Commit Graph

41 Commits

Author SHA1 Message Date
Filip Bozuta 49b422a8c5 linux-user: Add support for btrfs ioctls used to get/set features
This patch implements functionality for following ioctls:

BTRFS_IOC_GET_FEATURES - Getting feature flags

    Read feature flags for a btrfs filesystem. The feature flags
    are returned inside the ioctl's third argument which represents
    a pointer to a following structure type:

    struct btrfs_ioctl_feature_flags {
	__u64 compat_flags;
	__u64 compat_ro_flags;
	__u64 incompat_flags;
    };

    All of the structure field represent bit masks that can be composed
    of values which can be found on:
    https://elixir.bootlin.com/linux/latest/source/fs/btrfs/ctree.h#L282

BTRFS_IOC_SET_FEATURES - Setting feature flags

    Set and clear feature flags for a btrfs filesystem. The feature flags
    are set using the ioctl's third argument which represents a
    'struct btrfs_ioctl_feature_flags[2]' array. The first element of the
    array represent flags which are to be cleared and the second element of
    the array represent flags which are to be set. The second element has the
    priority over the first, which means that if there are matching flags
    in the elements, they will be set in the filesystem. If the flag values
    in the third argument aren't correctly set to be composed of the available
    predefined flag values, errno ENOPERM ("Operation not permitted") is returned.

BTRFS_IOC_GET_SUPPORTED_FEATURES - Getting supported feature flags

    Read supported feature flags for a btrfs filesystem. The supported
    feature flags are read using the ioctl's third argument which represents
    a 'struct btrfs_ioctl_feature_flags[3]' array. The first element of this
    array represents all of the supported flags in the btrfs filesystem.
    The second element represents flags that can be safely set and third element
    represent flags that can be safely clearead.

Implementation notes:

    All of the implemented ioctls use 'struct btrfs_ioctl_feature_flags' as
    third argument. That is the reason why a corresponding defintion was added
    in file 'linux-user/syscall_types.h'.

Signed-off-by: Filip Bozuta <Filip.Bozuta@syrmia.com>
Tested-by: Daniel P. Berrangé <berrange@redhat.com>
Message-Id: <20200823195014.116226-5-Filip.Bozuta@syrmia.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-09-03 01:09:35 +02:00
Filip Bozuta 9bbd60e7f7 linux-user: Add support for btrfs ioctls used to manipulate with devices
This patch implements functionality for following ioctls:

BTRFS_IOC_SCAN_DEV - Scanning device for a btrfs filesystem

    Scan a device for a btrfs filesystem. The device that is to
    be scanned is passed in the ioctl's third argument which
    represents a pointer to a 'struct ioc_vol_args' (which was
    mentioned in a previous patch). Before calling this ioctl,
    the name field of this structure should be filled with the
    aproppriate name value which represents a path for the device.
    If the device contains a btrfs filesystem, the ioctl returns 0,
    otherwise a negative value is returned.

BTRFS_IOC_ADD_DEV - Adding a device to a btrfs filesystem

    Add a device to a btrfs filesystem. The device that is to be
    added is passed in the ioctl's third argument which represents
    a pointer to a 'struct ioc_vol_args' (which was mentioned in
    a previous patch). Before calling this ioctl, the name field of
    this structure should be filled with the aproppriate name value
    which represents a path for the device.

BTRFS_IOC_RM_DEV - Removing a device from a btrfs filesystem

    Remove a device from a btrfs filesystem. The device that is to be
    removed is passed in the ioctl's third argument which represents
    a pointer to a 'struct ioc_vol_args' (which was mentioned in
    a previous patch). Before calling this ioctl, the name field of
    this structure should be filled with the aproppriate name value
    which represents a path for the device.

BTRFS_IOC_DEV_INFO - Getting information about a device

    Obtain information for device in a btrfs filesystem. The information
    is gathered in the ioctl's third argument which represents a pointer
    to a following structure type:

    struct btrfs_ioctl_dev_info_args {
	__u64 devid;				/* in/out */
	__u8 uuid[BTRFS_UUID_SIZE];		/* in/out */
	__u64 bytes_used;			/* out */
	__u64 total_bytes;			/* out */
	__u64 unused[379];			/* pad to 4k */
	__u8 path[BTRFS_DEVICE_PATH_NAME_MAX];	/* out */
    };

    Before calling this ioctl, field "devid" should be set with the id value
    for the device for which the information is to be obtained. If this field
    is not aproppriately set, the errno ENODEV ("No such device") is returned.

BTRFS_IOC_GET_DEV_STATS - Getting device statistics

    Obtain stats informatin for device in a btrfs filesystem. The information
    is gathered in the ioctl's third argument which represents a pointer to
    a following structure type:

    struct btrfs_ioctl_get_dev_stats {
	__u64 devid;				/* in */
	__u64 nr_items;				/* in/out */
	__u64 flags;				/* in/out */

	/* out values: */
	__u64 values[BTRFS_DEV_STAT_VALUES_MAX];

	/*
	 * This pads the struct to 1032 bytes. It was originally meant to pad to
	 * 1024 bytes, but when adding the flags field, the padding calculation
	 * was not adjusted.
	 */
	__u64 unused[128 - 2 - BTRFS_DEV_STAT_VALUES_MAX];
    };

    Before calling this ioctl, field "devid" should be set with the id value
    for the device for which the information is to be obtained. If this field
    is not aproppriately set, the errno ENODEV ("No such device") is returned.

BTRFS_IOC_FORGET_DEV - Remove unmounted devices

    Search and remove all stale devices (devices which are not mounted).
    The third ioctl argument is a pointer to a 'struct btrfs_ioctl_vol_args'.
    The ioctl call will release all unmounted devices which match the path
    which is specified in the "name" field of the structure. If an empty
    path ("") is specified, all unmounted devices will be released.

Implementation notes:

    Ioctls BTRFS_IOC_DEV_INFO and BTRFS_IOC_GET_DEV_STATS use types
    'struct btrfs_ioctl_dev_info_args' and ' struct btrfs_ioctl_get_dev_stats'
    as third argument types. That is the reason why corresponding structure
    definitions were added in file 'linux-user/syscall_types.h'.
    Since the thunk type for 'struct ioc_vol_args' was already added in a
    previous patch, the rest of the implementation was straightforward.

Signed-off-by: Filip Bozuta <Filip.Bozuta@syrmia.com>
Tested-by: Daniel P. Berrangé <berrange@redhat.com>
Message-Id: <20200823195014.116226-4-Filip.Bozuta@syrmia.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-09-03 01:09:35 +02:00
Filip Bozuta 527e8d8fe0 linux-user: Add support for a group of btrfs ioctls used for snapshots
This patch implements functionality for following ioctls:

BTRFS_IOC_SNAP_CREATE - Creating a subvolume snapshot

    Create a snapshot of a btrfs subvolume. The snapshot is created using the
    ioctl's third argument that is a pointer to a 'struct btrfs_ioctl_vol_args'
    (which was mentioned in the previous patch). Before calling this ioctl,
    the fields of the structure should be filled with aproppriate values for
    the file descriptor and path of the subvolume for which the snapshot is to
    be created.

BTRFS_IOC_SNAP_DESTROY - Removing a subvolume snapshot

    Delete a snapshot of a btrfs subvolume. The snapshot is deleted using the
    ioctl's third argument that is a pointer to a 'struct btrfs_ioctl_vol_args'
    (which was mentioned in the previous patch). Before calling this ioctl,
    the fields of the structure should be filled with aproppriate values for
    the file descriptor and path of the subvolume for which the snapshot is to
    be deleted.

Implementation notes:

    Since the thunk type 'struct btrfs_ioctl_vol_args' is defined in the
    previous patch, the implementation for these ioctls was straightforward.

Signed-off-by: Filip Bozuta <Filip.Bozuta@syrmia.com>
Tested-by: Daniel P. Berrangé <berrange@redhat.com>
Message-Id: <20200823195014.116226-3-Filip.Bozuta@syrmia.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-09-03 01:09:35 +02:00
Filip Bozuta d6092e085d linux-user: Add support for a group of btrfs ioctls used for subvolumes
This patch implements functionality of following ioctls:

BTRFS_IOC_SUBVOL_CREATE - Creating a btrfs subvolume

    Create a btrfs subvolume. The subvolume is created using the ioctl's
    third argument which represents a pointer to a following structure
    type:

    struct btrfs_ioctl_vol_args {
	__s64 fd;
	char name[BTRFS_PATH_NAME_MAX + 1];
    };

    Before calling this ioctl, the fields of this structure should be filled
    with aproppriate values. The fd field represents the file descriptor
    value of the subvolume and the name field represents the subvolume
    path.

BTRFS_IOC_SUBVOL_GETFLAGS - Getting subvolume flags

    Read the flags of the btrfs subvolume. The flags are read using
    the ioctl's third argument that is a pointer of __u64 (unsigned long).
    The third argument represents a bit mask that can be composed of following
    values:
    BTRFS_SUBVOL_RDONLY           (1ULL << 1)
    BTRFS_SUBVOL_QGROUP_INHERIT   (1ULL << 2)
    BTRFS_DEVICE_SPEC_BY_ID       (1ULL << 3)
    BTRFS_SUBVOL_SPEC_BY_ID       (1ULL << 4)

BTRFS_IOC_SUBVOL_SETFLAGS - Setting subvolume flags

    Set the flags of the btrfs subvolume. The flags are set using the
    ioctl's third argument that is a pointer of __u64 (unsigned long).
    The third argument represents a bit mask that can be composed of same
    values as in the case of previous ioctl (BTRFS_IOC_SUBVOL_GETFLAGS).

BTRFS_IOC_SUBVOL_GETINFO - Getting subvolume information

    Read information about the subvolume. The subvolume information is
    returned in the ioctl's third argument which represents a pointer to
    a following structure type:

    struct btrfs_ioctl_get_subvol_info_args {
	/* Id of this subvolume */
	__u64 treeid;

	/* Name of this subvolume, used to get the real name at mount point */
	char name[BTRFS_VOL_NAME_MAX + 1];

	/*
	 * Id of the subvolume which contains this subvolume.
	 * Zero for top-level subvolume or a deleted subvolume.
	 */
	__u64 parent_id;

	/*
	 * Inode number of the directory which contains this subvolume.
	 * Zero for top-level subvolume or a deleted subvolume
	 */
	__u64 dirid;

	/* Latest transaction id of this subvolume */
	__u64 generation;

	/* Flags of this subvolume */
	__u64 flags;

	/* UUID of this subvolume */
	__u8 uuid[BTRFS_UUID_SIZE];

	/*
	 * UUID of the subvolume of which this subvolume is a snapshot.
	 * All zero for a non-snapshot subvolume.
	 */
	__u8 parent_uuid[BTRFS_UUID_SIZE];

	/*
	 * UUID of the subvolume from which this subvolume was received.
	 * All zero for non-received subvolume.
	 */
	__u8 received_uuid[BTRFS_UUID_SIZE];

	/* Transaction id indicating when change/create/send/receive happened */
	__u64 ctransid;
	__u64 otransid;
	__u64 stransid;
	__u64 rtransid;
	/* Time corresponding to c/o/s/rtransid */
	struct btrfs_ioctl_timespec ctime;
	struct btrfs_ioctl_timespec otime;
	struct btrfs_ioctl_timespec stime;
	struct btrfs_ioctl_timespec rtime;

	/* Must be zero */
	__u64 reserved[8];
     };

     All of the fields of this structure are filled after the ioctl call.

Implementation notes:

    Ioctls BTRFS_IOC_SUBVOL_CREATE and BTRFS_IOC_SUBVOL_GETINFO have structure
    types as third arguments. That is the reason why a corresponding definition
    are added in file 'linux-user/syscall_types.h'.

    The line '#include <linux/btrfs.h>' is added in file 'linux-user/syscall.c' to
    recognise preprocessor definitions for these ioctls. Since the file "linux/btrfs.h"
    was added in the kernel version 3.9, it is enwrapped in an #ifdef statement
    with parameter CONFIG_BTRFS which is defined in 'configure' if the
    header file is present.

Signed-off-by: Filip Bozuta <Filip.Bozuta@syrmia.com>
Tested-by: Daniel P. Berrangé <berrange@redhat.com>
Message-Id: <20200823195014.116226-2-Filip.Bozuta@syrmia.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-09-03 01:09:35 +02:00
Chen Gang 913b03c264 linux-user: syscall: ioctls: support DRM_IOCTL_I915_GETPARAM
Another DRM_IOCTL_I915 patches will be sent next.

Signed-off-by: Chen Gang <chengang@emindsoft.com.cn>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20200802133938.12055-1-chengang@emindsoft.com.cn>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-08-27 12:29:49 +02:00
Filip Bozuta a20a7c2640 linux-user: Add thunk argument types for SIOCGSTAMP and SIOCGSTAMPNS
Socket ioctls SIOCGSTAMP and SIOCGSTAMPNS, used for timestamping the socket
connection, are defined in file "ioctls.h" differently from other ioctls.
The reason for this difference is explained in the comments above their definition.
These ioctls didn't have defined thunk argument types before changes from this
patch. They have special handling functions ("do_ioctl_SIOCGSTAMP" and
"do_ioctl_SIOCGSTAMPNS") that take care of setting values for approppriate argument
types (struct timeval and struct timespec) and thus no thunk argument types were
needed for their implementation. But this patch adds those argument type definitions
in file "syscall_types.h" and "ioctls.h" as it is needed for printing arguments
of these ioctls with strace.

Implementation notes:

    There are two variants of these ioctls: SIOCGSTAMP_OLD/SIOCGSTAM_NEW and
    SIOCGSTAMPNS_OLD/SIOCGSTAMPNS_NEW. One is the old existing definition and the
    other is the 2038 safe variant used for 32-bit architectures. Corresponding
    structure definitions STRUCT_timespec/STRUCT__kernel_timespec and
    STRUCT_timeval/STRUCT__kernel_sock_timeval were added for these variants.
    STRUCT_timeval definition was already inside the file as it is used by
    another implemented ioctl. Two cases were added for definitions
    STRUCT_timeval/STRUCT__kernel_sock_timeval to manage the case when the
    "u_sec" field of the timeval structure is of type int.

Signed-off-by: Filip Bozuta <Filip.Bozuta@syrmia.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20200619124727.18080-2-filip.bozuta@syrmia.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-06-29 13:10:11 +02:00
Chen Gang e865b97ff4 linux-user: syscall: ioctls: support DRM_IOCTL_VERSION
Another DRM_IOCTL_* commands will be done later.

Signed-off-by: Chen Gang <chengang@emindsoft.com.cn>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20200605013221.22828-1-chengang@emindsoft.com.cn>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-06-29 13:04:37 +02:00
Filip Bozuta fe333025c6 linux-user: Add support for getting/setting selected alsa timer parameters using ioctls
This patch implements functionalities of following ioctls:

SNDRV_TIMER_IOCTL_INFO - Getting information about selected timer

    Read information about the selected timer. The information is returned in
    the following structure:

    struct snd_timer_info {
        unsigned int flags;         /* timer flags - SNDRV_TIMER_FLG_* */
        int card;                   /* card number */
        unsigned char id[64];       /* timer identificator */
        unsigned char name[80];     /* timer name */
        unsigned long reserved0;    /* reserved for future use */
        unsigned long resolution;   /* average period resolution in ns */
        unsigned char reserved[64]; /* reserved for future use */
    };

    A pointer to this structure should be passed as the third ioctl's argument.
    Before calling this ioctl, the ioctl "SNDRV_TIMER_IOCTL_SELECT" should be
    called first to select the timer which information is to be obtained. If no
    timer is selected, the error EBADFD ("File descriptor in bad shape") is
    returned.

SNDRV_TIMER_IOCTL_PARAMS - Setting parameters for selected timer

    Sets parameters for the selected timer. The paramaters are set in the
    following structure:

    struct snd_timer_params {
        unsigned int flags;         /* flags - SNDRV_TIMER_PSFLG_* */
        unsigned int ticks;         /* requested resolution in ticks */
        unsigned int queue_size;    /* total size of queue (32-1024) */
        unsigned int reserved0;     /* reserved, was: failure locations */
        unsigned int filter;        /* event filter */
        unsigned char reserved[60]; /* reserved */
    };

    A pointer to this structure should be passed as the third ioctl's argument.
    Before calling this ioctl, the ioctl "SNDRV_TIMER_IOCTL_SELECT" should be
    called first to select the timer which parameters are to be set. If no
    timer is selected, the error EBADFD ("File descriptor in bad shape") is
    returned.

SNDRV_TIMER_IOCTL_STATUS - Getting status of selected timer

    Read status of the selected timer. The status of the timer is returned in
    the following structure:

    struct snd_timer_status {
        struct timespec tstamp;     /* Timestamp - last update */
        unsigned int resolution;    /* current period resolution in ns */
        unsigned int lost;          /* counter of master tick lost */
        unsigned int overrun;       /* count of read queue overruns */
        unsigned int queue;         /* used queue size */
        unsigned char reserved[64]; /* reserved */
    };

    A pointer to this structure should be passed as the third ioctl's argument.
    Before calling this ioctl, the ioctl "SNDRV_TIMER_IOCTL_SELECT" should be
    called first to select the timer which status is to be obtained. If no
    timer is selected, the error EBADFD ("File descriptor in bad shape") is
    returned.

Implementation notes:

    All ioctls in this patch have pointer to some kind of a structure
    as their third argument. That is the reason why corresponding
    definitions were added in 'linux-user/syscall_types.h'. Structure
    'snd_timer_status' has field of type 'struct timespec' which is why
    a corresponding definition of that structure was also added in
    'linux-user/syscall_types.h'. All of these strucutures have some
    fields that are of type 'unsigned long'. That is the reason why
    separate target structures were defined in 'linux-user/syscall_defs.h'.
    Structure 'struct timespec' already had a separate target definition
    so that definition was used to define a target structure for
    'snd_timer_status'. The rest of the implementation was straightforward.

Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-12-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-02-19 11:17:40 +01:00
Filip Bozuta d22edf0adf linux-user: Add support for selecting alsa timer using ioctl
This patch implements functionality of following ioctl:

SNDRV_TIMER_IOCTL_SELECT - Selecting timer

    Selects the timer which id is specified. The timer id is specified in the
    following strcuture:

    struct snd_timer_select {
        struct snd_timer_id id;         /* timer ID */
        unsigned char reserved[32];     /* reserved */
    };

    A pointer to this structure should be passed as the third ioctl's argument.
    Before calling the ioctl, the field "tid" should be initialized with the id
    information for the timer which is to be selected. If there is no timer
    device with the specified id, the error ENODEV ("No such device") is
    returned.

Implementation notes:

    Ioctl implemented in this patch has a pointer to a
    'struct snd_timer_select' as its third argument.
    That is the reason why a corresponding definition
    was added in 'linux-user/syscall_types.h'. The rest
    of the implementation was straightforward.

Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-11-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-02-19 11:17:40 +01:00
Filip Bozuta aca7708eab linux-user: Add support for getting/setting specified alsa timer parameters using ioctls
This patch implements functionalities of following ioctls:

SNDRV_TIMER_IOCTL_GINFO - Getting information about specified timer

    Read information about the specified timer. The information about the
    timer is returned in the following structure:

        struct snd_timer_ginfo {
            struct snd_timer_id tid;      /* requested timer ID */
            unsigned int flags;           /* timer flags - SNDRV_TIMER_FLG_* */
            int card;                     /* card number */
            unsigned char id[64];         /* timer identification */
            unsigned char name[80];       /* timer name */
            unsigned long reserved0;      /* reserved for future use */
            unsigned long resolution;     /* average period resolution in ns */
            unsigned long resolution_min; /* minimal period resolution in ns */
            unsigned long resolution_max; /* maximal period resolution in ns */
            unsigned int clients;         /* active timer clients */
            unsigned char reserved[32];   /* reserved */
        };

    A pointer to this structure should be passed as the third ioctl's argument.
    Before calling the ioctl, the field "tid" should be initialized with the id
    information for the timer which information is to be obtained. After the
    ioctl call, the rest of the structure fields are filled with values from
    the timer device with the specified id. If there is no device with the
    specified id, the error ENODEV ("No such device") is returned.

SNDRV_TIMER_IOCTL_GPARAMS - Setting precise period duration

    Sets timer precise period duration numerator and denominator in seconds. The
    period duration is set in the following structure:

        struct snd_timer_gparams {
            struct snd_timer_id tid;    /* requested timer ID */
            unsigned long period_num;   /* period duration - numerator */
            unsigned long period_den;   /* period duration - denominator */
            unsigned char reserved[32]; /* reserved */
        };

    A pointer to this structure should be passed as the third ioctl's argument.
    Before calling the ioctl, the field "tid" should be initialized with the id
    information for the timer which period duration is to be set. Also, the
    fileds "period_num" and "period_den" should be filled with the period
    duration numerator and denominator values that are to be set respectively.
    If there is no device with the specified id, the error ENODEV ("No such
    device") is returned.

SNDRV_TIMER_IOCTL_GSTATUS - Getting current period resolution

    Read timer current period resolution in nanoseconds and period resolution
    numerator and denominator in seconds. The period resolution information is
    returned in the following structure:

    struct snd_timer_gstatus {
        struct snd_timer_id tid;        /* requested timer ID */
        unsigned long resolution;       /* current period resolution in ns */
        unsigned long resolution_num;   /* period resolution - numerator */
        unsigned long resolution_den;   /* period resolution - denominator */
        unsigned char reserved[32];     /* reserved for future use */
    };

    A pointer to this structure should be passed as the third ioctl's argument.
    Before calling the ioctl, the field "tid" should be initialized with the id
    information for the timer which period resolution is to be obtained. After
    the ioctl call, the rest of the structure fields are filled with values
    from the timer device with the specified id. If there is no device with the
    specified id, the error ENODEV ("No such device") is returned.

Implementation notes:

    All ioctls in this patch have pointer to some kind of a structure as their
    third argument. That is the reason why corresponding definitions were added
    in 'linux-user/syscall_types.h'. All of these strcutures have some fields
    that are of type 'unsigned long'. That is the reason why separate target
    structures were defined in 'linux-user/syscall_defs.h'. Also, all of the
    structures have a field with type 'struct snd_timer_id' which is the reason
    why a separate target structure 'struct target_snd_timer_id' was also
    defined. The rest of the implementation was straightforward.

Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-10-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-02-19 11:17:40 +01:00
Filip Bozuta 1c4c6fcd1a linux-user: Add support for getting alsa timer version and id
This patch implements functionalities of following ioctls:

SNDRV_TIMER_IOCTL_PVERSION - Getting the sound timer version

    Read the sound timer version. The third ioctl's argument is
    a pointer to an int in which the specified timers version
    is returned.

SNDRV_TIMER_IOCTL_NEXT_DEVICE - Getting id information about next timer

    Read id information about the next timer device from the sound timer
    device list. The id infomration is returned in the following structure:

        struct snd_timer_id {
            int dev_class;    /* timer device class number */
            int dev_sclass;   /* slave device class number (unused) */
            int card;         /* card number */
            int device;       /* device number */
            int subdevice;    /* sub-device number */
        };

    The devices in the sound timer device list are arranged by the fields
    of this structure respectively (first by dev_class number, then by
    card number, ...). A pointer to this structure should be passed as
    the third ioctl's argument. Before calling the ioctl, the parameters
    of this structure should be initialized in relation to the next timer
    device which information is to be obtained. For example, if a wanted
    timer device has the device class number equal to or bigger then 2,
    the field dev_class should be initialized to 2. After the ioctl call,
    the structure fields are filled with values from the next device in
    the sound timer device list. If there is no next device in the list,
    the structure is filled with "zero" id values (in that case all
    fields are filled with value -1).

Implementation notes:

    The ioctl 'SNDRV_TIMER_IOCTL_NEXT_DEVICE' has a pointer to a
    'struct snd_timer_id' as its third argument. That is the reason why
    corresponding definition is added in 'linux-user/syscall_types.h'.
    Since all elements of this structure are of type 'int', the rest of
    the implementation was straightforward.

    The line '#include <linux/rtc.h>' was added to recognize
    preprocessor definitions for these ioctls. This needs to be
    done only once in this series of commits. Also, the content
    of this file (with respect to ioctl definitions) remained
    unchanged for a long time, therefore there is no need to
    worry about supporting older Linux kernel version.

Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-8-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-02-19 11:17:40 +01:00
Filip Bozuta 373b067ff0 linux-user: Add support for getting/setting RTC PLL correction using ioctls
This patch implements functionalities of following ioctls:

RTC_PLL_GET - Getting PLL correction

    Read the PLL correction for RTCs that support PLL. The PLL correction
    is returned in the following structure:

        struct rtc_pll_info {
            int pll_ctrl;        /* placeholder for fancier control */
            int pll_value;       /* get/set correction value */
            int pll_max;         /* max +ve (faster) adjustment value */
            int pll_min;         /* max -ve (slower) adjustment value */
            int pll_posmult;     /* factor for +ve correction */
            int pll_negmult;     /* factor for -ve correction */
            long pll_clock;      /* base PLL frequency */
        };

    A pointer to this structure should be passed as the third
    ioctl's argument.

RTC_PLL_SET - Setting PLL correction

    Sets the PLL correction for RTCs that support PLL. The PLL correction
    that is set is specified by the rtc_pll_info structure pointed to by
    the third ioctl's' argument.

Implementation notes:

    All ioctls in this patch have a pointer to a structure rtc_pll_info
    as their third argument. All elements of this structure are of
    type 'int', except the last one that is of type 'long'. That is
    the reason why a separate target structure (target_rtc_pll_info)
    is defined in linux-user/syscall_defs. The rest of the
    implementation is straightforward.

Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-6-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-01-22 15:20:51 +01:00
Filip Bozuta abc81bf678 linux-user: Add support for getting/setting RTC wakeup alarm using ioctls
This patch implements functionalities of following ioctls:

RTC_WKALM_SET, RTC_WKALM_GET - Getting/Setting wakeup alarm

    Some RTCs support a more powerful alarm interface, using these
    ioctls to read or write the RTC's alarm time (respectively)
    with this structure:

        struct rtc_wkalrm {
            unsigned char enabled;
            unsigned char pending;
            struct rtc_time time;
        };

    The enabled flag is used to enable or disable the alarm
    interrupt, or to read its current status; when using these
    calls, RTC_AIE_ON and RTC_AIE_OFF are not used. The pending
    flag is used by RTC_WKALM_RD to report a pending interrupt
    (so it's mostly useless on Linux, except when talking to the
    RTC managed by EFI firmware). The time field is as used with
    RTC_ALM_READ and RTC_ALM_SET except that the tm_mday, tm_mon,
    and tm_year fields are also valid. A pointer to this structure
    should be passed as the third ioctl's argument.

Implementation notes:

    All ioctls in this patch have a pointer to a structure
    rtc_wkalrm as their third argument. That is the reason why
    corresponding definition is added in linux-user/syscall_types.h.
    Since all  elements of this structure are either of type
    'unsigned char' or 'struct rtc_time' (that was covered in one
    of previous patches), the rest of the implementation is
    straightforward.

Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-5-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-01-22 15:20:11 +01:00
Filip Bozuta 178b14a0cd linux-user: Add support for getting/setting RTC time and alarm using ioctls
This patch implements functionalities of following ioctls:

RTC_RD_TIME - Getting RTC time

    Returns this RTC's time in the following structure:

        struct rtc_time {
            int tm_sec;
            int tm_min;
            int tm_hour;
            int tm_mday;
            int tm_mon;
            int tm_year;
            int tm_wday;     /* unused */
            int tm_yday;     /* unused */
            int tm_isdst;    /* unused */
        };

    The fields in this structure have the same meaning and ranges
    as the tm structure described in gmtime man page. A pointer
    to this structure should be passed as the third ioctl's argument.

RTC_SET_TIME - Setting RTC time

    Sets this RTC's time to the time specified by the rtc_time
    structure pointed to by the third ioctl's argument. To set
    the RTC's time the process must be privileged (i.e., have the
    CAP_SYS_TIME capability).

RTC_ALM_READ, RTC_ALM_SET - Getting/Setting alarm time

    Read and set the alarm time, for RTCs that support alarms.
    The alarm interrupt must be separately enabled or disabled
    using the RTC_AIE_ON, RTC_AIE_OFF requests. The third
    ioctl's argument is a pointer to a rtc_time structure. Only
    the tm_sec, tm_min, and tm_hour fields of this structure are
    used.

Implementation notes:

    All ioctls in this patch have pointer to a structure rtc_time
    as their third argument. That is the reason why corresponding
    definition is added in linux-user/syscall_types.h. Since all
    elements of this structure are of type 'int', the rest of the
    implementation is straightforward.

Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Filip Bozuta <Filip.Bozuta@rt-rk.com>
Message-Id: <1579117007-7565-3-git-send-email-Filip.Bozuta@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-01-22 15:18:54 +01:00
Aleksandar Markovic 08e3ce59fc linux-user: Add support for FDFMT<BEG|TRK|END> ioctls
FDFMTBEG, FDFMTTRK, and FDFMTEND ioctls provide means for controlling
formatting of a floppy drive.

FDFMTTRK's third agrument is a pointer to the structure:

struct format_descr {
    unsigned int device,head,track;
};

defined in Linux kernel header <linux/fd.h>.

Since all fields of the structure are of type 'unsigned int', there is
no need to define "target_format_descr".

FDFMTBEG and FDFMTEND ioctls do not use the third argument.

Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1579214991-19602-9-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-01-22 15:13:49 +01:00
Aleksandar Markovic 81eb1a369d linux-user: Add support for FD<SETEMSGTRESH|SETMAXERRS|GETMAXERRS> ioctls
FDSETEMSGTRESH, FDSETMAXERRS, and FDGETMAXERRS ioctls are commands
for controlling error reporting of a floppy drive.

FDSETEMSGTRESH's third agrument is a pointer to the structure:

struct floppy_max_errors {
    unsigned int
      abort,      /* number of errors to be reached before aborting */
      read_track, /* maximal number of errors permitted to read an
                   * entire track at once */
      reset,      /* maximal number of errors before a reset is tried */
      recal,      /* maximal number of errors before a recalibrate is
                   * tried */
      /*
       * Threshold for reporting FDC errors to the console.
       * Setting this to zero may flood your screen when using
       * ultra cheap floppies ;-)
       */
      reporting;
};

defined in Linux kernel header <linux/fd.h>.

Since all fields of the structure are of type 'unsigned int', there is
no need to define "target_floppy_max_errors".

FDSETMAXERRS and FDGETMAXERRS ioctls do not use the third argument.

Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Aleksandar Markovic <amarkovic@wavecomp.com>
Message-Id: <1579214991-19602-8-git-send-email-aleksandar.markovic@rt-rk.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2020-01-22 15:13:13 +01:00
Daniel P. Berrangé 6d5d5dde9a linux-user: fix to handle variably sized SIOCGSTAMP with new kernels
The SIOCGSTAMP symbol was previously defined in the
asm-generic/sockios.h header file. QEMU sees that header
indirectly via sys/socket.h

In linux kernel commit 0768e17073dc527ccd18ed5f96ce85f9985e9115
the asm-generic/sockios.h header no longer defines SIOCGSTAMP.
Instead it provides only SIOCGSTAMP_OLD, which only uses a
32-bit time_t on 32-bit architectures.

The linux/sockios.h header then defines SIOCGSTAMP using
either SIOCGSTAMP_OLD or SIOCGSTAMP_NEW as appropriate. If
SIOCGSTAMP_NEW is used, then the tv_sec field is 64-bit even
on 32-bit architectures

To cope with this we must now convert the old and new type from
the target to the host one.

Signed-off-by: Daniel P. Berrangé <berrange@redhat.com>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Reviewed-by: Arnd Bergmann <arnd@arndb.de>
Message-Id: <20190718130641.15294-1-laurent@vivier.eu>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2019-07-19 09:33:55 +02:00
Cortland Tölva a133367ec1 linux-user: Implement special usbfs ioctls.
Userspace submits a USB Request Buffer to the kernel, optionally
discards it, and finally reaps the URB.  Thunk buffers from target
to host and back.

Tested by running an i386 scanner driver on ARMv7 and by running
the PowerPC lsusb utility on x86_64.  The discardurb ioctl is
not exercised in these tests.

Signed-off-by: Cortland Tölva <cst@tolva.net>
Message-Id: <20181008163521.17341-4-cst@tolva.net>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2018-10-19 14:05:10 +02:00
Cortland Tölva 6c753a63ed linux-user: Define ordinary usbfs ioctls.
Provide ioctl definitions for the generic thunk mechanism to
convert most usbfs calls.  Calculate arg size at runtime.

Signed-off-by: Cortland Tölva <cst@tolva.net>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20181008163521.17341-3-cst@tolva.net>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2018-10-19 14:04:17 +02:00
Helge Deller 21992cb679 linux-user: Add FICLONE and FICLONERANGE ioctls
Add missing FICLONE and FICLONERANGE ioctls.

Signed-off-by: Helge Deller <deller@gmx.de>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Message-Id: <20170211222602.GA6399@ls3530.fritz.box>
Signed-off-by: Laurent Vivier <laurent@vivier.eu>
2017-02-16 15:29:30 +01:00
Helge Deller 405b491504 linux-user: Add SIOCGPGRP, SIOCGSTAMP, SIOCGSTAMPNS
Mirror syscall_defs.h for the element type of struct timeval
and struct timespec, even though that's not 100% accurate for
each guest.

Signed-off-by: Helge Deller <deller@gmx.de>
[rth: Changed the MK_ARRAY types as per above; added ioctl.h entries.]
Signed-off-by: Richard Henderson <rth@twiddle.net>
2017-01-22 18:14:10 -08:00
Peter Maydell f2c2fb50be linux-user: Correct type for LOOP_GET_STATUS{,64} ioctls
The LOOP_GET_STATUS and LOOP_GET_STATUS64 ioctls were incorrectly
defined as IOC_W rather than IOC_R, which meant we weren't
correctly copying the information back from the kernel to the guest.
The loop_info64 structure definition was also missing a member
and using the wrong type for several 32-bit fields.

In particular, this meant that "kpartx -d image.img" didn't work
and "losetup -a" behaved strangely. Correct the ioctl type definitions.

Reported-by: Chanho Park <chanho61.park@samsung.com>
Reviewed-by: Laurent Vivier <laurent@vivier.eu>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
2016-07-19 15:23:16 +03:00
Alexander Graf a59b5e35d1 linux-user: Convert blkpg to use a special subop handler
The blkpg ioctl can take different payloads depending on the opcode in
its payload structure. Create a new special ioctl handler that can only
deal with partition style ones for now.

This patch fixes running parted for me.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
2014-10-06 21:52:45 +03:00
Andreas Färber fff8c539bd linux-user: Implement BLKPG ioctl
Signed-off-by: Andreas Färber <afaerber@suse.de>
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
2014-02-19 12:29:23 +02:00
Peter Maydell 5f72307d90 linux-user: Fix SNDCTL_DSP_MAP{IN, OUT}BUF ioctl definitions
Fix the SNDCTL_DSP_MAP{IN,OUT}BUF ioctl definitions so that they
refer to a suitably defined target struct layout rather than hardcoding
the ioctl number. This fixes complaints from the syscall_init()
consistency check when running an x86_64-to-x86_64 linux-user qemu.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
2012-08-13 12:45:46 +01:00
Alexander Graf 6083abd9aa linux-user: add struct old_dev_t compat
The compat LOOP_SET_STATUS ioctl uses struct old_dev_t in its passed
struct. That variable type is vastly different between different
architectures. Implement wrapping around it so we can use it.

This fixes running arm kpartx on an x86_64 host for me.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
2012-04-06 18:49:58 +03:00
Alexander Graf 56e904ecb2 linux-user: implement device mapper ioctls
This patch implements all ioctls currently implemented by device mapper,
enabling us to run dmsetup and kpartx inside of linux-user.

Signed-off-by: Alexander Graf <agraf@suse.de>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
2012-04-06 18:49:58 +03:00
Cédric VINCENT 12b81b7145 linux-user: Add support for even more FB ioctls
This patch was validated with programs from DirectFB-1.0 and
WebKit/DirectFB.

Signed-off-by: Cédric VINCENT <cedric.vincent@st.com>
Cc: Riku Voipio <riku.voipio@iki.fi>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
2011-07-11 16:12:18 +03:00
Cédric VINCENT 774750c088 linux-user: Add support for more VT ioctls
DirectFB-1.0 uses at least two of the four added ioctls, and the two
others were added for completeness.  This patch was validated with the
program "vlock -all/-new".

Signed-off-by: Cédric VINCENT <cedric.vincent@st.com>
Cc: Riku Voipio <riku.voipio@iki.fi>
Signed-off-by: Riku Voipio <riku.voipio@linaro.org>
2011-07-11 16:10:49 +03:00
Peter Maydell 285da2b9a8 linux-user: Implement FS_IOC_FIEMAP ioctl
Implement the FS_IOC_FIEMAP ioctl using the new support for
custom handling of ioctls; this is needed because the struct
that is passed includes a variable-length array.

Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Riku Voipio <riku.voipio@iki.fi>
2011-01-07 17:20:58 +02:00
Ulrich Hecht f7680a5593 linux-user: KD/VT/FB ioctls
everything needed to run SDL on a framebuffer device in the userspace emulator

Signed-off-by: Ulrich Hecht <uli@suse.de>
Signed-off-by: Riku Voipio <riku.voipio@iki.fi>
2009-10-17 11:38:00 +03:00
balrog 8fbd6b5267 Add MTIOCTOP, MTIOCGET and MTIOCPOS ioctls (Kirill Shutemov).
Signed-off-by: Kirill A. Shutemov <kirill@shutemov.name>


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@5271 c046a42c-6fe2-441c-8c8c-71466251a162
2008-09-20 03:03:09 +00:00
balrog b80059146a Add loop device ioctls (Gary Thomas).
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@4257 c046a42c-6fe2-441c-8c8c-71466251a162
2008-04-26 14:44:49 +00:00
ths 3b46e62427 find -type f | xargs sed -i 's/[\t ]*$//g' # Yes, again. Note the star in the regex.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3177 c046a42c-6fe2-441c-8c8c-71466251a162
2007-09-17 08:09:54 +00:00
ths 5fafdf24ef find -type f | xargs sed -i 's/[\t ]$//g' # on most files
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3173 c046a42c-6fe2-441c-8c8c-71466251a162
2007-09-16 21:08:06 +00:00
pbrook 53a5960aad Avoid accessing guest memory directly in usermode emulation.
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@1790 c046a42c-6fe2-441c-8c8c-71466251a162
2006-03-25 19:31:22 +00:00
bellard 2521d69883 factorized more definitions - suppressed broken sound ioctls
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@241 c046a42c-6fe2-441c-8c8c-71466251a162
2003-06-15 19:58:13 +00:00
bellard 0221cfcd71 more console ioctls
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@139 c046a42c-6fe2-441c-8c8c-71466251a162
2003-05-10 12:38:16 +00:00
bellard 1a9353d258 added loop/xadd/cmpxchg support
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@29 c046a42c-6fe2-441c-8c8c-71466251a162
2003-03-16 20:28:50 +00:00
bellard 6dbad63eef added minimal segment support
git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@28 c046a42c-6fe2-441c-8c8c-71466251a162
2003-03-16 18:05:05 +00:00
bellard 31e31b8a24 This commit was generated by cvs2svn to compensate for changes in r2,
which included commits to RCS files with non-trunk default branches.


git-svn-id: svn://svn.savannah.nongnu.org/qemu/trunk@3 c046a42c-6fe2-441c-8c8c-71466251a162
2003-02-18 22:55:36 +00:00