, ARM_FEATURE_V8)) { if (arm_feature(env, ARM_FEATURE_V8)) {
if (arm_feature(env, ARM_FEATURE_M_SECURITY) && if (arm_feature(env, ARM_FEATURE_M_SECURITY) &&
@ -6907,12 +6915,15 @@ static void v7m_exception_taken(ARMCPU *cpu, uint32_t lr, bool dotailchain,
* we might now want to take a different exception which * we might now want to take a different exception which
* targets a different security state, so try again from the top. * targets a different security state, so try again from the top.
*/ */
qemu_log_mask(CPU_LOG_INT,
"...derived exception on callee-saves register stacking");
v7m_exception_taken(cpu, lr, true, true); v7m_exception_taken(cpu, lr, true, true);
return; return;
} }
if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) { if (!arm_v7m_load_vector(cpu, exc, targets_secure, &addr)) {
/* Vector load failed: derived exception */ /* Vector load failed: derived exception */
qemu_log_mask(CPU_LOG_INT, "...derived exception on vector table load");
v7m_exception_taken(cpu, lr, true, true); v7m_exception_taken(cpu, lr, true, true);
return; return;
} }
@ -7041,6 +7052,7 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
/* For all other purposes, treat ES as 0 (R_HXSR) */ /* For all other purposes, treat ES as 0 (R_HXSR) */
excret &= ~R_V7M_EXCRET_ES_MASK; excret &= ~R_V7M_EXCRET_ES_MASK;
} }
exc_secure = excret & R_V7M_EXCRET_ES_MASK;
} }
if (env->v7m.exception != ARMV7M_EXCP_NMI) { if (env->v7m.exception != ARMV7M_EXCP_NMI) {
@ -7051,7 +7063,6 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
* which security state's faultmask to clear. (v8M ARM ARM R_KBNF.) * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
*/ */
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) { if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
exc_secure = excret & R_V7M_EXCRET_ES_MASK;
if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) { if (armv7m_nvic_raw_execution_priority(env->nvic) >= 0) {
env->v7m.faultmask[exc_secure] = 0; env->v7m.faultmask[exc_secure] = 0;
} }
@ -7120,12 +7131,22 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
} }
} }
/*
* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
* Handler mode (and will be until we write the new XPSR.Interrupt
* field) this does not switch around the current stack pointer.
* We must do this before we do any kind of tailchaining, including
* for the derived exceptions on integrity check failures, or we will
* give the guest an incorrect EXCRET.SPSEL value on exception entry.
*/
write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure);
if (sfault) { if (sfault) {
env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK; env->v7m.sfsr |= R_V7M_SFSR_INVER_MASK;
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
v7m_exception_taken(cpu, excret, true, false);
qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
"stackframe: failed EXC_RETURN.ES validity check\n"); "stackframe: failed EXC_RETURN.ES validity check\n");
v7m_exception_taken(cpu, excret, true, false);
return; return;
} }
@ -7135,17 +7156,27 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
*/ */
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure); armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, env->v7m.secure);
v7m_exception_taken(cpu, excret, true, false);
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
"stackframe: failed exception return integrity check\n"); "stackframe: failed exception return integrity check\n");
v7m_exception_taken(cpu, excret, true, false);
return; return;
} }
/* Set CONTROL.SPSEL from excret.SPSEL. Since we're still in /*
* Handler mode (and will be until we write the new XPSR.Interrupt * Tailchaining: if there is currently a pending exception that
* field) this does not switch around the current stack pointer. * is high enough priority to preempt execution at the level we're
* about to return to, then just directly take that exception now,
* avoiding an unstack-and-then-stack. Note that now we have
* deactivated the previous exception by calling armv7m_nvic_complete_irq()
* our current execution priority is already the execution priority we are
* returning to -- none of the state we would unstack or set based on
* the EXCRET value affects it.
*/ */
write_v7m_control_spsel_for_secstate(env, return_to_sp_process, exc_secure); if (armv7m_nvic_can_take_pending_exception(env->nvic)) {
qemu_log_mask(CPU_LOG_INT, "...tailchaining to pending exception\n");
v7m_exception_taken(cpu, excret, true, false);
return;
}
switch_v7m_security_state(env, return_to_secure); switch_v7m_security_state(env, return_to_secure);
@ -7192,10 +7223,10 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
/* Take a SecureFault on the current stack */ /* Take a SecureFault on the current stack */
env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK; env->v7m.sfsr |= R_V7M_SFSR_INVIS_MASK;
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false); armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_SECURE, false);
v7m_exception_taken(cpu, excret, true, false);
qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing " qemu_log_mask(CPU_LOG_INT, "...taking SecureFault on existing "
"stackframe: failed exception return integrity " "stackframe: failed exception return integrity "
"signature check\n"); "signature check\n");
v7m_exception_taken(cpu, excret, true, false);
return; return;
} }
@ -7228,6 +7259,7 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
/* v7m_stack_read() pended a fault, so take it (as a tail /* v7m_stack_read() pended a fault, so take it (as a tail
* chained exception on the same stack frame) * chained exception on the same stack frame)
*/ */
qemu_log_mask(CPU_LOG_INT, "...derived exception on unstacking\n");
v7m_exception_taken(cpu, excret, true, false); v7m_exception_taken(cpu, excret, true, false);
return; return;
} }
@ -7264,10 +7296,10 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE,
env->v7m.secure); env->v7m.secure);
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
v7m_exception_taken(cpu, excret, true, false);
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing " qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on existing "
"stackframe: failed exception return integrity " "stackframe: failed exception return integrity "
"check\n"); "check\n");
v7m_exception_taken(cpu, excret, true, false);
return; return;
} }
} }
@ -7303,9 +7335,9 @@ static void do_v7m_exception_exit(ARMCPU *cpu)
armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false); armv7m_nvic_set_pending(env->nvic, ARMV7M_EXCP_USAGE, false);
env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK; env->v7m.cfsr[env->v7m.secure] |= R_V7M_CFSR_INVPC_MASK;
ignore_stackfaults = v7m_push_stack(cpu); ignore_stackfaults = v7m_push_stack(cpu);
v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: " qemu_log_mask(CPU_LOG_INT, "...taking UsageFault on new stackframe: "
"failed exception return integrity check\n"); "failed exception return integrity check\n");
v7m_exception_taken(cpu, excret, false, ignore_stackfaults);
return; return;
} }
@ -7721,7 +7753,6 @@ void arm_v7m_cpu_do_interrupt(CPUState *cs)
ignore_stackfaults = v7m_push_stack(cpu); ignore_stackfaults = v7m_push_stack(cpu);
v7m_exception_taken(cpu, lr, false, ignore_stackfaults); v7m_exception_taken(cpu, lr, false, ignore_stackfaults);
qemu_log_mask(CPU_LOG_INT, "... as %d\n", env->v7m.exception);
} }
/* Function used to synchronize QEMU's AArch64 register set with AArch32 /* Function used to synchronize QEMU's AArch64 register set with AArch32
@ -8390,6 +8421,14 @@ static inline bool regime_translation_disabled(CPUARMState *env,
if (mmu_idx == ARMMMUIdx_S2NS) { if (mmu_idx == ARMMMUIdx_S2NS) {
return (env->cp15.hcr_el2 & HCR_VM) == 0; return (env->cp15.hcr_el2 & HCR_VM) == 0;
} }
if (env->cp15.hcr_el2 & HCR_TGE) {
/* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
return true;
}
}
return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0; return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
} }
@ -9795,17 +9834,6 @@ static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
fi->type = ARMFault_Permission; fi->type = ARMFault_Permission;
fi->level = 1; fi->level = 1;
/*
* Core QEMU code can't handle execution from small pages yet, so
* don't try it. This way we'll get an MPU exception, rather than
* eventually causing QEMU to exit in get_page_addr_code().
*/
if (*page_size < TARGET_PAGE_SIZE && (*prot & PAGE_EXEC)) {
qemu_log_mask(LOG_UNIMP,
"MPU: No support for execution from regions "
"smaller than 1K\n");
*prot &= ~PAGE_EXEC;
}
return !(*prot & (1 << access_type)); return !(*prot & (1 << access_type));
} }
@ -10056,18 +10084,6 @@ static bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
fi->type = ARMFault_Permission; fi->type = ARMFault_Permission;
fi->level = 1; fi->level = 1;
/*
* Core QEMU code can't handle execution from small pages yet, so
* don't try it. This means any attempted execution will generate
* an MPU exception, rather than eventually causing QEMU to exit in
* get_page_addr_code().
*/
if (*is_subpage && (*prot & PAGE_EXEC)) {
qemu_log_mask(LOG_UNIMP,
"MPU: No support for execution from regions "
"smaller than 1K\n");
*prot &= ~PAGE_EXEC;
}
return !(*prot & (1 << access_type)); return !(*prot & (1 << access_type));
} }
@ -10710,13 +10726,13 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
env->v7m.primask[M_REG_NS] = val & 1; env->v7m.primask[M_REG_NS] = val & 1;
return; return;
case 0x91: /* BASEPRI_NS */ case 0x91: /* BASEPRI_NS */
if (!env->v7m.secure) { if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
return; return;
} }
env->v7m.basepri[M_REG_NS] = val & 0xff; env->v7m.basepri[M_REG_NS] = val & 0xff;
return; return;
case 0x93: /* FAULTMASK_NS */ case 0x93: /* FAULTMASK_NS */
if (!env->v7m.secure) { if (!env->v7m.secure || !arm_feature(env, ARM_FEATURE_M_MAIN)) {
return; return;
} }
env->v7m.faultmask[M_REG_NS] = val & 1; env->v7m.faultmask[M_REG_NS] = val & 1;
@ -10728,8 +10744,10 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
write_v7m_control_spsel_for_secstate(env, write_v7m_control_spsel_for_secstate(env,
val & R_V7M_CONTROL_SPSEL_MASK, val & R_V7M_CONTROL_SPSEL_MASK,
M_REG_NS); M_REG_NS);
env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK; if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK; env->v7m.control[M_REG_NS] &= ~R_V7M_CONTROL_NPRIV_MASK;
env->v7m.control[M_REG_NS] |= val & R_V7M_CONTROL_NPRIV_MASK;
}
return; return;
case 0x98: /* SP_NS */ case 0x98: /* SP_NS */
{ {
@ -10798,9 +10816,15 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
env->v7m.primask[env->v7m.secure] = val & 1; env->v7m.primask[env->v7m.secure] = val & 1;
break; break;
case 17: /* BASEPRI */ case 17: /* BASEPRI */
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
goto bad_reg;
}
env->v7m.basepri[env->v7m.secure] = val & 0xff; env->v7m.basepri[env->v7m.secure] = val & 0xff;
break; break;
case 18: /* BASEPRI_MAX */ case 18: /* BASEPRI_MAX */
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
goto bad_reg;
}
val &= 0xff; val &= 0xff;
if (val != 0 && (val < env->v7m.basepri[env->v7m.secure] if (val != 0 && (val < env->v7m.basepri[env->v7m.secure]
|| env->v7m.basepri[env->v7m.secure] == 0)) { || env->v7m.basepri[env->v7m.secure] == 0)) {
@ -10808,6 +10832,9 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
} }
break; break;
case 19: /* FAULTMASK */ case 19: /* FAULTMASK */
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
goto bad_reg;
}
env->v7m.faultmask[env->v7m.secure] = val & 1; env->v7m.faultmask[env->v7m.secure] = val & 1;
break; break;
case 20: /* CONTROL */ case 20: /* CONTROL */
@ -10822,8 +10849,10 @@ void HELPER(v7m_msr)(CPUARMState *env, uint32_t maskreg, uint32_t val)
!arm_v7m_is_handler_mode(env)) { !arm_v7m_is_handler_mode(env)) {
write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0); write_v7m_control_spsel(env, (val & R_V7M_CONTROL_SPSEL_MASK) != 0);
} }
env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK; if (arm_feature(env, ARM_FEATURE_M_MAIN)) {
env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK; env->v7m.control[env->v7m.secure] &= ~R_V7M_CONTROL_NPRIV_MASK;
env->v7m.control[env->v7m.secure] |= val & R_V7M_CONTROL_NPRIV_MASK;
}
break; break;
default: default:
bad_reg: bad_reg:

View File

@ -33,6 +33,20 @@ static void raise_exception(CPUARMState *env, uint32_t excp,
{ {
CPUState *cs = CPU(arm_env_get_cpu(env)); CPUState *cs = CPU(arm_env_get_cpu(env));
if ((env->cp15.hcr_el2 & HCR_TGE) &&
target_el == 1 && !arm_is_secure(env)) {
/*
* Redirect NS EL1 exceptions to NS EL2. These are reported with
* their original syndrome register value, with the exception of
* SIMD/FP access traps, which are reported as uncategorized
* (see DDI0478C.a D1.10.4)
*/
target_el = 2;
if (syndrome >> ARM_EL_EC_SHIFT == EC_ADVSIMDFPACCESSTRAP) {
syndrome = syn_uncategorized();
}
}
assert(!excp_is_internal(excp)); assert(!excp_is_internal(excp));
cs->exception_index = excp; cs->exception_index = excp;
env->exception.syndrome = syndrome; env->exception.syndrome = syndrome;

View File

@ -1042,7 +1042,7 @@ void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc)
uint64_t *d = vd, *n = vn; uint64_t *d = vd, *n = vn;
uint8_t *pg = vg; uint8_t *pg = vg;
for (i = 0; i < opr_sz; i += 1) { for (i = 0; i < opr_sz; i += 1) {
d[i] = n[1] & -(uint64_t)(pg[H1(i)] & 1); d[i] = n[i] & -(uint64_t)(pg[H1(i)] & 1);
} }
} }
@ -2436,13 +2436,13 @@ uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
#define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \ #define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \
DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull) DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull)
DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, uint8_t, uint64_t, ==) DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, int8_t, uint64_t, ==)
DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, uint16_t, uint64_t, ==) DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, int16_t, uint64_t, ==)
DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, uint32_t, uint64_t, ==) DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, int32_t, uint64_t, ==)
DO_CMP_PPZW_B(sve_cmpne_ppzw_b, uint8_t, uint64_t, !=) DO_CMP_PPZW_B(sve_cmpne_ppzw_b, int8_t, uint64_t, !=)
DO_CMP_PPZW_H(sve_cmpne_ppzw_h, uint16_t, uint64_t, !=) DO_CMP_PPZW_H(sve_cmpne_ppzw_h, int16_t, uint64_t, !=)
DO_CMP_PPZW_S(sve_cmpne_ppzw_s, uint32_t, uint64_t, !=) DO_CMP_PPZW_S(sve_cmpne_ppzw_s, int32_t, uint64_t, !=)
DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >) DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t, int64_t, >)
DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >) DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t, int64_t, >)
@ -2846,11 +2846,6 @@ uint32_t HELPER(sve_while)(void *vd, uint32_t count, uint32_t pred_desc)
return flags; return flags;
} }
/* Scale from predicate element count to bits. */
count <<= esz;
/* Bound to the bits in the predicate. */
count = MIN(count, oprsz * 8);
/* Set all of the requested bits. */ /* Set all of the requested bits. */
for (i = 0; i < count / 64; ++i) { for (i = 0; i < count / 64; ++i) {
d->p[i] = esz_mask; d->p[i] = esz_mask;

View File

@ -1625,7 +1625,7 @@ static void do_sat_addsub_64(TCGv_i64 reg, TCGv_i64 val, bool u, bool d)
/* Detect signed overflow for subtraction. */ /* Detect signed overflow for subtraction. */
tcg_gen_xor_i64(t0, reg, val); tcg_gen_xor_i64(t0, reg, val);
tcg_gen_sub_i64(t1, reg, val); tcg_gen_sub_i64(t1, reg, val);
tcg_gen_xor_i64(reg, reg, t0); tcg_gen_xor_i64(reg, reg, t1);
tcg_gen_and_i64(t0, t0, reg); tcg_gen_and_i64(t0, t0, reg);
/* Bound the result. */ /* Bound the result. */
@ -3173,19 +3173,19 @@ static bool trans_CTERM(DisasContext *s, arg_CTERM *a, uint32_t insn)
static bool trans_WHILE(DisasContext *s, arg_WHILE *a, uint32_t insn) static bool trans_WHILE(DisasContext *s, arg_WHILE *a, uint32_t insn)
{ {
if (!sve_access_check(s)) { TCGv_i64 op0, op1, t0, t1, tmax;
return true;
}
TCGv_i64 op0 = read_cpu_reg(s, a->rn, 1);
TCGv_i64 op1 = read_cpu_reg(s, a->rm, 1);
TCGv_i64 t0 = tcg_temp_new_i64();
TCGv_i64 t1 = tcg_temp_new_i64();
TCGv_i32 t2, t3; TCGv_i32 t2, t3;
TCGv_ptr ptr; TCGv_ptr ptr;
unsigned desc, vsz = vec_full_reg_size(s); unsigned desc, vsz = vec_full_reg_size(s);
TCGCond cond; TCGCond cond;
if (!sve_access_check(s)) {
return true;
}
op0 = read_cpu_reg(s, a->rn, 1);
op1 = read_cpu_reg(s, a->rm, 1);
if (!a->sf) { if (!a->sf) {
if (a->u) { if (a->u) {
tcg_gen_ext32u_i64(op0, op0); tcg_gen_ext32u_i64(op0, op0);
@ -3198,32 +3198,47 @@ static bool trans_WHILE(DisasContext *s, arg_WHILE *a, uint32_t insn)
/* For the helper, compress the different conditions into a computation /* For the helper, compress the different conditions into a computation
* of how many iterations for which the condition is true. * of how many iterations for which the condition is true.
*
* This is slightly complicated by 0 <= UINT64_MAX, which is nominally
* 2**64 iterations, overflowing to 0. Of course, predicate registers
* aren't that large, so any value >= predicate size is sufficient.
*/ */
t0 = tcg_temp_new_i64();
t1 = tcg_temp_new_i64();
tcg_gen_sub_i64(t0, op1, op0); tcg_gen_sub_i64(t0, op1, op0);
/* t0 = MIN(op1 - op0, vsz). */ tmax = tcg_const_i64(vsz >> a->esz);
tcg_gen_movi_i64(t1, vsz);
tcg_gen_umin_i64(t0, t0, t1);
if (a->eq) { if (a->eq) {
/* Equality means one more iteration. */ /* Equality means one more iteration. */
tcg_gen_addi_i64(t0, t0, 1); tcg_gen_addi_i64(t0, t0, 1);
/* If op1 is max (un)signed integer (and the only time the addition
* above could overflow), then we produce an all-true predicate by
* setting the count to the vector length. This is because the
* pseudocode is described as an increment + compare loop, and the
* max integer would always compare true.
*/
tcg_gen_movi_i64(t1, (a->sf
? (a->u ? UINT64_MAX : INT64_MAX)
: (a->u ? UINT32_MAX : INT32_MAX)));
tcg_gen_movcond_i64(TCG_COND_EQ, t0, op1, t1, tmax, t0);
} }
/* t0 = (condition true ? t0 : 0). */ /* Bound to the maximum. */
tcg_gen_umin_i64(t0, t0, tmax);
tcg_temp_free_i64(tmax);
/* Set the count to zero if the condition is false. */
cond = (a->u cond = (a->u
? (a->eq ? TCG_COND_LEU : TCG_COND_LTU) ? (a->eq ? TCG_COND_LEU : TCG_COND_LTU)
: (a->eq ? TCG_COND_LE : TCG_COND_LT)); : (a->eq ? TCG_COND_LE : TCG_COND_LT));
tcg_gen_movi_i64(t1, 0); tcg_gen_movi_i64(t1, 0);
tcg_gen_movcond_i64(cond, t0, op0, op1, t0, t1); tcg_gen_movcond_i64(cond, t0, op0, op1, t0, t1);
tcg_temp_free_i64(t1);
/* Since we're bounded, pass as a 32-bit type. */
t2 = tcg_temp_new_i32(); t2 = tcg_temp_new_i32();
tcg_gen_extrl_i64_i32(t2, t0); tcg_gen_extrl_i64_i32(t2, t0);
tcg_temp_free_i64(t0); tcg_temp_free_i64(t0);
tcg_temp_free_i64(t1);
/* Scale elements to bits. */
tcg_gen_shli_i32(t2, t2, a->esz);
desc = (vsz / 8) - 2; desc = (vsz / 8) - 2;
desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz); desc = deposit32(desc, SIMD_DATA_SHIFT, 2, a->esz);