Commit Graph

5 Commits

Author SHA1 Message Date
Eric Blake c61e684e44 block: Exploit BDRV_BLOCK_EOF for larger zero blocks
When we have a BDS with unallocated clusters, but asking the status
of its underlying bs->file or backing layer encounters an end-of-file
condition, we know that the rest of the unallocated area will read as
zeroes.  However, pre-patch, this required two separate calls to
bdrv_get_block_status(), as the first call stops at the point where
the underlying file ends.  Thanks to BDRV_BLOCK_EOF, we can now widen
the results of the primary status if the secondary status already
includes BDRV_BLOCK_ZERO.

In turn, this fixes a TODO mentioned in iotest 154, where we can now
see that all sectors in a partial cluster at the end of a file read
as zero when coupling the shorter backing file's status along with our
knowledge that the remaining sectors came from an unallocated cluster.

Also, note that the loop in bdrv_co_get_block_status_above() had an
inefficent exit: in cases where the active layer sets BDRV_BLOCK_ZERO
but does NOT set BDRV_BLOCK_ALLOCATED (namely, where we know we read
zeroes merely because our unallocated clusters lie beyond the backing
file's shorter length), we still ended up probing the backing layer
even though we already had a good answer.

Signed-off-by: Eric Blake <eblake@redhat.com>
Message-Id: <20170505021500.19315-3-eblake@redhat.com>
Reviewed-by: Stefan Hajnoczi <stefanha@redhat.com>
Signed-off-by: Fam Zheng <famz@redhat.com>
2017-06-30 21:48:06 +08:00
Eric Blake fbaa6bb3d3 qcow2: Optimize write zero of unaligned tail cluster
We've already improved discards to operate efficiently on the tail
of an unaligned qcow2 image; it's time to make a similar improvement
to write zeroes.  The special case is only valid at the tail
cluster of a file, where we must recognize that any sectors beyond
the image end would implicitly read as zero, and therefore should
not penalize our logic for widening a partial cluster into writing
the whole cluster as zero.

However, note that for now, the special case of end-of-file is only
recognized if there is no backing file, or if the backing file has
the same length; that's because when the backing file is shorter
than the active layer, we don't have code in place to recognize
that reads of a sector unallocated at the top and beyond the backing
end-of-file are implicitly zero.  It's not much of a real loss,
because most people don't use images that aren't cluster-aligned,
or where the active layer is a different size than the backing
layer (especially where the difference falls within a single cluster).

Update test 154 to cover the new scenarios, using two images of
intentionally differing length.

While at it, fix the test to gracefully skip when run as
./check -qcow2 -o compat=0.10 154
since the older format lacks zero clusters already required earlier
in the test.

Signed-off-by: Eric Blake <eblake@redhat.com>
Reviewed-by: Max Reitz <mreitz@redhat.com>
Message-id: 20170507000552.20847-11-eblake@redhat.com
Signed-off-by: Max Reitz <mreitz@redhat.com>
2017-05-11 14:28:07 +02:00
Eric Blake 74021bc497 block: Switch bdrv_write_zeroes() to byte interface
Rename to bdrv_pwrite_zeroes() to let the compiler ensure we
cater to the updated semantics.  Do the same for bdrv_co_write_zeroes().

Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2016-06-08 10:21:08 +02:00
Eric Blake 31ad4fdf91 qemu-iotests: Test one more spot for optimizing write_zeroes
Add another test to 154, showing that we currently allocate a
data cluster in the top layer if any sector of the backing file
was allocated.  The next patch will optimize this case.

Signed-off-by: Eric Blake <eblake@redhat.com>
Signed-off-by: Kevin Wolf <kwolf@redhat.com>
2016-06-08 10:21:08 +02:00
Kevin Wolf 1ef7d01021 qemu-iotests: Some more write_zeroes tests
This covers some more write_zeroes cases which are relevant for the
recent qcow2 optimisations that check the allocation status of the
backing file for partial cluster write_zeroes requests.

This needs to be separate from 034 because we can only support qcow2 in
this test case for multiple reasons: We check the allocation status
after write_zeroes with 'qemu-img map' and the optimised behaviour that
produces zero clusters is only implemented in qcow2; second, the map
command returns offsets that are qcow2 specific; and finally, we also
use 512 byte clusters which aren't supported for formats like qed.

Signed-off-by: Kevin Wolf <kwolf@redhat.com>
Reviewed-by: Eric Blake <eblake@redhat.com>
2016-05-19 16:45:31 +02:00