mirror of https://gitee.com/openkylin/qemu.git
fpu/softfloat: re-factor add/sub
We can now add float16_add/sub and use the common decompose and canonicalize functions to have a single implementation for float16/32/64 add and sub functions. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Philippe Mathieu-Daudé <f4bug@amsat.org>
This commit is contained in:
parent
a90119b5a2
commit
6fff216769
892
fpu/softfloat.c
892
fpu/softfloat.c
|
@ -83,6 +83,7 @@ this code that are retained.
|
|||
* target-dependent and needs the TARGET_* macros.
|
||||
*/
|
||||
#include "qemu/osdep.h"
|
||||
#include "qemu/bitops.h"
|
||||
#include "fpu/softfloat.h"
|
||||
|
||||
/* We only need stdlib for abort() */
|
||||
|
@ -270,6 +271,470 @@ static const FloatFmt float64_params = {
|
|||
FLOAT_PARAMS(11, 52)
|
||||
};
|
||||
|
||||
/* Unpack a float to parts, but do not canonicalize. */
|
||||
static inline FloatParts unpack_raw(FloatFmt fmt, uint64_t raw)
|
||||
{
|
||||
const int sign_pos = fmt.frac_size + fmt.exp_size;
|
||||
|
||||
return (FloatParts) {
|
||||
.cls = float_class_unclassified,
|
||||
.sign = extract64(raw, sign_pos, 1),
|
||||
.exp = extract64(raw, fmt.frac_size, fmt.exp_size),
|
||||
.frac = extract64(raw, 0, fmt.frac_size),
|
||||
};
|
||||
}
|
||||
|
||||
static inline FloatParts float16_unpack_raw(float16 f)
|
||||
{
|
||||
return unpack_raw(float16_params, f);
|
||||
}
|
||||
|
||||
static inline FloatParts float32_unpack_raw(float32 f)
|
||||
{
|
||||
return unpack_raw(float32_params, f);
|
||||
}
|
||||
|
||||
static inline FloatParts float64_unpack_raw(float64 f)
|
||||
{
|
||||
return unpack_raw(float64_params, f);
|
||||
}
|
||||
|
||||
/* Pack a float from parts, but do not canonicalize. */
|
||||
static inline uint64_t pack_raw(FloatFmt fmt, FloatParts p)
|
||||
{
|
||||
const int sign_pos = fmt.frac_size + fmt.exp_size;
|
||||
uint64_t ret = deposit64(p.frac, fmt.frac_size, fmt.exp_size, p.exp);
|
||||
return deposit64(ret, sign_pos, 1, p.sign);
|
||||
}
|
||||
|
||||
static inline float16 float16_pack_raw(FloatParts p)
|
||||
{
|
||||
return make_float16(pack_raw(float16_params, p));
|
||||
}
|
||||
|
||||
static inline float32 float32_pack_raw(FloatParts p)
|
||||
{
|
||||
return make_float32(pack_raw(float32_params, p));
|
||||
}
|
||||
|
||||
static inline float64 float64_pack_raw(FloatParts p)
|
||||
{
|
||||
return make_float64(pack_raw(float64_params, p));
|
||||
}
|
||||
|
||||
/* Canonicalize EXP and FRAC, setting CLS. */
|
||||
static FloatParts canonicalize(FloatParts part, const FloatFmt *parm,
|
||||
float_status *status)
|
||||
{
|
||||
if (part.exp == parm->exp_max) {
|
||||
if (part.frac == 0) {
|
||||
part.cls = float_class_inf;
|
||||
} else {
|
||||
#ifdef NO_SIGNALING_NANS
|
||||
part.cls = float_class_qnan;
|
||||
#else
|
||||
int64_t msb = part.frac << (parm->frac_shift + 2);
|
||||
if ((msb < 0) == status->snan_bit_is_one) {
|
||||
part.cls = float_class_snan;
|
||||
} else {
|
||||
part.cls = float_class_qnan;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
} else if (part.exp == 0) {
|
||||
if (likely(part.frac == 0)) {
|
||||
part.cls = float_class_zero;
|
||||
} else if (status->flush_inputs_to_zero) {
|
||||
float_raise(float_flag_input_denormal, status);
|
||||
part.cls = float_class_zero;
|
||||
part.frac = 0;
|
||||
} else {
|
||||
int shift = clz64(part.frac) - 1;
|
||||
part.cls = float_class_normal;
|
||||
part.exp = parm->frac_shift - parm->exp_bias - shift + 1;
|
||||
part.frac <<= shift;
|
||||
}
|
||||
} else {
|
||||
part.cls = float_class_normal;
|
||||
part.exp -= parm->exp_bias;
|
||||
part.frac = DECOMPOSED_IMPLICIT_BIT + (part.frac << parm->frac_shift);
|
||||
}
|
||||
return part;
|
||||
}
|
||||
|
||||
/* Round and uncanonicalize a floating-point number by parts. There
|
||||
* are FRAC_SHIFT bits that may require rounding at the bottom of the
|
||||
* fraction; these bits will be removed. The exponent will be biased
|
||||
* by EXP_BIAS and must be bounded by [EXP_MAX-1, 0].
|
||||
*/
|
||||
|
||||
static FloatParts round_canonical(FloatParts p, float_status *s,
|
||||
const FloatFmt *parm)
|
||||
{
|
||||
const uint64_t frac_lsbm1 = parm->frac_lsbm1;
|
||||
const uint64_t round_mask = parm->round_mask;
|
||||
const uint64_t roundeven_mask = parm->roundeven_mask;
|
||||
const int exp_max = parm->exp_max;
|
||||
const int frac_shift = parm->frac_shift;
|
||||
uint64_t frac, inc;
|
||||
int exp, flags = 0;
|
||||
bool overflow_norm;
|
||||
|
||||
frac = p.frac;
|
||||
exp = p.exp;
|
||||
|
||||
switch (p.cls) {
|
||||
case float_class_normal:
|
||||
switch (s->float_rounding_mode) {
|
||||
case float_round_nearest_even:
|
||||
overflow_norm = false;
|
||||
inc = ((frac & roundeven_mask) != frac_lsbm1 ? frac_lsbm1 : 0);
|
||||
break;
|
||||
case float_round_ties_away:
|
||||
overflow_norm = false;
|
||||
inc = frac_lsbm1;
|
||||
break;
|
||||
case float_round_to_zero:
|
||||
overflow_norm = true;
|
||||
inc = 0;
|
||||
break;
|
||||
case float_round_up:
|
||||
inc = p.sign ? 0 : round_mask;
|
||||
overflow_norm = p.sign;
|
||||
break;
|
||||
case float_round_down:
|
||||
inc = p.sign ? round_mask : 0;
|
||||
overflow_norm = !p.sign;
|
||||
break;
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
}
|
||||
|
||||
exp += parm->exp_bias;
|
||||
if (likely(exp > 0)) {
|
||||
if (frac & round_mask) {
|
||||
flags |= float_flag_inexact;
|
||||
frac += inc;
|
||||
if (frac & DECOMPOSED_OVERFLOW_BIT) {
|
||||
frac >>= 1;
|
||||
exp++;
|
||||
}
|
||||
}
|
||||
frac >>= frac_shift;
|
||||
|
||||
if (unlikely(exp >= exp_max)) {
|
||||
flags |= float_flag_overflow | float_flag_inexact;
|
||||
if (overflow_norm) {
|
||||
exp = exp_max - 1;
|
||||
frac = -1;
|
||||
} else {
|
||||
p.cls = float_class_inf;
|
||||
goto do_inf;
|
||||
}
|
||||
}
|
||||
} else if (s->flush_to_zero) {
|
||||
flags |= float_flag_output_denormal;
|
||||
p.cls = float_class_zero;
|
||||
goto do_zero;
|
||||
} else {
|
||||
bool is_tiny = (s->float_detect_tininess
|
||||
== float_tininess_before_rounding)
|
||||
|| (exp < 0)
|
||||
|| !((frac + inc) & DECOMPOSED_OVERFLOW_BIT);
|
||||
|
||||
shift64RightJamming(frac, 1 - exp, &frac);
|
||||
if (frac & round_mask) {
|
||||
/* Need to recompute round-to-even. */
|
||||
if (s->float_rounding_mode == float_round_nearest_even) {
|
||||
inc = ((frac & roundeven_mask) != frac_lsbm1
|
||||
? frac_lsbm1 : 0);
|
||||
}
|
||||
flags |= float_flag_inexact;
|
||||
frac += inc;
|
||||
}
|
||||
|
||||
exp = (frac & DECOMPOSED_IMPLICIT_BIT ? 1 : 0);
|
||||
frac >>= frac_shift;
|
||||
|
||||
if (is_tiny && (flags & float_flag_inexact)) {
|
||||
flags |= float_flag_underflow;
|
||||
}
|
||||
if (exp == 0 && frac == 0) {
|
||||
p.cls = float_class_zero;
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
||||
case float_class_zero:
|
||||
do_zero:
|
||||
exp = 0;
|
||||
frac = 0;
|
||||
break;
|
||||
|
||||
case float_class_inf:
|
||||
do_inf:
|
||||
exp = exp_max;
|
||||
frac = 0;
|
||||
break;
|
||||
|
||||
case float_class_qnan:
|
||||
case float_class_snan:
|
||||
exp = exp_max;
|
||||
break;
|
||||
|
||||
default:
|
||||
g_assert_not_reached();
|
||||
}
|
||||
|
||||
float_raise(flags, s);
|
||||
p.exp = exp;
|
||||
p.frac = frac;
|
||||
return p;
|
||||
}
|
||||
|
||||
static FloatParts float16_unpack_canonical(float16 f, float_status *s)
|
||||
{
|
||||
return canonicalize(float16_unpack_raw(f), &float16_params, s);
|
||||
}
|
||||
|
||||
static float16 float16_round_pack_canonical(FloatParts p, float_status *s)
|
||||
{
|
||||
switch (p.cls) {
|
||||
case float_class_dnan:
|
||||
return float16_default_nan(s);
|
||||
case float_class_msnan:
|
||||
return float16_maybe_silence_nan(float16_pack_raw(p), s);
|
||||
default:
|
||||
p = round_canonical(p, s, &float16_params);
|
||||
return float16_pack_raw(p);
|
||||
}
|
||||
}
|
||||
|
||||
static FloatParts float32_unpack_canonical(float32 f, float_status *s)
|
||||
{
|
||||
return canonicalize(float32_unpack_raw(f), &float32_params, s);
|
||||
}
|
||||
|
||||
static float32 float32_round_pack_canonical(FloatParts p, float_status *s)
|
||||
{
|
||||
switch (p.cls) {
|
||||
case float_class_dnan:
|
||||
return float32_default_nan(s);
|
||||
case float_class_msnan:
|
||||
return float32_maybe_silence_nan(float32_pack_raw(p), s);
|
||||
default:
|
||||
p = round_canonical(p, s, &float32_params);
|
||||
return float32_pack_raw(p);
|
||||
}
|
||||
}
|
||||
|
||||
static FloatParts float64_unpack_canonical(float64 f, float_status *s)
|
||||
{
|
||||
return canonicalize(float64_unpack_raw(f), &float64_params, s);
|
||||
}
|
||||
|
||||
static float64 float64_round_pack_canonical(FloatParts p, float_status *s)
|
||||
{
|
||||
switch (p.cls) {
|
||||
case float_class_dnan:
|
||||
return float64_default_nan(s);
|
||||
case float_class_msnan:
|
||||
return float64_maybe_silence_nan(float64_pack_raw(p), s);
|
||||
default:
|
||||
p = round_canonical(p, s, &float64_params);
|
||||
return float64_pack_raw(p);
|
||||
}
|
||||
}
|
||||
|
||||
/* Simple helpers for checking if what NaN we have */
|
||||
static bool is_nan(FloatClass c)
|
||||
{
|
||||
return unlikely(c >= float_class_qnan);
|
||||
}
|
||||
static bool is_snan(FloatClass c)
|
||||
{
|
||||
return c == float_class_snan;
|
||||
}
|
||||
static bool is_qnan(FloatClass c)
|
||||
{
|
||||
return c == float_class_qnan;
|
||||
}
|
||||
|
||||
static FloatParts pick_nan(FloatParts a, FloatParts b, float_status *s)
|
||||
{
|
||||
if (is_snan(a.cls) || is_snan(b.cls)) {
|
||||
s->float_exception_flags |= float_flag_invalid;
|
||||
}
|
||||
|
||||
if (s->default_nan_mode) {
|
||||
a.cls = float_class_dnan;
|
||||
} else {
|
||||
if (pickNaN(is_qnan(a.cls), is_snan(a.cls),
|
||||
is_qnan(b.cls), is_snan(b.cls),
|
||||
a.frac > b.frac ||
|
||||
(a.frac == b.frac && a.sign < b.sign))) {
|
||||
a = b;
|
||||
}
|
||||
a.cls = float_class_msnan;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the result of adding or subtracting the values of the
|
||||
* floating-point values `a' and `b'. The operation is performed
|
||||
* according to the IEC/IEEE Standard for Binary Floating-Point
|
||||
* Arithmetic.
|
||||
*/
|
||||
|
||||
static FloatParts addsub_floats(FloatParts a, FloatParts b, bool subtract,
|
||||
float_status *s)
|
||||
{
|
||||
bool a_sign = a.sign;
|
||||
bool b_sign = b.sign ^ subtract;
|
||||
|
||||
if (a_sign != b_sign) {
|
||||
/* Subtraction */
|
||||
|
||||
if (a.cls == float_class_normal && b.cls == float_class_normal) {
|
||||
if (a.exp > b.exp || (a.exp == b.exp && a.frac >= b.frac)) {
|
||||
shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
|
||||
a.frac = a.frac - b.frac;
|
||||
} else {
|
||||
shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
|
||||
a.frac = b.frac - a.frac;
|
||||
a.exp = b.exp;
|
||||
a_sign ^= 1;
|
||||
}
|
||||
|
||||
if (a.frac == 0) {
|
||||
a.cls = float_class_zero;
|
||||
a.sign = s->float_rounding_mode == float_round_down;
|
||||
} else {
|
||||
int shift = clz64(a.frac) - 1;
|
||||
a.frac = a.frac << shift;
|
||||
a.exp = a.exp - shift;
|
||||
a.sign = a_sign;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if (is_nan(a.cls) || is_nan(b.cls)) {
|
||||
return pick_nan(a, b, s);
|
||||
}
|
||||
if (a.cls == float_class_inf) {
|
||||
if (b.cls == float_class_inf) {
|
||||
float_raise(float_flag_invalid, s);
|
||||
a.cls = float_class_dnan;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if (a.cls == float_class_zero && b.cls == float_class_zero) {
|
||||
a.sign = s->float_rounding_mode == float_round_down;
|
||||
return a;
|
||||
}
|
||||
if (a.cls == float_class_zero || b.cls == float_class_inf) {
|
||||
b.sign = a_sign ^ 1;
|
||||
return b;
|
||||
}
|
||||
if (b.cls == float_class_zero) {
|
||||
return a;
|
||||
}
|
||||
} else {
|
||||
/* Addition */
|
||||
if (a.cls == float_class_normal && b.cls == float_class_normal) {
|
||||
if (a.exp > b.exp) {
|
||||
shift64RightJamming(b.frac, a.exp - b.exp, &b.frac);
|
||||
} else if (a.exp < b.exp) {
|
||||
shift64RightJamming(a.frac, b.exp - a.exp, &a.frac);
|
||||
a.exp = b.exp;
|
||||
}
|
||||
a.frac += b.frac;
|
||||
if (a.frac & DECOMPOSED_OVERFLOW_BIT) {
|
||||
a.frac >>= 1;
|
||||
a.exp += 1;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if (is_nan(a.cls) || is_nan(b.cls)) {
|
||||
return pick_nan(a, b, s);
|
||||
}
|
||||
if (a.cls == float_class_inf || b.cls == float_class_zero) {
|
||||
return a;
|
||||
}
|
||||
if (b.cls == float_class_inf || a.cls == float_class_zero) {
|
||||
b.sign = b_sign;
|
||||
return b;
|
||||
}
|
||||
}
|
||||
g_assert_not_reached();
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the result of adding or subtracting the floating-point
|
||||
* values `a' and `b'. The operation is performed according to the
|
||||
* IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*/
|
||||
|
||||
float16 __attribute__((flatten)) float16_add(float16 a, float16 b,
|
||||
float_status *status)
|
||||
{
|
||||
FloatParts pa = float16_unpack_canonical(a, status);
|
||||
FloatParts pb = float16_unpack_canonical(b, status);
|
||||
FloatParts pr = addsub_floats(pa, pb, false, status);
|
||||
|
||||
return float16_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
float32 __attribute__((flatten)) float32_add(float32 a, float32 b,
|
||||
float_status *status)
|
||||
{
|
||||
FloatParts pa = float32_unpack_canonical(a, status);
|
||||
FloatParts pb = float32_unpack_canonical(b, status);
|
||||
FloatParts pr = addsub_floats(pa, pb, false, status);
|
||||
|
||||
return float32_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
float64 __attribute__((flatten)) float64_add(float64 a, float64 b,
|
||||
float_status *status)
|
||||
{
|
||||
FloatParts pa = float64_unpack_canonical(a, status);
|
||||
FloatParts pb = float64_unpack_canonical(b, status);
|
||||
FloatParts pr = addsub_floats(pa, pb, false, status);
|
||||
|
||||
return float64_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
float16 __attribute__((flatten)) float16_sub(float16 a, float16 b,
|
||||
float_status *status)
|
||||
{
|
||||
FloatParts pa = float16_unpack_canonical(a, status);
|
||||
FloatParts pb = float16_unpack_canonical(b, status);
|
||||
FloatParts pr = addsub_floats(pa, pb, true, status);
|
||||
|
||||
return float16_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
float32 __attribute__((flatten)) float32_sub(float32 a, float32 b,
|
||||
float_status *status)
|
||||
{
|
||||
FloatParts pa = float32_unpack_canonical(a, status);
|
||||
FloatParts pb = float32_unpack_canonical(b, status);
|
||||
FloatParts pr = addsub_floats(pa, pb, true, status);
|
||||
|
||||
return float32_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
float64 __attribute__((flatten)) float64_sub(float64 a, float64 b,
|
||||
float_status *status)
|
||||
{
|
||||
FloatParts pa = float64_unpack_canonical(a, status);
|
||||
FloatParts pb = float64_unpack_canonical(b, status);
|
||||
FloatParts pr = addsub_floats(pa, pb, true, status);
|
||||
|
||||
return float64_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
||||
| and 7, and returns the properly rounded 32-bit integer corresponding to the
|
||||
|
@ -2081,220 +2546,6 @@ float32 float32_round_to_int(float32 a, float_status *status)
|
|||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of adding the absolute values of the single-precision
|
||||
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
||||
| before being returned. `zSign' is ignored if the result is a NaN.
|
||||
| The addition is performed according to the IEC/IEEE Standard for Binary
|
||||
| Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 addFloat32Sigs(float32 a, float32 b, flag zSign,
|
||||
float_status *status)
|
||||
{
|
||||
int aExp, bExp, zExp;
|
||||
uint32_t aSig, bSig, zSig;
|
||||
int expDiff;
|
||||
|
||||
aSig = extractFloat32Frac( a );
|
||||
aExp = extractFloat32Exp( a );
|
||||
bSig = extractFloat32Frac( b );
|
||||
bExp = extractFloat32Exp( b );
|
||||
expDiff = aExp - bExp;
|
||||
aSig <<= 6;
|
||||
bSig <<= 6;
|
||||
if ( 0 < expDiff ) {
|
||||
if ( aExp == 0xFF ) {
|
||||
if (aSig) {
|
||||
return propagateFloat32NaN(a, b, status);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if ( bExp == 0 ) {
|
||||
--expDiff;
|
||||
}
|
||||
else {
|
||||
bSig |= 0x20000000;
|
||||
}
|
||||
shift32RightJamming( bSig, expDiff, &bSig );
|
||||
zExp = aExp;
|
||||
}
|
||||
else if ( expDiff < 0 ) {
|
||||
if ( bExp == 0xFF ) {
|
||||
if (bSig) {
|
||||
return propagateFloat32NaN(a, b, status);
|
||||
}
|
||||
return packFloat32( zSign, 0xFF, 0 );
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
++expDiff;
|
||||
}
|
||||
else {
|
||||
aSig |= 0x20000000;
|
||||
}
|
||||
shift32RightJamming( aSig, - expDiff, &aSig );
|
||||
zExp = bExp;
|
||||
}
|
||||
else {
|
||||
if ( aExp == 0xFF ) {
|
||||
if (aSig | bSig) {
|
||||
return propagateFloat32NaN(a, b, status);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
if (status->flush_to_zero) {
|
||||
if (aSig | bSig) {
|
||||
float_raise(float_flag_output_denormal, status);
|
||||
}
|
||||
return packFloat32(zSign, 0, 0);
|
||||
}
|
||||
return packFloat32( zSign, 0, ( aSig + bSig )>>6 );
|
||||
}
|
||||
zSig = 0x40000000 + aSig + bSig;
|
||||
zExp = aExp;
|
||||
goto roundAndPack;
|
||||
}
|
||||
aSig |= 0x20000000;
|
||||
zSig = ( aSig + bSig )<<1;
|
||||
--zExp;
|
||||
if ( (int32_t) zSig < 0 ) {
|
||||
zSig = aSig + bSig;
|
||||
++zExp;
|
||||
}
|
||||
roundAndPack:
|
||||
return roundAndPackFloat32(zSign, zExp, zSig, status);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of subtracting the absolute values of the single-
|
||||
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
||||
| difference is negated before being returned. `zSign' is ignored if the
|
||||
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
||||
| Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float32 subFloat32Sigs(float32 a, float32 b, flag zSign,
|
||||
float_status *status)
|
||||
{
|
||||
int aExp, bExp, zExp;
|
||||
uint32_t aSig, bSig, zSig;
|
||||
int expDiff;
|
||||
|
||||
aSig = extractFloat32Frac( a );
|
||||
aExp = extractFloat32Exp( a );
|
||||
bSig = extractFloat32Frac( b );
|
||||
bExp = extractFloat32Exp( b );
|
||||
expDiff = aExp - bExp;
|
||||
aSig <<= 7;
|
||||
bSig <<= 7;
|
||||
if ( 0 < expDiff ) goto aExpBigger;
|
||||
if ( expDiff < 0 ) goto bExpBigger;
|
||||
if ( aExp == 0xFF ) {
|
||||
if (aSig | bSig) {
|
||||
return propagateFloat32NaN(a, b, status);
|
||||
}
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float32_default_nan(status);
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
aExp = 1;
|
||||
bExp = 1;
|
||||
}
|
||||
if ( bSig < aSig ) goto aBigger;
|
||||
if ( aSig < bSig ) goto bBigger;
|
||||
return packFloat32(status->float_rounding_mode == float_round_down, 0, 0);
|
||||
bExpBigger:
|
||||
if ( bExp == 0xFF ) {
|
||||
if (bSig) {
|
||||
return propagateFloat32NaN(a, b, status);
|
||||
}
|
||||
return packFloat32( zSign ^ 1, 0xFF, 0 );
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
++expDiff;
|
||||
}
|
||||
else {
|
||||
aSig |= 0x40000000;
|
||||
}
|
||||
shift32RightJamming( aSig, - expDiff, &aSig );
|
||||
bSig |= 0x40000000;
|
||||
bBigger:
|
||||
zSig = bSig - aSig;
|
||||
zExp = bExp;
|
||||
zSign ^= 1;
|
||||
goto normalizeRoundAndPack;
|
||||
aExpBigger:
|
||||
if ( aExp == 0xFF ) {
|
||||
if (aSig) {
|
||||
return propagateFloat32NaN(a, b, status);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if ( bExp == 0 ) {
|
||||
--expDiff;
|
||||
}
|
||||
else {
|
||||
bSig |= 0x40000000;
|
||||
}
|
||||
shift32RightJamming( bSig, expDiff, &bSig );
|
||||
aSig |= 0x40000000;
|
||||
aBigger:
|
||||
zSig = aSig - bSig;
|
||||
zExp = aExp;
|
||||
normalizeRoundAndPack:
|
||||
--zExp;
|
||||
return normalizeRoundAndPackFloat32(zSign, zExp, zSig, status);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of adding the single-precision floating-point values `a'
|
||||
| and `b'. The operation is performed according to the IEC/IEEE Standard for
|
||||
| Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float32 float32_add(float32 a, float32 b, float_status *status)
|
||||
{
|
||||
flag aSign, bSign;
|
||||
a = float32_squash_input_denormal(a, status);
|
||||
b = float32_squash_input_denormal(b, status);
|
||||
|
||||
aSign = extractFloat32Sign( a );
|
||||
bSign = extractFloat32Sign( b );
|
||||
if ( aSign == bSign ) {
|
||||
return addFloat32Sigs(a, b, aSign, status);
|
||||
}
|
||||
else {
|
||||
return subFloat32Sigs(a, b, aSign, status);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of subtracting the single-precision floating-point values
|
||||
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
||||
| for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float32 float32_sub(float32 a, float32 b, float_status *status)
|
||||
{
|
||||
flag aSign, bSign;
|
||||
a = float32_squash_input_denormal(a, status);
|
||||
b = float32_squash_input_denormal(b, status);
|
||||
|
||||
aSign = extractFloat32Sign( a );
|
||||
bSign = extractFloat32Sign( b );
|
||||
if ( aSign == bSign ) {
|
||||
return subFloat32Sigs(a, b, aSign, status);
|
||||
}
|
||||
else {
|
||||
return addFloat32Sigs(a, b, aSign, status);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of multiplying the single-precision floating-point values
|
||||
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
||||
|
@ -3891,219 +4142,6 @@ float64 float64_trunc_to_int(float64 a, float_status *status)
|
|||
return res;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of adding the absolute values of the double-precision
|
||||
| floating-point values `a' and `b'. If `zSign' is 1, the sum is negated
|
||||
| before being returned. `zSign' is ignored if the result is a NaN.
|
||||
| The addition is performed according to the IEC/IEEE Standard for Binary
|
||||
| Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 addFloat64Sigs(float64 a, float64 b, flag zSign,
|
||||
float_status *status)
|
||||
{
|
||||
int aExp, bExp, zExp;
|
||||
uint64_t aSig, bSig, zSig;
|
||||
int expDiff;
|
||||
|
||||
aSig = extractFloat64Frac( a );
|
||||
aExp = extractFloat64Exp( a );
|
||||
bSig = extractFloat64Frac( b );
|
||||
bExp = extractFloat64Exp( b );
|
||||
expDiff = aExp - bExp;
|
||||
aSig <<= 9;
|
||||
bSig <<= 9;
|
||||
if ( 0 < expDiff ) {
|
||||
if ( aExp == 0x7FF ) {
|
||||
if (aSig) {
|
||||
return propagateFloat64NaN(a, b, status);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if ( bExp == 0 ) {
|
||||
--expDiff;
|
||||
}
|
||||
else {
|
||||
bSig |= LIT64( 0x2000000000000000 );
|
||||
}
|
||||
shift64RightJamming( bSig, expDiff, &bSig );
|
||||
zExp = aExp;
|
||||
}
|
||||
else if ( expDiff < 0 ) {
|
||||
if ( bExp == 0x7FF ) {
|
||||
if (bSig) {
|
||||
return propagateFloat64NaN(a, b, status);
|
||||
}
|
||||
return packFloat64( zSign, 0x7FF, 0 );
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
++expDiff;
|
||||
}
|
||||
else {
|
||||
aSig |= LIT64( 0x2000000000000000 );
|
||||
}
|
||||
shift64RightJamming( aSig, - expDiff, &aSig );
|
||||
zExp = bExp;
|
||||
}
|
||||
else {
|
||||
if ( aExp == 0x7FF ) {
|
||||
if (aSig | bSig) {
|
||||
return propagateFloat64NaN(a, b, status);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
if (status->flush_to_zero) {
|
||||
if (aSig | bSig) {
|
||||
float_raise(float_flag_output_denormal, status);
|
||||
}
|
||||
return packFloat64(zSign, 0, 0);
|
||||
}
|
||||
return packFloat64( zSign, 0, ( aSig + bSig )>>9 );
|
||||
}
|
||||
zSig = LIT64( 0x4000000000000000 ) + aSig + bSig;
|
||||
zExp = aExp;
|
||||
goto roundAndPack;
|
||||
}
|
||||
aSig |= LIT64( 0x2000000000000000 );
|
||||
zSig = ( aSig + bSig )<<1;
|
||||
--zExp;
|
||||
if ( (int64_t) zSig < 0 ) {
|
||||
zSig = aSig + bSig;
|
||||
++zExp;
|
||||
}
|
||||
roundAndPack:
|
||||
return roundAndPackFloat64(zSign, zExp, zSig, status);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of subtracting the absolute values of the double-
|
||||
| precision floating-point values `a' and `b'. If `zSign' is 1, the
|
||||
| difference is negated before being returned. `zSign' is ignored if the
|
||||
| result is a NaN. The subtraction is performed according to the IEC/IEEE
|
||||
| Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
static float64 subFloat64Sigs(float64 a, float64 b, flag zSign,
|
||||
float_status *status)
|
||||
{
|
||||
int aExp, bExp, zExp;
|
||||
uint64_t aSig, bSig, zSig;
|
||||
int expDiff;
|
||||
|
||||
aSig = extractFloat64Frac( a );
|
||||
aExp = extractFloat64Exp( a );
|
||||
bSig = extractFloat64Frac( b );
|
||||
bExp = extractFloat64Exp( b );
|
||||
expDiff = aExp - bExp;
|
||||
aSig <<= 10;
|
||||
bSig <<= 10;
|
||||
if ( 0 < expDiff ) goto aExpBigger;
|
||||
if ( expDiff < 0 ) goto bExpBigger;
|
||||
if ( aExp == 0x7FF ) {
|
||||
if (aSig | bSig) {
|
||||
return propagateFloat64NaN(a, b, status);
|
||||
}
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float64_default_nan(status);
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
aExp = 1;
|
||||
bExp = 1;
|
||||
}
|
||||
if ( bSig < aSig ) goto aBigger;
|
||||
if ( aSig < bSig ) goto bBigger;
|
||||
return packFloat64(status->float_rounding_mode == float_round_down, 0, 0);
|
||||
bExpBigger:
|
||||
if ( bExp == 0x7FF ) {
|
||||
if (bSig) {
|
||||
return propagateFloat64NaN(a, b, status);
|
||||
}
|
||||
return packFloat64( zSign ^ 1, 0x7FF, 0 );
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
++expDiff;
|
||||
}
|
||||
else {
|
||||
aSig |= LIT64( 0x4000000000000000 );
|
||||
}
|
||||
shift64RightJamming( aSig, - expDiff, &aSig );
|
||||
bSig |= LIT64( 0x4000000000000000 );
|
||||
bBigger:
|
||||
zSig = bSig - aSig;
|
||||
zExp = bExp;
|
||||
zSign ^= 1;
|
||||
goto normalizeRoundAndPack;
|
||||
aExpBigger:
|
||||
if ( aExp == 0x7FF ) {
|
||||
if (aSig) {
|
||||
return propagateFloat64NaN(a, b, status);
|
||||
}
|
||||
return a;
|
||||
}
|
||||
if ( bExp == 0 ) {
|
||||
--expDiff;
|
||||
}
|
||||
else {
|
||||
bSig |= LIT64( 0x4000000000000000 );
|
||||
}
|
||||
shift64RightJamming( bSig, expDiff, &bSig );
|
||||
aSig |= LIT64( 0x4000000000000000 );
|
||||
aBigger:
|
||||
zSig = aSig - bSig;
|
||||
zExp = aExp;
|
||||
normalizeRoundAndPack:
|
||||
--zExp;
|
||||
return normalizeRoundAndPackFloat64(zSign, zExp, zSig, status);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of adding the double-precision floating-point values `a'
|
||||
| and `b'. The operation is performed according to the IEC/IEEE Standard for
|
||||
| Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float64 float64_add(float64 a, float64 b, float_status *status)
|
||||
{
|
||||
flag aSign, bSign;
|
||||
a = float64_squash_input_denormal(a, status);
|
||||
b = float64_squash_input_denormal(b, status);
|
||||
|
||||
aSign = extractFloat64Sign( a );
|
||||
bSign = extractFloat64Sign( b );
|
||||
if ( aSign == bSign ) {
|
||||
return addFloat64Sigs(a, b, aSign, status);
|
||||
}
|
||||
else {
|
||||
return subFloat64Sigs(a, b, aSign, status);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of subtracting the double-precision floating-point values
|
||||
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard
|
||||
| for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float64 float64_sub(float64 a, float64 b, float_status *status)
|
||||
{
|
||||
flag aSign, bSign;
|
||||
a = float64_squash_input_denormal(a, status);
|
||||
b = float64_squash_input_denormal(b, status);
|
||||
|
||||
aSign = extractFloat64Sign( a );
|
||||
bSign = extractFloat64Sign( b );
|
||||
if ( aSign == bSign ) {
|
||||
return subFloat64Sigs(a, b, aSign, status);
|
||||
}
|
||||
else {
|
||||
return addFloat64Sigs(a, b, aSign, status);
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of multiplying the double-precision floating-point values
|
||||
|
|
|
@ -236,6 +236,10 @@ float64 float16_to_float64(float16 a, flag ieee, float_status *status);
|
|||
/*----------------------------------------------------------------------------
|
||||
| Software half-precision operations.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float16 float16_add(float16, float16, float_status *status);
|
||||
float16 float16_sub(float16, float16, float_status *status);
|
||||
|
||||
int float16_is_quiet_nan(float16, float_status *status);
|
||||
int float16_is_signaling_nan(float16, float_status *status);
|
||||
float16 float16_maybe_silence_nan(float16, float_status *status);
|
||||
|
|
Loading…
Reference in New Issue