mirror of https://gitee.com/openkylin/qemu.git
throttle: Add a new throttling API implementing continuous leaky bucket.
Implement the continuous leaky bucket algorithm devised on IRC as a separate module. Signed-off-by: Benoit Canet <benoit@irqsave.net> Signed-off-by: Stefan Hajnoczi <stefanha@redhat.com>
This commit is contained in:
parent
df7131623d
commit
5ddfffbdc5
|
@ -0,0 +1,110 @@
|
|||
/*
|
||||
* QEMU throttling infrastructure
|
||||
*
|
||||
* Copyright (C) Nodalink, SARL. 2013
|
||||
*
|
||||
* Author:
|
||||
* Benoît Canet <benoit.canet@irqsave.net>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License as
|
||||
* published by the Free Software Foundation; either version 2 or
|
||||
* (at your option) version 3 of the License.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef THROTTLE_H
|
||||
#define THROTTLE_H
|
||||
|
||||
#include <stdint.h>
|
||||
#include "qemu-common.h"
|
||||
#include "qemu/timer.h"
|
||||
|
||||
#define NANOSECONDS_PER_SECOND 1000000000.0
|
||||
|
||||
typedef enum {
|
||||
THROTTLE_BPS_TOTAL,
|
||||
THROTTLE_BPS_READ,
|
||||
THROTTLE_BPS_WRITE,
|
||||
THROTTLE_OPS_TOTAL,
|
||||
THROTTLE_OPS_READ,
|
||||
THROTTLE_OPS_WRITE,
|
||||
BUCKETS_COUNT,
|
||||
} BucketType;
|
||||
|
||||
/*
|
||||
* The max parameter of the leaky bucket throttling algorithm can be used to
|
||||
* allow the guest to do bursts.
|
||||
* The max value is a pool of I/O that the guest can use without being throttled
|
||||
* at all. Throttling is triggered once this pool is empty.
|
||||
*/
|
||||
|
||||
typedef struct LeakyBucket {
|
||||
double avg; /* average goal in units per second */
|
||||
double max; /* leaky bucket max burst in units */
|
||||
double level; /* bucket level in units */
|
||||
} LeakyBucket;
|
||||
|
||||
/* The following structure is used to configure a ThrottleState
|
||||
* It contains a bit of state: the bucket field of the LeakyBucket structure.
|
||||
* However it allows to keep the code clean and the bucket field is reset to
|
||||
* zero at the right time.
|
||||
*/
|
||||
typedef struct ThrottleConfig {
|
||||
LeakyBucket buckets[BUCKETS_COUNT]; /* leaky buckets */
|
||||
uint64_t op_size; /* size of an operation in bytes */
|
||||
} ThrottleConfig;
|
||||
|
||||
typedef struct ThrottleState {
|
||||
ThrottleConfig cfg; /* configuration */
|
||||
int64_t previous_leak; /* timestamp of the last leak done */
|
||||
QEMUTimer * timers[2]; /* timers used to do the throttling */
|
||||
QEMUClockType clock_type; /* the clock used */
|
||||
} ThrottleState;
|
||||
|
||||
/* operations on single leaky buckets */
|
||||
void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta);
|
||||
|
||||
int64_t throttle_compute_wait(LeakyBucket *bkt);
|
||||
|
||||
/* expose timer computation function for unit tests */
|
||||
bool throttle_compute_timer(ThrottleState *ts,
|
||||
bool is_write,
|
||||
int64_t now,
|
||||
int64_t *next_timestamp);
|
||||
|
||||
/* init/destroy cycle */
|
||||
void throttle_init(ThrottleState *ts,
|
||||
QEMUClockType clock_type,
|
||||
void (read_timer)(void *),
|
||||
void (write_timer)(void *),
|
||||
void *timer_opaque);
|
||||
|
||||
void throttle_destroy(ThrottleState *ts);
|
||||
|
||||
bool throttle_have_timer(ThrottleState *ts);
|
||||
|
||||
/* configuration */
|
||||
bool throttle_enabled(ThrottleConfig *cfg);
|
||||
|
||||
bool throttle_conflicting(ThrottleConfig *cfg);
|
||||
|
||||
bool throttle_is_valid(ThrottleConfig *cfg);
|
||||
|
||||
void throttle_config(ThrottleState *ts, ThrottleConfig *cfg);
|
||||
|
||||
void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg);
|
||||
|
||||
/* usage */
|
||||
bool throttle_schedule_timer(ThrottleState *ts, bool is_write);
|
||||
|
||||
void throttle_account(ThrottleState *ts, bool is_write, uint64_t size);
|
||||
|
||||
#endif
|
|
@ -11,3 +11,4 @@ util-obj-y += iov.o aes.o qemu-config.o qemu-sockets.o uri.o notify.o
|
|||
util-obj-y += qemu-option.o qemu-progress.o
|
||||
util-obj-y += hexdump.o
|
||||
util-obj-y += crc32c.o
|
||||
util-obj-y += throttle.o
|
||||
|
|
|
@ -0,0 +1,396 @@
|
|||
/*
|
||||
* QEMU throttling infrastructure
|
||||
*
|
||||
* Copyright (C) Nodalink, SARL. 2013
|
||||
*
|
||||
* Author:
|
||||
* Benoît Canet <benoit.canet@irqsave.net>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or
|
||||
* modify it under the terms of the GNU General Public License as
|
||||
* published by the Free Software Foundation; either version 2 or
|
||||
* (at your option) version 3 of the License.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program; if not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "qemu/throttle.h"
|
||||
#include "qemu/timer.h"
|
||||
|
||||
/* This function make a bucket leak
|
||||
*
|
||||
* @bkt: the bucket to make leak
|
||||
* @delta_ns: the time delta
|
||||
*/
|
||||
void throttle_leak_bucket(LeakyBucket *bkt, int64_t delta_ns)
|
||||
{
|
||||
double leak;
|
||||
|
||||
/* compute how much to leak */
|
||||
leak = (bkt->avg * (double) delta_ns) / NANOSECONDS_PER_SECOND;
|
||||
|
||||
/* make the bucket leak */
|
||||
bkt->level = MAX(bkt->level - leak, 0);
|
||||
}
|
||||
|
||||
/* Calculate the time delta since last leak and make proportionals leaks
|
||||
*
|
||||
* @now: the current timestamp in ns
|
||||
*/
|
||||
static void throttle_do_leak(ThrottleState *ts, int64_t now)
|
||||
{
|
||||
/* compute the time elapsed since the last leak */
|
||||
int64_t delta_ns = now - ts->previous_leak;
|
||||
int i;
|
||||
|
||||
ts->previous_leak = now;
|
||||
|
||||
if (delta_ns <= 0) {
|
||||
return;
|
||||
}
|
||||
|
||||
/* make each bucket leak */
|
||||
for (i = 0; i < BUCKETS_COUNT; i++) {
|
||||
throttle_leak_bucket(&ts->cfg.buckets[i], delta_ns);
|
||||
}
|
||||
}
|
||||
|
||||
/* do the real job of computing the time to wait
|
||||
*
|
||||
* @limit: the throttling limit
|
||||
* @extra: the number of operation to delay
|
||||
* @ret: the time to wait in ns
|
||||
*/
|
||||
static int64_t throttle_do_compute_wait(double limit, double extra)
|
||||
{
|
||||
double wait = extra * NANOSECONDS_PER_SECOND;
|
||||
wait /= limit;
|
||||
return wait;
|
||||
}
|
||||
|
||||
/* This function compute the wait time in ns that a leaky bucket should trigger
|
||||
*
|
||||
* @bkt: the leaky bucket we operate on
|
||||
* @ret: the resulting wait time in ns or 0 if the operation can go through
|
||||
*/
|
||||
int64_t throttle_compute_wait(LeakyBucket *bkt)
|
||||
{
|
||||
double extra; /* the number of extra units blocking the io */
|
||||
|
||||
if (!bkt->avg) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
extra = bkt->level - bkt->max;
|
||||
|
||||
if (extra <= 0) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return throttle_do_compute_wait(bkt->avg, extra);
|
||||
}
|
||||
|
||||
/* This function compute the time that must be waited while this IO
|
||||
*
|
||||
* @is_write: true if the current IO is a write, false if it's a read
|
||||
* @ret: time to wait
|
||||
*/
|
||||
static int64_t throttle_compute_wait_for(ThrottleState *ts,
|
||||
bool is_write)
|
||||
{
|
||||
BucketType to_check[2][4] = { {THROTTLE_BPS_TOTAL,
|
||||
THROTTLE_OPS_TOTAL,
|
||||
THROTTLE_BPS_READ,
|
||||
THROTTLE_OPS_READ},
|
||||
{THROTTLE_BPS_TOTAL,
|
||||
THROTTLE_OPS_TOTAL,
|
||||
THROTTLE_BPS_WRITE,
|
||||
THROTTLE_OPS_WRITE}, };
|
||||
int64_t wait, max_wait = 0;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 4; i++) {
|
||||
BucketType index = to_check[is_write][i];
|
||||
wait = throttle_compute_wait(&ts->cfg.buckets[index]);
|
||||
if (wait > max_wait) {
|
||||
max_wait = wait;
|
||||
}
|
||||
}
|
||||
|
||||
return max_wait;
|
||||
}
|
||||
|
||||
/* compute the timer for this type of operation
|
||||
*
|
||||
* @is_write: the type of operation
|
||||
* @now: the current clock timestamp
|
||||
* @next_timestamp: the resulting timer
|
||||
* @ret: true if a timer must be set
|
||||
*/
|
||||
bool throttle_compute_timer(ThrottleState *ts,
|
||||
bool is_write,
|
||||
int64_t now,
|
||||
int64_t *next_timestamp)
|
||||
{
|
||||
int64_t wait;
|
||||
|
||||
/* leak proportionally to the time elapsed */
|
||||
throttle_do_leak(ts, now);
|
||||
|
||||
/* compute the wait time if any */
|
||||
wait = throttle_compute_wait_for(ts, is_write);
|
||||
|
||||
/* if the code must wait compute when the next timer should fire */
|
||||
if (wait) {
|
||||
*next_timestamp = now + wait;
|
||||
return true;
|
||||
}
|
||||
|
||||
/* else no need to wait at all */
|
||||
*next_timestamp = now;
|
||||
return false;
|
||||
}
|
||||
|
||||
/* To be called first on the ThrottleState */
|
||||
void throttle_init(ThrottleState *ts,
|
||||
QEMUClockType clock_type,
|
||||
QEMUTimerCB *read_timer_cb,
|
||||
QEMUTimerCB *write_timer_cb,
|
||||
void *timer_opaque)
|
||||
{
|
||||
memset(ts, 0, sizeof(ThrottleState));
|
||||
|
||||
ts->clock_type = clock_type;
|
||||
ts->timers[0] = timer_new_ns(clock_type, read_timer_cb, timer_opaque);
|
||||
ts->timers[1] = timer_new_ns(clock_type, write_timer_cb, timer_opaque);
|
||||
}
|
||||
|
||||
/* destroy a timer */
|
||||
static void throttle_timer_destroy(QEMUTimer **timer)
|
||||
{
|
||||
assert(*timer != NULL);
|
||||
|
||||
timer_del(*timer);
|
||||
timer_free(*timer);
|
||||
*timer = NULL;
|
||||
}
|
||||
|
||||
/* To be called last on the ThrottleState */
|
||||
void throttle_destroy(ThrottleState *ts)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
throttle_timer_destroy(&ts->timers[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/* is any throttling timer configured */
|
||||
bool throttle_have_timer(ThrottleState *ts)
|
||||
{
|
||||
if (ts->timers[0]) {
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/* Does any throttling must be done
|
||||
*
|
||||
* @cfg: the throttling configuration to inspect
|
||||
* @ret: true if throttling must be done else false
|
||||
*/
|
||||
bool throttle_enabled(ThrottleConfig *cfg)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < BUCKETS_COUNT; i++) {
|
||||
if (cfg->buckets[i].avg > 0) {
|
||||
return true;
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/* return true if any two throttling parameters conflicts
|
||||
*
|
||||
* @cfg: the throttling configuration to inspect
|
||||
* @ret: true if any conflict detected else false
|
||||
*/
|
||||
bool throttle_conflicting(ThrottleConfig *cfg)
|
||||
{
|
||||
bool bps_flag, ops_flag;
|
||||
bool bps_max_flag, ops_max_flag;
|
||||
|
||||
bps_flag = cfg->buckets[THROTTLE_BPS_TOTAL].avg &&
|
||||
(cfg->buckets[THROTTLE_BPS_READ].avg ||
|
||||
cfg->buckets[THROTTLE_BPS_WRITE].avg);
|
||||
|
||||
ops_flag = cfg->buckets[THROTTLE_OPS_TOTAL].avg &&
|
||||
(cfg->buckets[THROTTLE_OPS_READ].avg ||
|
||||
cfg->buckets[THROTTLE_OPS_WRITE].avg);
|
||||
|
||||
bps_max_flag = cfg->buckets[THROTTLE_BPS_TOTAL].max &&
|
||||
(cfg->buckets[THROTTLE_BPS_READ].max ||
|
||||
cfg->buckets[THROTTLE_BPS_WRITE].max);
|
||||
|
||||
ops_max_flag = cfg->buckets[THROTTLE_OPS_TOTAL].max &&
|
||||
(cfg->buckets[THROTTLE_OPS_READ].max ||
|
||||
cfg->buckets[THROTTLE_OPS_WRITE].max);
|
||||
|
||||
return bps_flag || ops_flag || bps_max_flag || ops_max_flag;
|
||||
}
|
||||
|
||||
/* check if a throttling configuration is valid
|
||||
* @cfg: the throttling configuration to inspect
|
||||
* @ret: true if valid else false
|
||||
*/
|
||||
bool throttle_is_valid(ThrottleConfig *cfg)
|
||||
{
|
||||
bool invalid = false;
|
||||
int i;
|
||||
|
||||
for (i = 0; i < BUCKETS_COUNT; i++) {
|
||||
if (cfg->buckets[i].avg < 0) {
|
||||
invalid = true;
|
||||
}
|
||||
}
|
||||
|
||||
for (i = 0; i < BUCKETS_COUNT; i++) {
|
||||
if (cfg->buckets[i].max < 0) {
|
||||
invalid = true;
|
||||
}
|
||||
}
|
||||
|
||||
return !invalid;
|
||||
}
|
||||
|
||||
/* fix bucket parameters */
|
||||
static void throttle_fix_bucket(LeakyBucket *bkt)
|
||||
{
|
||||
double min;
|
||||
|
||||
/* zero bucket level */
|
||||
bkt->level = 0;
|
||||
|
||||
/* The following is done to cope with the Linux CFQ block scheduler
|
||||
* which regroup reads and writes by block of 100ms in the guest.
|
||||
* When they are two process one making reads and one making writes cfq
|
||||
* make a pattern looking like the following:
|
||||
* WWWWWWWWWWWRRRRRRRRRRRRRRWWWWWWWWWWWWWwRRRRRRRRRRRRRRRRR
|
||||
* Having a max burst value of 100ms of the average will help smooth the
|
||||
* throttling
|
||||
*/
|
||||
min = bkt->avg / 10;
|
||||
if (bkt->avg && !bkt->max) {
|
||||
bkt->max = min;
|
||||
}
|
||||
}
|
||||
|
||||
/* take care of canceling a timer */
|
||||
static void throttle_cancel_timer(QEMUTimer *timer)
|
||||
{
|
||||
assert(timer != NULL);
|
||||
|
||||
timer_del(timer);
|
||||
}
|
||||
|
||||
/* Used to configure the throttle
|
||||
*
|
||||
* @ts: the throttle state we are working on
|
||||
* @cfg: the config to set
|
||||
*/
|
||||
void throttle_config(ThrottleState *ts, ThrottleConfig *cfg)
|
||||
{
|
||||
int i;
|
||||
|
||||
ts->cfg = *cfg;
|
||||
|
||||
for (i = 0; i < BUCKETS_COUNT; i++) {
|
||||
throttle_fix_bucket(&ts->cfg.buckets[i]);
|
||||
}
|
||||
|
||||
ts->previous_leak = qemu_clock_get_ns(ts->clock_type);
|
||||
|
||||
for (i = 0; i < 2; i++) {
|
||||
throttle_cancel_timer(ts->timers[i]);
|
||||
}
|
||||
}
|
||||
|
||||
/* used to get config
|
||||
*
|
||||
* @ts: the throttle state we are working on
|
||||
* @cfg: the config to write
|
||||
*/
|
||||
void throttle_get_config(ThrottleState *ts, ThrottleConfig *cfg)
|
||||
{
|
||||
*cfg = ts->cfg;
|
||||
}
|
||||
|
||||
|
||||
/* Schedule the read or write timer if needed
|
||||
*
|
||||
* NOTE: this function is not unit tested due to it's usage of timer_mod
|
||||
*
|
||||
* @is_write: the type of operation (read/write)
|
||||
* @ret: true if the timer has been scheduled else false
|
||||
*/
|
||||
bool throttle_schedule_timer(ThrottleState *ts, bool is_write)
|
||||
{
|
||||
int64_t now = qemu_clock_get_ns(ts->clock_type);
|
||||
int64_t next_timestamp;
|
||||
bool must_wait;
|
||||
|
||||
must_wait = throttle_compute_timer(ts,
|
||||
is_write,
|
||||
now,
|
||||
&next_timestamp);
|
||||
|
||||
/* request not throttled */
|
||||
if (!must_wait) {
|
||||
return false;
|
||||
}
|
||||
|
||||
/* request throttled and timer pending -> do nothing */
|
||||
if (timer_pending(ts->timers[is_write])) {
|
||||
return true;
|
||||
}
|
||||
|
||||
/* request throttled and timer not pending -> arm timer */
|
||||
timer_mod(ts->timers[is_write], next_timestamp);
|
||||
return true;
|
||||
}
|
||||
|
||||
/* do the accounting for this operation
|
||||
*
|
||||
* @is_write: the type of operation (read/write)
|
||||
* @size: the size of the operation
|
||||
*/
|
||||
void throttle_account(ThrottleState *ts, bool is_write, uint64_t size)
|
||||
{
|
||||
double units = 1.0;
|
||||
|
||||
/* if cfg.op_size is defined and smaller than size we compute unit count */
|
||||
if (ts->cfg.op_size && size > ts->cfg.op_size) {
|
||||
units = (double) size / ts->cfg.op_size;
|
||||
}
|
||||
|
||||
ts->cfg.buckets[THROTTLE_BPS_TOTAL].level += size;
|
||||
ts->cfg.buckets[THROTTLE_OPS_TOTAL].level += units;
|
||||
|
||||
if (is_write) {
|
||||
ts->cfg.buckets[THROTTLE_BPS_WRITE].level += size;
|
||||
ts->cfg.buckets[THROTTLE_OPS_WRITE].level += units;
|
||||
} else {
|
||||
ts->cfg.buckets[THROTTLE_BPS_READ].level += size;
|
||||
ts->cfg.buckets[THROTTLE_OPS_READ].level += units;
|
||||
}
|
||||
}
|
||||
|
Loading…
Reference in New Issue