mirror of https://gitee.com/openkylin/qemu.git
fpu/softfloat: re-factor div
We can now add float16_div and use the common decompose and canonicalize functions to have a single implementation for float16/32/64 versions. Signed-off-by: Alex Bennée <alex.bennee@linaro.org> Signed-off-by: Richard Henderson <richard.henderson@linaro.org> Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
This commit is contained in:
parent
74d707e2cc
commit
cf07323d49
|
@ -625,6 +625,54 @@ static uint64_t estimateDiv128To64( uint64_t a0, uint64_t a1, uint64_t b )
|
|||
|
||||
}
|
||||
|
||||
/* From the GNU Multi Precision Library - longlong.h __udiv_qrnnd
|
||||
* (https://gmplib.org/repo/gmp/file/tip/longlong.h)
|
||||
*
|
||||
* Licensed under the GPLv2/LGPLv3
|
||||
*/
|
||||
static uint64_t div128To64(uint64_t n0, uint64_t n1, uint64_t d)
|
||||
{
|
||||
uint64_t d0, d1, q0, q1, r1, r0, m;
|
||||
|
||||
d0 = (uint32_t)d;
|
||||
d1 = d >> 32;
|
||||
|
||||
r1 = n1 % d1;
|
||||
q1 = n1 / d1;
|
||||
m = q1 * d0;
|
||||
r1 = (r1 << 32) | (n0 >> 32);
|
||||
if (r1 < m) {
|
||||
q1 -= 1;
|
||||
r1 += d;
|
||||
if (r1 >= d) {
|
||||
if (r1 < m) {
|
||||
q1 -= 1;
|
||||
r1 += d;
|
||||
}
|
||||
}
|
||||
}
|
||||
r1 -= m;
|
||||
|
||||
r0 = r1 % d1;
|
||||
q0 = r1 / d1;
|
||||
m = q0 * d0;
|
||||
r0 = (r0 << 32) | (uint32_t)n0;
|
||||
if (r0 < m) {
|
||||
q0 -= 1;
|
||||
r0 += d;
|
||||
if (r0 >= d) {
|
||||
if (r0 < m) {
|
||||
q0 -= 1;
|
||||
r0 += d;
|
||||
}
|
||||
}
|
||||
}
|
||||
r0 -= m;
|
||||
|
||||
/* Return remainder in LSB */
|
||||
return (q1 << 32) | q0 | (r0 != 0);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns an approximation to the square root of the 32-bit significand given
|
||||
| by `a'. Considered as an integer, `a' must be at least 2^31. If bit 0 of
|
||||
|
|
236
fpu/softfloat.c
236
fpu/softfloat.c
|
@ -816,6 +816,94 @@ float64 __attribute__((flatten)) float64_mul(float64 a, float64 b,
|
|||
return float64_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
/*
|
||||
* Returns the result of dividing the floating-point value `a' by the
|
||||
* corresponding value `b'. The operation is performed according to
|
||||
* the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*/
|
||||
|
||||
static FloatParts div_floats(FloatParts a, FloatParts b, float_status *s)
|
||||
{
|
||||
bool sign = a.sign ^ b.sign;
|
||||
|
||||
if (a.cls == float_class_normal && b.cls == float_class_normal) {
|
||||
uint64_t temp_lo, temp_hi;
|
||||
int exp = a.exp - b.exp;
|
||||
if (a.frac < b.frac) {
|
||||
exp -= 1;
|
||||
shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT + 1,
|
||||
&temp_hi, &temp_lo);
|
||||
} else {
|
||||
shortShift128Left(0, a.frac, DECOMPOSED_BINARY_POINT,
|
||||
&temp_hi, &temp_lo);
|
||||
}
|
||||
/* LSB of quot is set if inexact which roundandpack will use
|
||||
* to set flags. Yet again we re-use a for the result */
|
||||
a.frac = div128To64(temp_lo, temp_hi, b.frac);
|
||||
a.sign = sign;
|
||||
a.exp = exp;
|
||||
return a;
|
||||
}
|
||||
/* handle all the NaN cases */
|
||||
if (is_nan(a.cls) || is_nan(b.cls)) {
|
||||
return pick_nan(a, b, s);
|
||||
}
|
||||
/* 0/0 or Inf/Inf */
|
||||
if (a.cls == b.cls
|
||||
&&
|
||||
(a.cls == float_class_inf || a.cls == float_class_zero)) {
|
||||
s->float_exception_flags |= float_flag_invalid;
|
||||
a.cls = float_class_dnan;
|
||||
return a;
|
||||
}
|
||||
/* Div 0 => Inf */
|
||||
if (b.cls == float_class_zero) {
|
||||
s->float_exception_flags |= float_flag_divbyzero;
|
||||
a.cls = float_class_inf;
|
||||
a.sign = sign;
|
||||
return a;
|
||||
}
|
||||
/* Inf / x or 0 / x */
|
||||
if (a.cls == float_class_inf || a.cls == float_class_zero) {
|
||||
a.sign = sign;
|
||||
return a;
|
||||
}
|
||||
/* Div by Inf */
|
||||
if (b.cls == float_class_inf) {
|
||||
a.cls = float_class_zero;
|
||||
a.sign = sign;
|
||||
return a;
|
||||
}
|
||||
g_assert_not_reached();
|
||||
}
|
||||
|
||||
float16 float16_div(float16 a, float16 b, float_status *status)
|
||||
{
|
||||
FloatParts pa = float16_unpack_canonical(a, status);
|
||||
FloatParts pb = float16_unpack_canonical(b, status);
|
||||
FloatParts pr = div_floats(pa, pb, status);
|
||||
|
||||
return float16_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
float32 float32_div(float32 a, float32 b, float_status *status)
|
||||
{
|
||||
FloatParts pa = float32_unpack_canonical(a, status);
|
||||
FloatParts pb = float32_unpack_canonical(b, status);
|
||||
FloatParts pr = div_floats(pa, pb, status);
|
||||
|
||||
return float32_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
float64 float64_div(float64 a, float64 b, float_status *status)
|
||||
{
|
||||
FloatParts pa = float64_unpack_canonical(a, status);
|
||||
FloatParts pb = float64_unpack_canonical(b, status);
|
||||
FloatParts pr = div_floats(pa, pb, status);
|
||||
|
||||
return float64_round_pack_canonical(pr, status);
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6
|
||||
| and 7, and returns the properly rounded 32-bit integer corresponding to the
|
||||
|
@ -2627,77 +2715,6 @@ float32 float32_round_to_int(float32 a, float_status *status)
|
|||
|
||||
}
|
||||
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of dividing the single-precision floating-point value `a'
|
||||
| by the corresponding value `b'. The operation is performed according to the
|
||||
| IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float32 float32_div(float32 a, float32 b, float_status *status)
|
||||
{
|
||||
flag aSign, bSign, zSign;
|
||||
int aExp, bExp, zExp;
|
||||
uint32_t aSig, bSig, zSig;
|
||||
a = float32_squash_input_denormal(a, status);
|
||||
b = float32_squash_input_denormal(b, status);
|
||||
|
||||
aSig = extractFloat32Frac( a );
|
||||
aExp = extractFloat32Exp( a );
|
||||
aSign = extractFloat32Sign( a );
|
||||
bSig = extractFloat32Frac( b );
|
||||
bExp = extractFloat32Exp( b );
|
||||
bSign = extractFloat32Sign( b );
|
||||
zSign = aSign ^ bSign;
|
||||
if ( aExp == 0xFF ) {
|
||||
if (aSig) {
|
||||
return propagateFloat32NaN(a, b, status);
|
||||
}
|
||||
if ( bExp == 0xFF ) {
|
||||
if (bSig) {
|
||||
return propagateFloat32NaN(a, b, status);
|
||||
}
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float32_default_nan(status);
|
||||
}
|
||||
return packFloat32( zSign, 0xFF, 0 );
|
||||
}
|
||||
if ( bExp == 0xFF ) {
|
||||
if (bSig) {
|
||||
return propagateFloat32NaN(a, b, status);
|
||||
}
|
||||
return packFloat32( zSign, 0, 0 );
|
||||
}
|
||||
if ( bExp == 0 ) {
|
||||
if ( bSig == 0 ) {
|
||||
if ( ( aExp | aSig ) == 0 ) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float32_default_nan(status);
|
||||
}
|
||||
float_raise(float_flag_divbyzero, status);
|
||||
return packFloat32( zSign, 0xFF, 0 );
|
||||
}
|
||||
normalizeFloat32Subnormal( bSig, &bExp, &bSig );
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
if ( aSig == 0 ) return packFloat32( zSign, 0, 0 );
|
||||
normalizeFloat32Subnormal( aSig, &aExp, &aSig );
|
||||
}
|
||||
zExp = aExp - bExp + 0x7D;
|
||||
aSig = ( aSig | 0x00800000 )<<7;
|
||||
bSig = ( bSig | 0x00800000 )<<8;
|
||||
if ( bSig <= ( aSig + aSig ) ) {
|
||||
aSig >>= 1;
|
||||
++zExp;
|
||||
}
|
||||
zSig = ( ( (uint64_t) aSig )<<32 ) / bSig;
|
||||
if ( ( zSig & 0x3F ) == 0 ) {
|
||||
zSig |= ( (uint64_t) bSig * zSig != ( (uint64_t) aSig )<<32 );
|
||||
}
|
||||
return roundAndPackFloat32(zSign, zExp, zSig, status);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the remainder of the single-precision floating-point value `a'
|
||||
| with respect to the corresponding value `b'. The operation is performed
|
||||
|
@ -4159,83 +4176,6 @@ float64 float64_trunc_to_int(float64 a, float_status *status)
|
|||
return res;
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the result of dividing the double-precision floating-point value `a'
|
||||
| by the corresponding value `b'. The operation is performed according to
|
||||
| the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
|
||||
*----------------------------------------------------------------------------*/
|
||||
|
||||
float64 float64_div(float64 a, float64 b, float_status *status)
|
||||
{
|
||||
flag aSign, bSign, zSign;
|
||||
int aExp, bExp, zExp;
|
||||
uint64_t aSig, bSig, zSig;
|
||||
uint64_t rem0, rem1;
|
||||
uint64_t term0, term1;
|
||||
a = float64_squash_input_denormal(a, status);
|
||||
b = float64_squash_input_denormal(b, status);
|
||||
|
||||
aSig = extractFloat64Frac( a );
|
||||
aExp = extractFloat64Exp( a );
|
||||
aSign = extractFloat64Sign( a );
|
||||
bSig = extractFloat64Frac( b );
|
||||
bExp = extractFloat64Exp( b );
|
||||
bSign = extractFloat64Sign( b );
|
||||
zSign = aSign ^ bSign;
|
||||
if ( aExp == 0x7FF ) {
|
||||
if (aSig) {
|
||||
return propagateFloat64NaN(a, b, status);
|
||||
}
|
||||
if ( bExp == 0x7FF ) {
|
||||
if (bSig) {
|
||||
return propagateFloat64NaN(a, b, status);
|
||||
}
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float64_default_nan(status);
|
||||
}
|
||||
return packFloat64( zSign, 0x7FF, 0 );
|
||||
}
|
||||
if ( bExp == 0x7FF ) {
|
||||
if (bSig) {
|
||||
return propagateFloat64NaN(a, b, status);
|
||||
}
|
||||
return packFloat64( zSign, 0, 0 );
|
||||
}
|
||||
if ( bExp == 0 ) {
|
||||
if ( bSig == 0 ) {
|
||||
if ( ( aExp | aSig ) == 0 ) {
|
||||
float_raise(float_flag_invalid, status);
|
||||
return float64_default_nan(status);
|
||||
}
|
||||
float_raise(float_flag_divbyzero, status);
|
||||
return packFloat64( zSign, 0x7FF, 0 );
|
||||
}
|
||||
normalizeFloat64Subnormal( bSig, &bExp, &bSig );
|
||||
}
|
||||
if ( aExp == 0 ) {
|
||||
if ( aSig == 0 ) return packFloat64( zSign, 0, 0 );
|
||||
normalizeFloat64Subnormal( aSig, &aExp, &aSig );
|
||||
}
|
||||
zExp = aExp - bExp + 0x3FD;
|
||||
aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10;
|
||||
bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11;
|
||||
if ( bSig <= ( aSig + aSig ) ) {
|
||||
aSig >>= 1;
|
||||
++zExp;
|
||||
}
|
||||
zSig = estimateDiv128To64( aSig, 0, bSig );
|
||||
if ( ( zSig & 0x1FF ) <= 2 ) {
|
||||
mul64To128( bSig, zSig, &term0, &term1 );
|
||||
sub128( aSig, 0, term0, term1, &rem0, &rem1 );
|
||||
while ( (int64_t) rem0 < 0 ) {
|
||||
--zSig;
|
||||
add128( rem0, rem1, 0, bSig, &rem0, &rem1 );
|
||||
}
|
||||
zSig |= ( rem1 != 0 );
|
||||
}
|
||||
return roundAndPackFloat64(zSign, zExp, zSig, status);
|
||||
|
||||
}
|
||||
|
||||
/*----------------------------------------------------------------------------
|
||||
| Returns the remainder of the double-precision floating-point value `a'
|
||||
|
|
|
@ -240,6 +240,7 @@ float64 float16_to_float64(float16 a, flag ieee, float_status *status);
|
|||
float16 float16_add(float16, float16, float_status *status);
|
||||
float16 float16_sub(float16, float16, float_status *status);
|
||||
float16 float16_mul(float16, float16, float_status *status);
|
||||
float16 float16_div(float16, float16, float_status *status);
|
||||
|
||||
int float16_is_quiet_nan(float16, float_status *status);
|
||||
int float16_is_signaling_nan(float16, float_status *status);
|
||||
|
|
Loading…
Reference in New Issue