RESEND: Inter-VM shared memory PCI device

resend for bug fix related to removal of irqfd

Support an inter-vm shared memory device that maps a shared-memory object as a
PCI device in the guest.  This patch also supports interrupts between guest by
communicating over a unix domain socket.  This patch applies to the qemu-kvm
repository.

    -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]

Interrupts are supported between multiple VMs by using a shared memory server
by using a chardev socket.

    -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
           [,chardev=<id>][,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
    -chardev socket,path=<path>,id=<id>

The shared memory server, sample programs and init scripts are in a git repo here:

    www.gitorious.org/nahanni

Signed-off-by: Cam Macdonell <cam@cs.ualberta.ca>
Signed-off-by: Anthony Liguori <aliguori@us.ibm.com>
This commit is contained in:
Cam Macdonell 2010-07-27 10:54:13 -06:00 committed by Anthony Liguori
parent 2431296806
commit 6cbf4c8c64
5 changed files with 883 additions and 0 deletions

View File

@ -190,6 +190,9 @@ obj-$(CONFIG_USB_OHCI) += usb-ohci.o
obj-y += rtl8139.o
obj-y += e1000.o
# Inter-VM PCI shared memory
obj-y += ivshmem.o
# Hardware support
obj-i386-y += vga.o
obj-i386-y += mc146818rtc.o i8259.o pc.o

828
hw/ivshmem.c Normal file
View File

@ -0,0 +1,828 @@
/*
* Inter-VM Shared Memory PCI device.
*
* Author:
* Cam Macdonell <cam@cs.ualberta.ca>
*
* Based On: cirrus_vga.c
* Copyright (c) 2004 Fabrice Bellard
* Copyright (c) 2004 Makoto Suzuki (suzu)
*
* and rtl8139.c
* Copyright (c) 2006 Igor Kovalenko
*
* This code is licensed under the GNU GPL v2.
*/
#include "hw.h"
#include "pc.h"
#include "pci.h"
#include "msix.h"
#include "kvm.h"
#include <sys/mman.h>
#include <sys/types.h>
#define IVSHMEM_IOEVENTFD 0
#define IVSHMEM_MSI 1
#define IVSHMEM_PEER 0
#define IVSHMEM_MASTER 1
#define IVSHMEM_REG_BAR_SIZE 0x100
//#define DEBUG_IVSHMEM
#ifdef DEBUG_IVSHMEM
#define IVSHMEM_DPRINTF(fmt, ...) \
do {printf("IVSHMEM: " fmt, ## __VA_ARGS__); } while (0)
#else
#define IVSHMEM_DPRINTF(fmt, ...)
#endif
typedef struct Peer {
int nb_eventfds;
int *eventfds;
} Peer;
typedef struct EventfdEntry {
PCIDevice *pdev;
int vector;
} EventfdEntry;
typedef struct IVShmemState {
PCIDevice dev;
uint32_t intrmask;
uint32_t intrstatus;
uint32_t doorbell;
CharDriverState **eventfd_chr;
CharDriverState *server_chr;
int ivshmem_mmio_io_addr;
pcibus_t mmio_addr;
pcibus_t shm_pci_addr;
uint64_t ivshmem_offset;
uint64_t ivshmem_size; /* size of shared memory region */
int shm_fd; /* shared memory file descriptor */
Peer *peers;
int nb_peers; /* how many guests we have space for */
int max_peer; /* maximum numbered peer */
int vm_id;
uint32_t vectors;
uint32_t features;
EventfdEntry *eventfd_table;
char * shmobj;
char * sizearg;
char * role;
int role_val; /* scalar to avoid multiple string comparisons */
} IVShmemState;
/* registers for the Inter-VM shared memory device */
enum ivshmem_registers {
INTRMASK = 0,
INTRSTATUS = 4,
IVPOSITION = 8,
DOORBELL = 12,
};
static inline uint32_t ivshmem_has_feature(IVShmemState *ivs,
unsigned int feature) {
return (ivs->features & (1 << feature));
}
static inline bool is_power_of_two(uint64_t x) {
return (x & (x - 1)) == 0;
}
static void ivshmem_map(PCIDevice *pci_dev, int region_num,
pcibus_t addr, pcibus_t size, int type)
{
IVShmemState *s = DO_UPCAST(IVShmemState, dev, pci_dev);
s->shm_pci_addr = addr;
if (s->ivshmem_offset > 0) {
cpu_register_physical_memory(s->shm_pci_addr, s->ivshmem_size,
s->ivshmem_offset);
}
IVSHMEM_DPRINTF("guest pci addr = %" FMT_PCIBUS ", guest h/w addr = %"
PRIu64 ", size = %" FMT_PCIBUS "\n", addr, s->ivshmem_offset, size);
}
/* accessing registers - based on rtl8139 */
static void ivshmem_update_irq(IVShmemState *s, int val)
{
int isr;
isr = (s->intrstatus & s->intrmask) & 0xffffffff;
/* don't print ISR resets */
if (isr) {
IVSHMEM_DPRINTF("Set IRQ to %d (%04x %04x)\n",
isr ? 1 : 0, s->intrstatus, s->intrmask);
}
qemu_set_irq(s->dev.irq[0], (isr != 0));
}
static void ivshmem_IntrMask_write(IVShmemState *s, uint32_t val)
{
IVSHMEM_DPRINTF("IntrMask write(w) val = 0x%04x\n", val);
s->intrmask = val;
ivshmem_update_irq(s, val);
}
static uint32_t ivshmem_IntrMask_read(IVShmemState *s)
{
uint32_t ret = s->intrmask;
IVSHMEM_DPRINTF("intrmask read(w) val = 0x%04x\n", ret);
return ret;
}
static void ivshmem_IntrStatus_write(IVShmemState *s, uint32_t val)
{
IVSHMEM_DPRINTF("IntrStatus write(w) val = 0x%04x\n", val);
s->intrstatus = val;
ivshmem_update_irq(s, val);
return;
}
static uint32_t ivshmem_IntrStatus_read(IVShmemState *s)
{
uint32_t ret = s->intrstatus;
/* reading ISR clears all interrupts */
s->intrstatus = 0;
ivshmem_update_irq(s, 0);
return ret;
}
static void ivshmem_io_writew(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
IVSHMEM_DPRINTF("We shouldn't be writing words\n");
}
static void ivshmem_io_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
IVShmemState *s = opaque;
uint64_t write_one = 1;
uint16_t dest = val >> 16;
uint16_t vector = val & 0xff;
addr &= 0xfc;
IVSHMEM_DPRINTF("writing to addr " TARGET_FMT_plx "\n", addr);
switch (addr)
{
case INTRMASK:
ivshmem_IntrMask_write(s, val);
break;
case INTRSTATUS:
ivshmem_IntrStatus_write(s, val);
break;
case DOORBELL:
/* check that dest VM ID is reasonable */
if ((dest < 0) || (dest > s->max_peer)) {
IVSHMEM_DPRINTF("Invalid destination VM ID (%d)\n", dest);
break;
}
/* check doorbell range */
if ((vector >= 0) && (vector < s->peers[dest].nb_eventfds)) {
IVSHMEM_DPRINTF("Writing %" PRId64 " to VM %d on vector %d\n",
write_one, dest, vector);
if (write(s->peers[dest].eventfds[vector],
&(write_one), 8) != 8) {
IVSHMEM_DPRINTF("error writing to eventfd\n");
}
}
break;
default:
IVSHMEM_DPRINTF("Invalid VM Doorbell VM %d\n", dest);
}
}
static void ivshmem_io_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
IVSHMEM_DPRINTF("We shouldn't be writing bytes\n");
}
static uint32_t ivshmem_io_readw(void *opaque, target_phys_addr_t addr)
{
IVSHMEM_DPRINTF("We shouldn't be reading words\n");
return 0;
}
static uint32_t ivshmem_io_readl(void *opaque, target_phys_addr_t addr)
{
IVShmemState *s = opaque;
uint32_t ret;
switch (addr)
{
case INTRMASK:
ret = ivshmem_IntrMask_read(s);
break;
case INTRSTATUS:
ret = ivshmem_IntrStatus_read(s);
break;
case IVPOSITION:
/* return my VM ID if the memory is mapped */
if (s->shm_fd > 0) {
ret = s->vm_id;
} else {
ret = -1;
}
break;
default:
IVSHMEM_DPRINTF("why are we reading " TARGET_FMT_plx "\n", addr);
ret = 0;
}
return ret;
}
static uint32_t ivshmem_io_readb(void *opaque, target_phys_addr_t addr)
{
IVSHMEM_DPRINTF("We shouldn't be reading bytes\n");
return 0;
}
static CPUReadMemoryFunc * const ivshmem_mmio_read[3] = {
ivshmem_io_readb,
ivshmem_io_readw,
ivshmem_io_readl,
};
static CPUWriteMemoryFunc * const ivshmem_mmio_write[3] = {
ivshmem_io_writeb,
ivshmem_io_writew,
ivshmem_io_writel,
};
static void ivshmem_receive(void *opaque, const uint8_t *buf, int size)
{
IVShmemState *s = opaque;
ivshmem_IntrStatus_write(s, *buf);
IVSHMEM_DPRINTF("ivshmem_receive 0x%02x\n", *buf);
}
static int ivshmem_can_receive(void * opaque)
{
return 8;
}
static void ivshmem_event(void *opaque, int event)
{
IVSHMEM_DPRINTF("ivshmem_event %d\n", event);
}
static void fake_irqfd(void *opaque, const uint8_t *buf, int size) {
EventfdEntry *entry = opaque;
PCIDevice *pdev = entry->pdev;
IVSHMEM_DPRINTF("interrupt on vector %p %d\n", pdev, entry->vector);
msix_notify(pdev, entry->vector);
}
static CharDriverState* create_eventfd_chr_device(void * opaque, int eventfd,
int vector)
{
/* create a event character device based on the passed eventfd */
IVShmemState *s = opaque;
CharDriverState * chr;
chr = qemu_chr_open_eventfd(eventfd);
if (chr == NULL) {
fprintf(stderr, "creating eventfd for eventfd %d failed\n", eventfd);
exit(-1);
}
/* if MSI is supported we need multiple interrupts */
if (ivshmem_has_feature(s, IVSHMEM_MSI)) {
s->eventfd_table[vector].pdev = &s->dev;
s->eventfd_table[vector].vector = vector;
qemu_chr_add_handlers(chr, ivshmem_can_receive, fake_irqfd,
ivshmem_event, &s->eventfd_table[vector]);
} else {
qemu_chr_add_handlers(chr, ivshmem_can_receive, ivshmem_receive,
ivshmem_event, s);
}
return chr;
}
static int check_shm_size(IVShmemState *s, int fd) {
/* check that the guest isn't going to try and map more memory than the
* the object has allocated return -1 to indicate error */
struct stat buf;
fstat(fd, &buf);
if (s->ivshmem_size > buf.st_size) {
fprintf(stderr, "IVSHMEM ERROR: Requested memory size greater");
fprintf(stderr, " than shared object size (%" PRIu64 " > %ld)\n",
s->ivshmem_size, buf.st_size);
return -1;
} else {
return 0;
}
}
/* create the shared memory BAR when we are not using the server, so we can
* create the BAR and map the memory immediately */
static void create_shared_memory_BAR(IVShmemState *s, int fd) {
void * ptr;
s->shm_fd = fd;
ptr = mmap(0, s->ivshmem_size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
s->ivshmem_offset = qemu_ram_alloc_from_ptr(&s->dev.qdev, "ivshmem.bar2",
s->ivshmem_size, ptr);
/* region for shared memory */
pci_register_bar(&s->dev, 2, s->ivshmem_size,
PCI_BASE_ADDRESS_SPACE_MEMORY, ivshmem_map);
}
static void close_guest_eventfds(IVShmemState *s, int posn)
{
int i, guest_curr_max;
guest_curr_max = s->peers[posn].nb_eventfds;
for (i = 0; i < guest_curr_max; i++) {
kvm_set_ioeventfd_mmio_long(s->peers[posn].eventfds[i],
s->mmio_addr + DOORBELL, (posn << 16) | i, 0);
close(s->peers[posn].eventfds[i]);
}
qemu_free(s->peers[posn].eventfds);
s->peers[posn].nb_eventfds = 0;
}
static void setup_ioeventfds(IVShmemState *s) {
int i, j;
for (i = 0; i <= s->max_peer; i++) {
for (j = 0; j < s->peers[i].nb_eventfds; j++) {
kvm_set_ioeventfd_mmio_long(s->peers[i].eventfds[j],
s->mmio_addr + DOORBELL, (i << 16) | j, 1);
}
}
}
/* this function increase the dynamic storage need to store data about other
* guests */
static void increase_dynamic_storage(IVShmemState *s, int new_min_size) {
int j, old_nb_alloc;
old_nb_alloc = s->nb_peers;
while (new_min_size >= s->nb_peers)
s->nb_peers = s->nb_peers * 2;
IVSHMEM_DPRINTF("bumping storage to %d guests\n", s->nb_peers);
s->peers = qemu_realloc(s->peers, s->nb_peers * sizeof(Peer));
/* zero out new pointers */
for (j = old_nb_alloc; j < s->nb_peers; j++) {
s->peers[j].eventfds = NULL;
s->peers[j].nb_eventfds = 0;
}
}
static void ivshmem_read(void *opaque, const uint8_t * buf, int flags)
{
IVShmemState *s = opaque;
int incoming_fd, tmp_fd;
int guest_max_eventfd;
long incoming_posn;
memcpy(&incoming_posn, buf, sizeof(long));
/* pick off s->server_chr->msgfd and store it, posn should accompany msg */
tmp_fd = qemu_chr_get_msgfd(s->server_chr);
IVSHMEM_DPRINTF("posn is %ld, fd is %d\n", incoming_posn, tmp_fd);
/* make sure we have enough space for this guest */
if (incoming_posn >= s->nb_peers) {
increase_dynamic_storage(s, incoming_posn);
}
if (tmp_fd == -1) {
/* if posn is positive and unseen before then this is our posn*/
if ((incoming_posn >= 0) &&
(s->peers[incoming_posn].eventfds == NULL)) {
/* receive our posn */
s->vm_id = incoming_posn;
return;
} else {
/* otherwise an fd == -1 means an existing guest has gone away */
IVSHMEM_DPRINTF("posn %ld has gone away\n", incoming_posn);
close_guest_eventfds(s, incoming_posn);
return;
}
}
/* because of the implementation of get_msgfd, we need a dup */
incoming_fd = dup(tmp_fd);
if (incoming_fd == -1) {
fprintf(stderr, "could not allocate file descriptor %s\n",
strerror(errno));
return;
}
/* if the position is -1, then it's shared memory region fd */
if (incoming_posn == -1) {
void * map_ptr;
s->max_peer = 0;
if (check_shm_size(s, incoming_fd) == -1) {
exit(-1);
}
/* mmap the region and map into the BAR2 */
map_ptr = mmap(0, s->ivshmem_size, PROT_READ|PROT_WRITE, MAP_SHARED,
incoming_fd, 0);
s->ivshmem_offset = qemu_ram_alloc_from_ptr(&s->dev.qdev,
"ivshmem.bar2", s->ivshmem_size, map_ptr);
IVSHMEM_DPRINTF("guest pci addr = %" FMT_PCIBUS ", guest h/w addr = %"
PRIu64 ", size = %" PRIu64 "\n", s->shm_pci_addr,
s->ivshmem_offset, s->ivshmem_size);
if (s->shm_pci_addr > 0) {
/* map memory into BAR2 */
cpu_register_physical_memory(s->shm_pci_addr, s->ivshmem_size,
s->ivshmem_offset);
}
/* only store the fd if it is successfully mapped */
s->shm_fd = incoming_fd;
return;
}
/* each guest has an array of eventfds, and we keep track of how many
* guests for each VM */
guest_max_eventfd = s->peers[incoming_posn].nb_eventfds;
if (guest_max_eventfd == 0) {
/* one eventfd per MSI vector */
s->peers[incoming_posn].eventfds = (int *) qemu_malloc(s->vectors *
sizeof(int));
}
/* this is an eventfd for a particular guest VM */
IVSHMEM_DPRINTF("eventfds[%ld][%d] = %d\n", incoming_posn,
guest_max_eventfd, incoming_fd);
s->peers[incoming_posn].eventfds[guest_max_eventfd] = incoming_fd;
/* increment count for particular guest */
s->peers[incoming_posn].nb_eventfds++;
/* keep track of the maximum VM ID */
if (incoming_posn > s->max_peer) {
s->max_peer = incoming_posn;
}
if (incoming_posn == s->vm_id) {
s->eventfd_chr[guest_max_eventfd] = create_eventfd_chr_device(s,
s->peers[s->vm_id].eventfds[guest_max_eventfd],
guest_max_eventfd);
}
if (ivshmem_has_feature(s, IVSHMEM_IOEVENTFD)) {
if (kvm_set_ioeventfd_mmio_long(incoming_fd, s->mmio_addr + DOORBELL,
(incoming_posn << 16) | guest_max_eventfd, 1) < 0) {
fprintf(stderr, "ivshmem: ioeventfd not available\n");
}
}
return;
}
static void ivshmem_reset(DeviceState *d)
{
IVShmemState *s = DO_UPCAST(IVShmemState, dev.qdev, d);
s->intrstatus = 0;
return;
}
static void ivshmem_mmio_map(PCIDevice *pci_dev, int region_num,
pcibus_t addr, pcibus_t size, int type)
{
IVShmemState *s = DO_UPCAST(IVShmemState, dev, pci_dev);
s->mmio_addr = addr;
cpu_register_physical_memory(addr + 0, IVSHMEM_REG_BAR_SIZE,
s->ivshmem_mmio_io_addr);
if (ivshmem_has_feature(s, IVSHMEM_IOEVENTFD)) {
setup_ioeventfds(s);
}
}
static uint64_t ivshmem_get_size(IVShmemState * s) {
uint64_t value;
char *ptr;
value = strtoull(s->sizearg, &ptr, 10);
switch (*ptr) {
case 0: case 'M': case 'm':
value <<= 20;
break;
case 'G': case 'g':
value <<= 30;
break;
default:
fprintf(stderr, "qemu: invalid ram size: %s\n", s->sizearg);
exit(1);
}
/* BARs must be a power of 2 */
if (!is_power_of_two(value)) {
fprintf(stderr, "ivshmem: size must be power of 2\n");
exit(1);
}
return value;
}
static void ivshmem_setup_msi(IVShmemState * s) {
int i;
/* allocate the MSI-X vectors */
if (!msix_init(&s->dev, s->vectors, 1, 0)) {
pci_register_bar(&s->dev, 1,
msix_bar_size(&s->dev),
PCI_BASE_ADDRESS_SPACE_MEMORY,
msix_mmio_map);
IVSHMEM_DPRINTF("msix initialized (%d vectors)\n", s->vectors);
} else {
IVSHMEM_DPRINTF("msix initialization failed\n");
exit(1);
}
/* 'activate' the vectors */
for (i = 0; i < s->vectors; i++) {
msix_vector_use(&s->dev, i);
}
/* allocate Qemu char devices for receiving interrupts */
s->eventfd_table = qemu_mallocz(s->vectors * sizeof(EventfdEntry));
}
static void ivshmem_save(QEMUFile* f, void *opaque)
{
IVShmemState *proxy = opaque;
IVSHMEM_DPRINTF("ivshmem_save\n");
pci_device_save(&proxy->dev, f);
if (ivshmem_has_feature(proxy, IVSHMEM_MSI)) {
msix_save(&proxy->dev, f);
} else {
qemu_put_be32(f, proxy->intrstatus);
qemu_put_be32(f, proxy->intrmask);
}
}
static int ivshmem_load(QEMUFile* f, void *opaque, int version_id)
{
IVSHMEM_DPRINTF("ivshmem_load\n");
IVShmemState *proxy = opaque;
int ret, i;
if (version_id > 0) {
return -EINVAL;
}
if (proxy->role_val == IVSHMEM_PEER) {
fprintf(stderr, "ivshmem: 'peer' devices are not migratable\n");
return -EINVAL;
}
ret = pci_device_load(&proxy->dev, f);
if (ret) {
return ret;
}
if (ivshmem_has_feature(proxy, IVSHMEM_MSI)) {
msix_load(&proxy->dev, f);
for (i = 0; i < proxy->vectors; i++) {
msix_vector_use(&proxy->dev, i);
}
} else {
proxy->intrstatus = qemu_get_be32(f);
proxy->intrmask = qemu_get_be32(f);
}
return 0;
}
static int pci_ivshmem_init(PCIDevice *dev)
{
IVShmemState *s = DO_UPCAST(IVShmemState, dev, dev);
uint8_t *pci_conf;
if (s->sizearg == NULL)
s->ivshmem_size = 4 << 20; /* 4 MB default */
else {
s->ivshmem_size = ivshmem_get_size(s);
}
register_savevm(&s->dev.qdev, "ivshmem", 0, 0, ivshmem_save, ivshmem_load,
dev);
/* IRQFD requires MSI */
if (ivshmem_has_feature(s, IVSHMEM_IOEVENTFD) &&
!ivshmem_has_feature(s, IVSHMEM_MSI)) {
fprintf(stderr, "ivshmem: ioeventfd/irqfd requires MSI\n");
exit(1);
}
/* check that role is reasonable */
if (s->role) {
if (strncmp(s->role, "peer", 5) == 0) {
s->role_val = IVSHMEM_PEER;
} else if (strncmp(s->role, "master", 7) == 0) {
s->role_val = IVSHMEM_MASTER;
} else {
fprintf(stderr, "ivshmem: 'role' must be 'peer' or 'master'\n");
exit(1);
}
} else {
s->role_val = IVSHMEM_MASTER; /* default */
}
if (s->role_val == IVSHMEM_PEER) {
register_device_unmigratable(&s->dev.qdev, "ivshmem", s);
}
pci_conf = s->dev.config;
pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT_QUMRANET);
pci_conf[0x02] = 0x10;
pci_conf[0x03] = 0x11;
pci_conf[PCI_COMMAND] = PCI_COMMAND_IO | PCI_COMMAND_MEMORY;
pci_config_set_class(pci_conf, PCI_CLASS_MEMORY_RAM);
pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL;
pci_config_set_interrupt_pin(pci_conf, 1);
s->shm_pci_addr = 0;
s->ivshmem_offset = 0;
s->shm_fd = 0;
s->ivshmem_mmio_io_addr = cpu_register_io_memory(ivshmem_mmio_read,
ivshmem_mmio_write, s);
/* region for registers*/
pci_register_bar(&s->dev, 0, IVSHMEM_REG_BAR_SIZE,
PCI_BASE_ADDRESS_SPACE_MEMORY, ivshmem_mmio_map);
if ((s->server_chr != NULL) &&
(strncmp(s->server_chr->filename, "unix:", 5) == 0)) {
/* if we get a UNIX socket as the parameter we will talk
* to the ivshmem server to receive the memory region */
if (s->shmobj != NULL) {
fprintf(stderr, "WARNING: do not specify both 'chardev' "
"and 'shm' with ivshmem\n");
}
IVSHMEM_DPRINTF("using shared memory server (socket = %s)\n",
s->server_chr->filename);
if (ivshmem_has_feature(s, IVSHMEM_MSI)) {
ivshmem_setup_msi(s);
}
/* we allocate enough space for 16 guests and grow as needed */
s->nb_peers = 16;
s->vm_id = -1;
/* allocate/initialize space for interrupt handling */
s->peers = qemu_mallocz(s->nb_peers * sizeof(Peer));
pci_register_bar(&s->dev, 2, s->ivshmem_size,
PCI_BASE_ADDRESS_SPACE_MEMORY, ivshmem_map);
s->eventfd_chr = qemu_mallocz(s->vectors * sizeof(CharDriverState *));
qemu_chr_add_handlers(s->server_chr, ivshmem_can_receive, ivshmem_read,
ivshmem_event, s);
} else {
/* just map the file immediately, we're not using a server */
int fd;
if (s->shmobj == NULL) {
fprintf(stderr, "Must specify 'chardev' or 'shm' to ivshmem\n");
}
IVSHMEM_DPRINTF("using shm_open (shm object = %s)\n", s->shmobj);
/* try opening with O_EXCL and if it succeeds zero the memory
* by truncating to 0 */
if ((fd = shm_open(s->shmobj, O_CREAT|O_RDWR|O_EXCL,
S_IRWXU|S_IRWXG|S_IRWXO)) > 0) {
/* truncate file to length PCI device's memory */
if (ftruncate(fd, s->ivshmem_size) != 0) {
fprintf(stderr, "ivshmem: could not truncate shared file\n");
}
} else if ((fd = shm_open(s->shmobj, O_CREAT|O_RDWR,
S_IRWXU|S_IRWXG|S_IRWXO)) < 0) {
fprintf(stderr, "ivshmem: could not open shared file\n");
exit(-1);
}
if (check_shm_size(s, fd) == -1) {
exit(-1);
}
create_shared_memory_BAR(s, fd);
}
return 0;
}
static int pci_ivshmem_uninit(PCIDevice *dev)
{
IVShmemState *s = DO_UPCAST(IVShmemState, dev, dev);
cpu_unregister_io_memory(s->ivshmem_mmio_io_addr);
unregister_savevm(&dev->qdev, "ivshmem", s);
return 0;
}
static PCIDeviceInfo ivshmem_info = {
.qdev.name = "ivshmem",
.qdev.size = sizeof(IVShmemState),
.qdev.reset = ivshmem_reset,
.init = pci_ivshmem_init,
.exit = pci_ivshmem_uninit,
.qdev.props = (Property[]) {
DEFINE_PROP_CHR("chardev", IVShmemState, server_chr),
DEFINE_PROP_STRING("size", IVShmemState, sizearg),
DEFINE_PROP_UINT32("vectors", IVShmemState, vectors, 1),
DEFINE_PROP_BIT("ioeventfd", IVShmemState, features, IVSHMEM_IOEVENTFD, false),
DEFINE_PROP_BIT("msi", IVShmemState, features, IVSHMEM_MSI, true),
DEFINE_PROP_STRING("shm", IVShmemState, shmobj),
DEFINE_PROP_STRING("role", IVShmemState, role),
DEFINE_PROP_END_OF_LIST(),
}
};
static void ivshmem_register_devices(void)
{
pci_qdev_register(&ivshmem_info);
}
device_init(ivshmem_register_devices)

View File

@ -2087,6 +2087,12 @@ static void tcp_chr_read(void *opaque)
}
}
CharDriverState *qemu_chr_open_eventfd(int eventfd){
return qemu_chr_open_fd(eventfd, eventfd);
}
static void tcp_chr_connect(void *opaque)
{
CharDriverState *chr = opaque;

View File

@ -94,6 +94,9 @@ void qemu_chr_info_print(Monitor *mon, const QObject *ret_data);
void qemu_chr_info(Monitor *mon, QObject **ret_data);
CharDriverState *qemu_chr_find(const char *name);
/* add an eventfd to the qemu devices that are polled */
CharDriverState *qemu_chr_open_eventfd(int eventfd);
extern int term_escape_char;
/* async I/O support */

View File

@ -706,6 +706,49 @@ Using the @option{-net socket} option, it is possible to make VLANs
that span several QEMU instances. See @ref{sec_invocation} to have a
basic example.
@section Other Devices
@subsection Inter-VM Shared Memory device
With KVM enabled on a Linux host, a shared memory device is available. Guests
map a POSIX shared memory region into the guest as a PCI device that enables
zero-copy communication to the application level of the guests. The basic
syntax is:
@example
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
@end example
If desired, interrupts can be sent between guest VMs accessing the same shared
memory region. Interrupt support requires using a shared memory server and
using a chardev socket to connect to it. The code for the shared memory server
is qemu.git/contrib/ivshmem-server. An example syntax when using the shared
memory server is:
@example
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
[,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
qemu -chardev socket,path=<path>,id=<id>
@end example
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
using the same server to communicate via interrupts. Guests can read their
VM ID from a device register (see example code). Since receiving the shared
memory region from the server is asynchronous, there is a (small) chance the
guest may boot before the shared memory is attached. To allow an application
to ensure shared memory is attached, the VM ID register will return -1 (an
invalid VM ID) until the memory is attached. Once the shared memory is
attached, the VM ID will return the guest's valid VM ID. With these semantics,
the guest application can check to ensure the shared memory is attached to the
guest before proceeding.
The @option{role} argument can be set to either master or peer and will affect
how the shared memory is migrated. With @option{role=master}, the guest will
copy the shared memory on migration to the destination host. With
@option{role=peer}, the guest will not be able to migrate with the device attached.
With the @option{peer} case, the device should be detached and then reattached
after migration using the PCI hotplug support.
@node direct_linux_boot
@section Direct Linux Boot