qemu-doc: Do not hard-code the name of the QEMU binary

In our documentation, we use a mix of "$QEMU", "qemu-system-i386" and
"qemu-system-x86_64" when we give examples to the users how to run
QEMU. Some more consistency would be good here. Also some distributions
use different names for the QEMU binary (e.g. "qemu-kvm" in RHEL), so
providing more flexibility here would also be good. Thus let's define
some variables for the names of the QEMU command and use those in the
documentation instead: @value{qemu_system} for generic examples, and
@value{qemu_system_x86} for examples that only work with the x86
binaries.

Message-Id: <20190828093447.12441-1-thuth@redhat.com>
Reviewed-by: John Snow <jsnow@redhat.com>
Reviewed-by: Miroslav Rezanina <mrezanin@redhat.com>
Signed-off-by: Thomas Huth <thuth@redhat.com>
This commit is contained in:
Thomas Huth 2019-07-30 17:08:26 +02:00
parent 4631332675
commit 664785acff
4 changed files with 149 additions and 142 deletions

View File

@ -2,6 +2,8 @@
QEMU block driver reference manual
@c man end
@set qemu_system qemu-system-x86_64
@c man begin DESCRIPTION
@node disk_images_formats
@ -405,7 +407,7 @@ QEMU can automatically create a virtual FAT disk image from a
directory tree. In order to use it, just type:
@example
qemu-system-i386 linux.img -hdb fat:/my_directory
@value{qemu_system} linux.img -hdb fat:/my_directory
@end example
Then you access access to all the files in the @file{/my_directory}
@ -415,14 +417,14 @@ them via SAMBA or NFS. The default access is @emph{read-only}.
Floppies can be emulated with the @code{:floppy:} option:
@example
qemu-system-i386 linux.img -fda fat:floppy:/my_directory
@value{qemu_system} linux.img -fda fat:floppy:/my_directory
@end example
A read/write support is available for testing (beta stage) with the
@code{:rw:} option:
@example
qemu-system-i386 linux.img -fda fat:floppy:rw:/my_directory
@value{qemu_system} linux.img -fda fat:floppy:rw:/my_directory
@end example
What you should @emph{never} do:
@ -440,14 +442,14 @@ QEMU can access directly to block device exported using the Network Block Device
protocol.
@example
qemu-system-i386 linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
@value{qemu_system} linux.img -hdb nbd://my_nbd_server.mydomain.org:1024/
@end example
If the NBD server is located on the same host, you can use an unix socket instead
of an inet socket:
@example
qemu-system-i386 linux.img -hdb nbd+unix://?socket=/tmp/my_socket
@value{qemu_system} linux.img -hdb nbd+unix://?socket=/tmp/my_socket
@end example
In this case, the block device must be exported using qemu-nbd:
@ -464,23 +466,23 @@ qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
@noindent
and then you can use it with two guests:
@example
qemu-system-i386 linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
qemu-system-i386 linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
@value{qemu_system} linux1.img -hdb nbd+unix://?socket=/tmp/my_socket
@value{qemu_system} linux2.img -hdb nbd+unix://?socket=/tmp/my_socket
@end example
If the nbd-server uses named exports (supported since NBD 2.9.18, or with QEMU's
own embedded NBD server), you must specify an export name in the URI:
@example
qemu-system-i386 -cdrom nbd://localhost/debian-500-ppc-netinst
qemu-system-i386 -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
@value{qemu_system} -cdrom nbd://localhost/debian-500-ppc-netinst
@value{qemu_system} -cdrom nbd://localhost/openSUSE-11.1-ppc-netinst
@end example
The URI syntax for NBD is supported since QEMU 1.3. An alternative syntax is
also available. Here are some example of the older syntax:
@example
qemu-system-i386 linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
qemu-system-i386 linux2.img -hdb nbd:unix:/tmp/my_socket
qemu-system-i386 -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
@value{qemu_system} linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
@value{qemu_system} linux2.img -hdb nbd:unix:/tmp/my_socket
@value{qemu_system} -cdrom nbd:localhost:10809:exportname=debian-500-ppc-netinst
@end example
@node disk_images_sheepdog
@ -505,7 +507,7 @@ qemu-img convert @var{filename} sheepdog:///@var{image}
You can boot from the Sheepdog disk image with the command:
@example
qemu-system-i386 sheepdog:///@var{image}
@value{qemu_system} sheepdog:///@var{image}
@end example
You can also create a snapshot of the Sheepdog image like qcow2.
@ -517,7 +519,7 @@ where @var{tag} is a tag name of the newly created snapshot.
To boot from the Sheepdog snapshot, specify the tag name of the
snapshot.
@example
qemu-system-i386 sheepdog:///@var{image}#@var{tag}
@value{qemu_system} sheepdog:///@var{image}#@var{tag}
@end example
You can create a cloned image from the existing snapshot.
@ -530,14 +532,14 @@ is its tag name.
You can use an unix socket instead of an inet socket:
@example
qemu-system-i386 sheepdog+unix:///@var{image}?socket=@var{path}
@value{qemu_system} sheepdog+unix:///@var{image}?socket=@var{path}
@end example
If the Sheepdog daemon doesn't run on the local host, you need to
specify one of the Sheepdog servers to connect to.
@example
qemu-img create sheepdog://@var{hostname}:@var{port}/@var{image} @var{size}
qemu-system-i386 sheepdog://@var{hostname}:@var{port}/@var{image}
@value{qemu_system} sheepdog://@var{hostname}:@var{port}/@var{image}
@end example
@node disk_images_iscsi
@ -627,7 +629,7 @@ cat >iscsi.conf <<EOF
header-digest = "CRC32C"
EOF
qemu-system-i386 -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
@value{qemu_system} -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
-readconfig iscsi.conf
@end example
@ -646,7 +648,7 @@ tgtadm --lld iscsi --mode logicalunit --op new --tid 1 --lun 2 \
-b /IMAGES/cd.iso --device-type=cd
tgtadm --lld iscsi --op bind --mode target --tid 1 -I ALL
qemu-system-i386 -iscsi initiator-name=iqn.qemu.test:my-initiator \
@value{qemu_system} -iscsi initiator-name=iqn.qemu.test:my-initiator \
-boot d -drive file=iscsi://127.0.0.1/iqn.qemu.test/1 \
-cdrom iscsi://127.0.0.1/iqn.qemu.test/2
@end example
@ -659,11 +661,11 @@ GlusterFS is a user space distributed file system.
You can boot from the GlusterFS disk image with the command:
@example
URI:
qemu-system-x86_64 -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
@value{qemu_system} -drive file=gluster[+@var{type}]://[@var{host}[:@var{port}]]/@var{volume}/@var{path}
[?socket=...][,file.debug=9][,file.logfile=...]
JSON:
qemu-system-x86_64 'json:@{"driver":"qcow2",
@value{qemu_system} 'json:@{"driver":"qcow2",
"file":@{"driver":"gluster",
"volume":"testvol","path":"a.img","debug":9,"logfile":"...",
"server":[@{"type":"tcp","host":"...","port":"..."@},
@ -711,22 +713,22 @@ qemu-img create gluster://@var{host}/@var{volume}/@var{path} @var{size}
Examples
@example
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4/testvol/a.img
qemu-system-x86_64 -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
qemu-system-x86_64 -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
qemu-system-x86_64 -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
qemu-system-x86_64 -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
qemu-system-x86_64 'json:@{"driver":"qcow2",
@value{qemu_system} -drive file=gluster://1.2.3.4/testvol/a.img
@value{qemu_system} -drive file=gluster+tcp://1.2.3.4/testvol/a.img
@value{qemu_system} -drive file=gluster+tcp://1.2.3.4:24007/testvol/dir/a.img
@value{qemu_system} -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]/testvol/dir/a.img
@value{qemu_system} -drive file=gluster+tcp://[1:2:3:4:5:6:7:8]:24007/testvol/dir/a.img
@value{qemu_system} -drive file=gluster+tcp://server.domain.com:24007/testvol/dir/a.img
@value{qemu_system} -drive file=gluster+unix:///testvol/dir/a.img?socket=/tmp/glusterd.socket
@value{qemu_system} -drive file=gluster+rdma://1.2.3.4:24007/testvol/a.img
@value{qemu_system} -drive file=gluster://1.2.3.4/testvol/a.img,file.debug=9,file.logfile=/var/log/qemu-gluster.log
@value{qemu_system} 'json:@{"driver":"qcow2",
"file":@{"driver":"gluster",
"volume":"testvol","path":"a.img",
"debug":9,"logfile":"/var/log/qemu-gluster.log",
"server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
@{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
@value{qemu_system} -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
file.debug=9,file.logfile=/var/log/qemu-gluster.log,
file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
@ -739,13 +741,13 @@ You can access disk images located on a remote ssh server
by using the ssh protocol:
@example
qemu-system-x86_64 -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
@value{qemu_system} -drive file=ssh://[@var{user}@@]@var{server}[:@var{port}]/@var{path}[?host_key_check=@var{host_key_check}]
@end example
Alternative syntax using properties:
@example
qemu-system-x86_64 -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
@value{qemu_system} -drive file.driver=ssh[,file.user=@var{user}],file.host=@var{server}[,file.port=@var{port}],file.path=@var{path}[,file.host_key_check=@var{host_key_check}]
@end example
@var{ssh} is the protocol.
@ -808,13 +810,13 @@ driver. For example:
# echo 0000:06:0d.0 > /sys/bus/pci/devices/0000:06:0d.0/driver/unbind
# echo 1102 0002 > /sys/bus/pci/drivers/vfio-pci/new_id
# qemu-system-x86_64 -drive file=nvme://@var{host}:@var{bus}:@var{slot}.@var{func}/@var{namespace}
# @value{qemu_system} -drive file=nvme://@var{host}:@var{bus}:@var{slot}.@var{func}/@var{namespace}
@end example
Alternative syntax using properties:
@example
qemu-system-x86_64 -drive file.driver=nvme,file.device=@var{host}:@var{bus}:@var{slot}.@var{func},file.namespace=@var{namespace}
@value{qemu_system} -drive file.driver=nvme,file.device=@var{host}:@var{bus}:@var{slot}.@var{func},file.namespace=@var{namespace}
@end example
@var{host}:@var{bus}:@var{slot}.@var{func} is the NVMe controller's PCI device

View File

@ -2,6 +2,8 @@
QEMU / KVM CPU model configuration
@c man end
@set qemu_system_x86 qemu-system-x86_64
@c man begin DESCRIPTION
@menu
@ -578,25 +580,25 @@ CPU models / features in QEMU and libvirt
@item Host passthrough
@example
$ qemu-system-x86_64 -cpu host
$ @value{qemu_system_x86} -cpu host
@end example
With feature customization:
@example
$ qemu-system-x86_64 -cpu host,-vmx,...
$ @value{qemu_system_x86} -cpu host,-vmx,...
@end example
@item Named CPU models
@example
$ qemu-system-x86_64 -cpu Westmere
$ @value{qemu_system_x86} -cpu Westmere
@end example
With feature customization:
@example
$ qemu-system-x86_64 -cpu Westmere,+pcid,...
$ @value{qemu_system_x86} -cpu Westmere,+pcid,...
@end example
@end table

View File

@ -11,6 +11,9 @@
@paragraphindent 0
@c %**end of header
@set qemu_system qemu-system-x86_64
@set qemu_system_x86 qemu-system-x86_64
@ifinfo
@direntry
* QEMU: (qemu-doc). The QEMU Emulator User Documentation.
@ -207,12 +210,12 @@ Note that, by default, GUS shares IRQ(7) with parallel ports and so
QEMU must be told to not have parallel ports to have working GUS.
@example
qemu-system-i386 dos.img -soundhw gus -parallel none
@value{qemu_system_x86} dos.img -soundhw gus -parallel none
@end example
Alternatively:
@example
qemu-system-i386 dos.img -device gus,irq=5
@value{qemu_system_x86} dos.img -device gus,irq=5
@end example
Or some other unclaimed IRQ.
@ -225,10 +228,11 @@ CS4231A is the chip used in Windows Sound System and GUSMAX products
@section Quick Start
@cindex quick start
Download and uncompress the linux image (@file{linux.img}) and type:
Download and uncompress a hard disk image with Linux installed (e.g.
@file{linux.img}) and type:
@example
qemu-system-i386 linux.img
@value{qemu_system} linux.img
@end example
Linux should boot and give you a prompt.
@ -238,7 +242,7 @@ Linux should boot and give you a prompt.
@example
@c man begin SYNOPSIS
@command{qemu-system-i386} [@var{options}] [@var{disk_image}]
@command{@value{qemu_system}} [@var{options}] [@var{disk_image}]
@c man end
@end example
@ -278,21 +282,21 @@ is specified in seconds. The default is 0 which means no timeout. Libiscsi
Example (without authentication):
@example
qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
@value{qemu_system} -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
-cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
-drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
@end example
Example (CHAP username/password via URL):
@example
qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
@value{qemu_system} -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
@end example
Example (CHAP username/password via environment variables):
@example
LIBISCSI_CHAP_USERNAME="user" \
LIBISCSI_CHAP_PASSWORD="password" \
qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
@value{qemu_system} -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
@end example
@item NBD
@ -307,12 +311,12 @@ Syntax for specifying a NBD device using Unix Domain Sockets
Example for TCP
@example
qemu-system-i386 --drive file=nbd:192.0.2.1:30000
@value{qemu_system} --drive file=nbd:192.0.2.1:30000
@end example
Example for Unix Domain Sockets
@example
qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
@value{qemu_system} --drive file=nbd:unix:/tmp/nbd-socket
@end example
@item SSH
@ -320,8 +324,8 @@ QEMU supports SSH (Secure Shell) access to remote disks.
Examples:
@example
qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
@value{qemu_system} -drive file=ssh://user@@host/path/to/disk.img
@value{qemu_system} -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
@end example
Currently authentication must be done using ssh-agent. Other
@ -339,7 +343,7 @@ sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
Example
@example
qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
@value{qemu_system} --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
@end example
See also @url{https://sheepdog.github.io/sheepdog/}.
@ -365,17 +369,17 @@ JSON:
Example
@example
URI:
qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img,
@value{qemu_system} --drive file=gluster://192.0.2.1/testvol/a.img,
@ file.debug=9,file.logfile=/var/log/qemu-gluster.log
JSON:
qemu-system-x86_64 'json:@{"driver":"qcow2",
@value{qemu_system} 'json:@{"driver":"qcow2",
@ "file":@{"driver":"gluster",
@ "volume":"testvol","path":"a.img",
@ "debug":9,"logfile":"/var/log/qemu-gluster.log",
@ "server":[@{"type":"tcp","host":"1.2.3.4","port":24007@},
@ @{"type":"unix","socket":"/var/run/glusterd.socket"@}]@}@}'
qemu-system-x86_64 -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
@value{qemu_system} -drive driver=qcow2,file.driver=gluster,file.volume=testvol,file.path=/path/a.img,
@ file.debug=9,file.logfile=/var/log/qemu-gluster.log,
@ file.server.0.type=tcp,file.server.0.host=1.2.3.4,file.server.0.port=24007,
@ file.server.1.type=unix,file.server.1.socket=/var/run/glusterd.socket
@ -440,9 +444,9 @@ of <protocol>.
Example: boot from a remote Fedora 20 live ISO image
@example
qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
@value{qemu_system_x86} --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
@value{qemu_system_x86} --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
@end example
Example: boot from a remote Fedora 20 cloud image using a local overlay for
@ -450,7 +454,7 @@ writes, copy-on-read, and a readahead of 64k
@example
qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
@value{qemu_system_x86} -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
@end example
Example: boot from an image stored on a VMware vSphere server with a self-signed
@ -459,7 +463,7 @@ of 10 seconds.
@example
qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
qemu-system-x86_64 -drive file=/tmp/test.qcow2
@value{qemu_system_x86} -drive file=/tmp/test.qcow2
@end example
@end table
@ -826,7 +830,7 @@ On Linux hosts, a shared memory device is available. The basic syntax
is:
@example
qemu-system-x86_64 -device ivshmem-plain,memdev=@var{hostmem}
@value{qemu_system_x86} -device ivshmem-plain,memdev=@var{hostmem}
@end example
where @var{hostmem} names a host memory backend. For a POSIX shared
@ -847,7 +851,7 @@ memory server is:
ivshmem-server -p @var{pidfile} -S @var{path} -m @var{shm-name} -l @var{shm-size} -n @var{vectors}
# Then start your qemu instances with matching arguments
qemu-system-x86_64 -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
@value{qemu_system_x86} -device ivshmem-doorbell,vectors=@var{vectors},chardev=@var{id}
-chardev socket,path=@var{path},id=@var{id}
@end example
@ -872,7 +876,7 @@ Instead of specifying the <shm size> using POSIX shm, you may specify
a memory backend that has hugepage support:
@example
qemu-system-x86_64 -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
@value{qemu_system_x86} -object memory-backend-file,size=1G,mem-path=/dev/hugepages/my-shmem-file,share,id=mb1
-device ivshmem-plain,memdev=mb1
@end example
@ -888,7 +892,7 @@ kernel testing.
The syntax is:
@example
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
@value{qemu_system} -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
@end example
Use @option{-kernel} to provide the Linux kernel image and
@ -903,7 +907,7 @@ If you do not need graphical output, you can disable it and redirect
the virtual serial port and the QEMU monitor to the console with the
@option{-nographic} option. The typical command line is:
@example
qemu-system-i386 -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
@value{qemu_system} -kernel bzImage -hda rootdisk.img \
-append "root=/dev/hda console=ttyS0" -nographic
@end example
@ -969,7 +973,7 @@ Network adapter that supports CDC ethernet and RNDIS protocols. @var{id}
specifies a netdev defined with @code{-netdev @dots{},id=@var{id}}.
For instance, user-mode networking can be used with
@example
qemu-system-i386 [...] -netdev user,id=net0 -device usb-net,netdev=net0
@value{qemu_system} [...] -netdev user,id=net0 -device usb-net,netdev=net0
@end example
@item usb-ccid
Smartcard reader device
@ -988,7 +992,7 @@ no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
This USB device implements the USB Transport Layer of HCI. Example
usage:
@example
@command{qemu-system-i386} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
@command{@value{qemu_system}} [...@var{OPTIONS}...] @option{-usbdevice} bt:hci,vlan=3 @option{-bt} device:keyboard,vlan=3
@end example
@end table
@ -1065,7 +1069,7 @@ For this setup it is recommended to restrict it to listen on a UNIX domain
socket only. For example
@example
qemu-system-i386 [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
@value{qemu_system} [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
@end example
This ensures that only users on local box with read/write access to that
@ -1088,7 +1092,7 @@ is running the password is set with the monitor. Until the monitor is used to
set the password all clients will be rejected.
@example
qemu-system-i386 [...OPTIONS...] -vnc :1,password -monitor stdio
@value{qemu_system} [...OPTIONS...] -vnc :1,password -monitor stdio
(qemu) change vnc password
Password: ********
(qemu)
@ -1105,7 +1109,7 @@ support provides a secure session, but no authentication. This allows any
client to connect, and provides an encrypted session.
@example
qemu-system-i386 [...OPTIONS...] \
@value{qemu_system} [...OPTIONS...] \
-object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=no \
-vnc :1,tls-creds=tls0 -monitor stdio
@end example
@ -1127,7 +1131,7 @@ same syntax as previously, but with @code{verify-peer} set to @code{yes}
instead.
@example
qemu-system-i386 [...OPTIONS...] \
@value{qemu_system} [...OPTIONS...] \
-object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
-vnc :1,tls-creds=tls0 -monitor stdio
@end example
@ -1140,7 +1144,7 @@ Finally, the previous method can be combined with VNC password authentication
to provide two layers of authentication for clients.
@example
qemu-system-i386 [...OPTIONS...] \
@value{qemu_system} [...OPTIONS...] \
-object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
-vnc :1,tls-creds=tls0,password -monitor stdio
(qemu) change vnc password
@ -1165,7 +1169,7 @@ used for authentication, but assuming use of one supporting SSF,
then QEMU can be launched with:
@example
qemu-system-i386 [...OPTIONS...] -vnc :1,sasl -monitor stdio
@value{qemu_system} [...OPTIONS...] -vnc :1,sasl -monitor stdio
@end example
@node vnc_sec_certificate_sasl
@ -1179,7 +1183,7 @@ credentials. This can be enabled, by combining the 'sasl' option
with the aforementioned TLS + x509 options:
@example
qemu-system-i386 [...OPTIONS...] \
@value{qemu_system} [...OPTIONS...] \
-object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server,verify-peer=yes \
-vnc :1,tls-creds=tls0,sasl -monitor stdio
@end example
@ -1512,13 +1516,13 @@ To load server credentials with client certificate validation
enabled
@example
$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=server
@end example
while to load client credentials use
@example
$QEMU -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
@value{qemu_system} -object tls-creds-x509,id=tls0,dir=/etc/pki/qemu,endpoint=client
@end example
Network services which support TLS will all have a @code{tls-creds}
@ -1526,7 +1530,7 @@ parameter which expects the ID of the TLS credentials object. For
example with VNC:
@example
$QEMU -vnc 0.0.0.0:0,tls-creds=tls0
@value{qemu_system} -vnc 0.0.0.0:0,tls-creds=tls0
@end example
@node tls_psk
@ -1574,8 +1578,7 @@ QEMU has a primitive support to work with gdb, so that you can do
In order to use gdb, launch QEMU with the '-s' option. It will wait for a
gdb connection:
@example
qemu-system-i386 -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
-append "root=/dev/hda"
@value{qemu_system} -s -kernel bzImage -hda rootdisk.img -append "root=/dev/hda"
Connected to host network interface: tun0
Waiting gdb connection on port 1234
@end example

View File

@ -254,10 +254,10 @@ This option defines a free-form string that can be used to describe @var{fd}.
You can open an image using pre-opened file descriptors from an fd set:
@example
qemu-system-i386
-add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
-add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
-drive file=/dev/fdset/2,index=0,media=disk
@value{qemu_system} \
-add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
-add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
-drive file=/dev/fdset/2,index=0,media=disk
@end example
ETEXI
@ -283,7 +283,7 @@ STEXI
Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
@example
qemu-system-i386 -global ide-hd.physical_block_size=4096 disk-image.img
@value{qemu_system_x86} -global ide-hd.physical_block_size=4096 disk-image.img
@end example
In particular, you can use this to set driver properties for devices which are
@ -337,11 +337,11 @@ bootindex options. The default is non-strict boot.
@example
# try to boot from network first, then from hard disk
qemu-system-i386 -boot order=nc
@value{qemu_system_x86} -boot order=nc
# boot from CD-ROM first, switch back to default order after reboot
qemu-system-i386 -boot once=d
@value{qemu_system_x86} -boot once=d
# boot with a splash picture for 5 seconds.
qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
@value{qemu_system_x86} -boot menu=on,splash=/root/boot.bmp,splash-time=5000
@end example
Note: The legacy format '-boot @var{drives}' is still supported but its
@ -370,7 +370,7 @@ For example, the following command-line sets the guest startup RAM size to
memory the guest can reach to 4GB:
@example
qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
@value{qemu_system} -m 1G,slots=3,maxmem=4G
@end example
If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
@ -666,15 +666,15 @@ STEXI
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
@findex -soundhw
Enable audio and selected sound hardware. Use 'help' to print all
available sound hardware.
available sound hardware. For example:
@example
qemu-system-i386 -soundhw sb16,adlib disk.img
qemu-system-i386 -soundhw es1370 disk.img
qemu-system-i386 -soundhw ac97 disk.img
qemu-system-i386 -soundhw hda disk.img
qemu-system-i386 -soundhw all disk.img
qemu-system-i386 -soundhw help
@value{qemu_system_x86} -soundhw sb16,adlib disk.img
@value{qemu_system_x86} -soundhw es1370 disk.img
@value{qemu_system_x86} -soundhw ac97 disk.img
@value{qemu_system_x86} -soundhw hda disk.img
@value{qemu_system_x86} -soundhw all disk.img
@value{qemu_system_x86} -soundhw help
@end example
Note that Linux's i810_audio OSS kernel (for AC97) module might
@ -1149,50 +1149,50 @@ is off.
Instead of @option{-cdrom} you can use:
@example
qemu-system-i386 -drive file=file,index=2,media=cdrom
@value{qemu_system} -drive file=file,index=2,media=cdrom
@end example
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
use:
@example
qemu-system-i386 -drive file=file,index=0,media=disk
qemu-system-i386 -drive file=file,index=1,media=disk
qemu-system-i386 -drive file=file,index=2,media=disk
qemu-system-i386 -drive file=file,index=3,media=disk
@value{qemu_system} -drive file=file,index=0,media=disk
@value{qemu_system} -drive file=file,index=1,media=disk
@value{qemu_system} -drive file=file,index=2,media=disk
@value{qemu_system} -drive file=file,index=3,media=disk
@end example
You can open an image using pre-opened file descriptors from an fd set:
@example
qemu-system-i386
-add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
-add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
-drive file=/dev/fdset/2,index=0,media=disk
@value{qemu_system} \
-add-fd fd=3,set=2,opaque="rdwr:/path/to/file" \
-add-fd fd=4,set=2,opaque="rdonly:/path/to/file" \
-drive file=/dev/fdset/2,index=0,media=disk
@end example
You can connect a CDROM to the slave of ide0:
@example
qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
@value{qemu_system_x86} -drive file=file,if=ide,index=1,media=cdrom
@end example
If you don't specify the "file=" argument, you define an empty drive:
@example
qemu-system-i386 -drive if=ide,index=1,media=cdrom
@value{qemu_system_x86} -drive if=ide,index=1,media=cdrom
@end example
Instead of @option{-fda}, @option{-fdb}, you can use:
@example
qemu-system-i386 -drive file=file,index=0,if=floppy
qemu-system-i386 -drive file=file,index=1,if=floppy
@value{qemu_system_x86} -drive file=file,index=0,if=floppy
@value{qemu_system_x86} -drive file=file,index=1,if=floppy
@end example
By default, @var{interface} is "ide" and @var{index} is automatically
incremented:
@example
qemu-system-i386 -drive file=a -drive file=b"
@value{qemu_system_x86} -drive file=a -drive file=b"
@end example
is interpreted like:
@example
qemu-system-i386 -hda a -hdb b
@value{qemu_system_x86} -hda a -hdb b
@end example
ETEXI
@ -2272,8 +2272,8 @@ The following two example do exactly the same, to show how @option{-nic} can
be used to shorten the command line length (note that the e1000 is the default
on i386, so the @option{model=e1000} parameter could even be omitted here, too):
@example
qemu-system-i386 -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
qemu-system-i386 -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
@value{qemu_system} -netdev user,id=n1,ipv6=off -device e1000,netdev=n1,mac=52:54:98:76:54:32
@value{qemu_system} -nic user,ipv6=off,model=e1000,mac=52:54:98:76:54:32
@end example
@item -nic none
@ -2344,7 +2344,7 @@ can not be resolved.
Example:
@example
qemu-system-i386 -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
@value{qemu_system} -nic user,dnssearch=mgmt.example.org,dnssearch=example.org
@end example
@item domainname=@var{domain}
@ -2368,7 +2368,7 @@ a guest from a local directory.
Example (using pxelinux):
@example
qemu-system-i386 -hda linux.img -boot n -device e1000,netdev=n1 \
@value{qemu_system} -hda linux.img -boot n -device e1000,netdev=n1 \
-netdev user,id=n1,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
@end example
@ -2402,7 +2402,7 @@ screen 0, use the following:
@example
# on the host
qemu-system-i386 -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
@value{qemu_system} -nic user,hostfwd=tcp:127.0.0.1:6001-:6000
# this host xterm should open in the guest X11 server
xterm -display :1
@end example
@ -2412,7 +2412,7 @@ the guest, use the following:
@example
# on the host
qemu-system-i386 -nic user,hostfwd=tcp::5555-:23
@value{qemu_system} -nic user,hostfwd=tcp::5555-:23
telnet localhost 5555
@end example
@ -2431,7 +2431,7 @@ lifetime, like in the following example:
@example
# open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
# the guest accesses it
qemu-system-i386 -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
@value{qemu_system} -nic user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321
@end example
Or you can execute a command on every TCP connection established by the guest,
@ -2440,7 +2440,7 @@ so that QEMU behaves similar to an inetd process for that virtual server:
@example
# call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
# and connect the TCP stream to its stdin/stdout
qemu-system-i386 -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
@value{qemu_system} -nic 'user,id=n1,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
@end example
@end table
@ -2467,13 +2467,13 @@ Examples:
@example
#launch a QEMU instance with the default network script
qemu-system-i386 linux.img -nic tap
@value{qemu_system} linux.img -nic tap
@end example
@example
#launch a QEMU instance with two NICs, each one connected
#to a TAP device
qemu-system-i386 linux.img \
@value{qemu_system} linux.img \
-netdev tap,id=nd0,ifname=tap0 -device e1000,netdev=nd0 \
-netdev tap,id=nd1,ifname=tap1 -device rtl8139,netdev=nd1
@end example
@ -2481,7 +2481,7 @@ qemu-system-i386 linux.img \
@example
#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge br0
qemu-system-i386 linux.img -device virtio-net-pci,netdev=n1 \
@value{qemu_system} linux.img -device virtio-net-pci,netdev=n1 \
-netdev tap,id=n1,"helper=/path/to/qemu-bridge-helper"
@end example
@ -2498,13 +2498,13 @@ Examples:
@example
#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge br0
qemu-system-i386 linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
@value{qemu_system} linux.img -netdev bridge,id=n1 -device virtio-net,netdev=n1
@end example
@example
#launch a QEMU instance with the default network helper to
#connect a TAP device to bridge qemubr0
qemu-system-i386 linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
@value{qemu_system} linux.img -netdev bridge,br=qemubr0,id=n1 -device virtio-net,netdev=n1
@end example
@item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
@ -2519,11 +2519,11 @@ specifies an already opened TCP socket.
Example:
@example
# launch a first QEMU instance
qemu-system-i386 linux.img \
@value{qemu_system} linux.img \
-device e1000,netdev=n1,mac=52:54:00:12:34:56 \
-netdev socket,id=n1,listen=:1234
# connect the network of this instance to the network of the first instance
qemu-system-i386 linux.img \
@value{qemu_system} linux.img \
-device e1000,netdev=n2,mac=52:54:00:12:34:57 \
-netdev socket,id=n2,connect=127.0.0.1:1234
@end example
@ -2548,15 +2548,15 @@ Use @option{fd=h} to specify an already opened UDP multicast socket.
Example:
@example
# launch one QEMU instance
qemu-system-i386 linux.img \
@value{qemu_system} linux.img \
-device e1000,netdev=n1,mac=52:54:00:12:34:56 \
-netdev socket,id=n1,mcast=230.0.0.1:1234
# launch another QEMU instance on same "bus"
qemu-system-i386 linux.img \
@value{qemu_system} linux.img \
-device e1000,netdev=n2,mac=52:54:00:12:34:57 \
-netdev socket,id=n2,mcast=230.0.0.1:1234
# launch yet another QEMU instance on same "bus"
qemu-system-i386 linux.img \
@value{qemu_system} linux.img \
-device e1000,netdev=n3,mac=52:54:00:12:34:58 \
-netdev socket,id=n3,mcast=230.0.0.1:1234
@end example
@ -2564,7 +2564,7 @@ qemu-system-i386 linux.img \
Example (User Mode Linux compat.):
@example
# launch QEMU instance (note mcast address selected is UML's default)
qemu-system-i386 linux.img \
@value{qemu_system} linux.img \
-device e1000,netdev=n1,mac=52:54:00:12:34:56 \
-netdev socket,id=n1,mcast=239.192.168.1:1102
# launch UML
@ -2573,7 +2573,7 @@ qemu-system-i386 linux.img \
Example (send packets from host's 1.2.3.4):
@example
qemu-system-i386 linux.img \
@value{qemu_system} linux.img \
-device e1000,netdev=n1,mac=52:54:00:12:34:56 \
-netdev socket,id=n1,mcast=239.192.168.1:1102,localaddr=1.2.3.4
@end example
@ -2633,7 +2633,7 @@ brctl addif br-lan vmtunnel0
# on 4.3.2.1
# launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
qemu-system-i386 linux.img -device e1000,netdev=n1 \
@value{qemu_system} linux.img -device e1000,netdev=n1 \
-netdev l2tpv3,id=n1,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
@end example
@ -2650,7 +2650,7 @@ Example:
# launch vde switch
vde_switch -F -sock /tmp/myswitch
# launch QEMU instance
qemu-system-i386 linux.img -nic vde,sock=/tmp/myswitch
@value{qemu_system} linux.img -nic vde,sock=/tmp/myswitch
@end example
@item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
@ -3107,7 +3107,7 @@ and communicate. Requires the Linux @code{vhci} driver installed. Can
be used as following:
@example
qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
@value{qemu_system} [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
@end example
@item -bt device:@var{dev}[,vlan=@var{n}]
@ -3601,7 +3601,7 @@ connections will likely be TCP-based, but also UDP, pseudo TTY, or even
stdio are reasonable use case. The latter is allowing to start QEMU from
within gdb and establish the connection via a pipe:
@example
(gdb) target remote | exec qemu-system-i386 -gdb stdio ...
(gdb) target remote | exec @value{qemu_system} -gdb stdio ...
@end example
ETEXI
@ -4578,7 +4578,7 @@ which specify the queue number of cryptodev backend, the default of
@example
# qemu-system-x86_64 \
# @value{qemu_system} \
[...] \
-object cryptodev-backend-builtin,id=cryptodev0 \
-device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
@ -4598,7 +4598,7 @@ of cryptodev backend for multiqueue vhost-user, the default of @var{queues} is 1
@example
# qemu-system-x86_64 \
# @value{qemu_system} \
[...] \
-chardev socket,id=chardev0,path=/path/to/socket \
-object cryptodev-vhost-user,id=cryptodev0,chardev=chardev0 \
@ -4634,14 +4634,14 @@ The simplest (insecure) usage is to provide the secret inline
@example
# $QEMU -object secret,id=sec0,data=letmein,format=raw
# @value{qemu_system} -object secret,id=sec0,data=letmein,format=raw
@end example
The simplest secure usage is to provide the secret via a file
# printf "letmein" > mypasswd.txt
# $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
# @value{qemu_system} -object secret,id=sec0,file=mypasswd.txt,format=raw
For greater security, AES-256-CBC should be used. To illustrate usage,
consider the openssl command line tool which can encrypt the data. Note
@ -4677,7 +4677,7 @@ and specify that to be used to decrypt the user password. Pass the
contents of @code{iv.b64} to the second secret
@example
# $QEMU \
# @value{qemu_system} \
-object secret,id=secmaster0,format=base64,file=key.b64 \
-object secret,id=sec0,keyid=secmaster0,format=base64,\
data=$SECRET,iv=$(<iv.b64)
@ -4720,7 +4720,7 @@ negotiate keys used for attestation. The file must be encoded in base64.
e.g to launch a SEV guest
@example
# $QEMU \
# @value{qemu_system_x86} \
......
-object sev-guest,id=sev0,cbitpos=47,reduced-phys-bits=5 \
-machine ...,memory-encryption=sev0
@ -4742,7 +4742,7 @@ any commas in the distinguished name.
An example authorization object to validate a x509 distinguished name
would look like:
@example
# $QEMU \
# @value{qemu_system} \
...
-object 'authz-simple,id=auth0,identity=CN=laptop.example.com,,O=Example Org,,L=London,,ST=London,,C=GB' \
...
@ -4791,7 +4791,7 @@ a TLS x509 distinguished name, or a SASL username.
An example authorization object to validate a SASL username
would look like:
@example
# $QEMU \
# @value{qemu_system} \
...
-object authz-simple,id=auth0,filename=/etc/qemu/vnc-sasl.acl,refresh=yes
...
@ -4809,7 +4809,7 @@ An example authorization object to validate a TLS x509 distinguished
name would look like:
@example
# $QEMU \
# @value{qemu_system} \
...
-object authz-pam,id=auth0,service=qemu-vnc
...