Add the structure fields, VMState fields, reset code and macros for
the v7M system control registers CCR, CFSR, HFSR, DFSR, MMFAR and
BFAR.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 1485285380-10565-4-git-send-email-peter.maydell@linaro.org
We only use the IS_M() macro in two places, and it's a bit of a
namespace grab to put in cpu.h. Drop it in favour of just explicitly
calling arm_feature() in the places where it was used.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 1485285380-10565-2-git-send-email-peter.maydell@linaro.org
For v7m we need to catch attempts to execute from special
addresses at 0xfffffff0 and above. Previously we did this
with the aid of a hacky special purpose lump of memory
in the address space and a check in translate.c for whether
we were translating code at those addresses.
We can implement this more cleanly using a CPU
unassigned access handler which throws the exception
if the unassigned access is for one of the special addresses.
Signed-off-by: Michael Davidsaver <mdavidsaver@gmail.com>
Reviewed-by: Alex Bennée <alex.bennee@linaro.org>
Message-id: 1484937883-1068-3-git-send-email-peter.maydell@linaro.org
[PMM:
* drop the deletion of the "don't interrupt if PC is magic"
code in arm_v7m_cpu_exec_interrupt() -- this is still
required
* don't generate an exception for unassigned accesses
which aren't to the magic address -- although doing
this is in theory correct in practice it will break
currently working guests which rely on the RAZ/WI
behaviour when they touch devices which we haven't
modelled.
* trigger EXCP_EXCEPTION_EXIT on is_exec, not !is_write
]
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Enable the ARM_FEATURE_EL2 bit on Cortex-A52 and
Cortex-A57, since this is all now sufficiently implemented
to work with the GICv3. We provide the usual CPU property
to disable it for backwards compatibility with the older
virt boards.
In this commit, we disable the EL2 feature on the
virt and ZynpMP boards, so there is no overall effect.
Another commit will expose a board-level property to
allow the user to enable EL2.
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Andrew Jones <drjones@redhat.com>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Alistair Francis <alistair.francis@xilinx.com>
Message-id: 1483977924-14522-18-git-send-email-peter.maydell@linaro.org
The GICv3 support for virtualization includes an outbound
maintenance interrupt signal which is asserted when the
CPU interface wants to signal to the hypervisor that it
needs attention. Expose this as an outbound GPIO line from
the CPU object which can be wired up as a physical interrupt
line by the board code (as we do already for the CPU timers).
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Reviewed-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com>
Reviewed-by: Alistair Francis <alistair.francis@xilinx.com>
Message-id: 1483977924-14522-4-git-send-email-peter.maydell@linaro.org
Move the generic cpu_synchronize_ functions to the common hw_accel.h header,
in order to prepare for the addition of a second hardware accelerator.
Signed-off-by: Stefan Weil <sw@weilnetz.de>
Signed-off-by: Vincent Palatin <vpalatin@chromium.org>
Message-Id: <f5c3cffe8d520011df1c2e5437bb814989b48332.1484045952.git.vpalatin@chromium.org>
Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
It is a common thing amongst the various cpu reset functions want to
flush the SoftMMU's TLB entries. This is done either by calling
tlb_flush directly or by way of a general memset of the CPU
structure (sometimes both).
This moves the tlb_flush call to the common reset function and
additionally ensures it is only done for the CONFIG_SOFTMMU case and
when tcg is enabled.
In some target cases we add an empty end_of_reset_fields structure to the
target vCPU structure so have a clear end point for any memset which
is resetting value in the structure before CPU_COMMON (where the TLB
structures are).
While this is a nice clean-up in general it is also a precursor for
changes coming to cputlb for MTTCG where the clearing of entries
can't be done arbitrarily across vCPUs. Currently the cpu_reset
function is usually called from the context of another vCPU as the
architectural power up sequence is run. By using the cputlb API
functions we can ensure the right behaviour in the future.
Signed-off-by: Alex Bennée <alex.bennee@linaro.org>
Reviewed-by: Richard Henderson <rth@twiddle.net>
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
ARM1176 CPUs have TrustZone support and can use the Vector Base
Address Register, but currently, qemu only adds VBAR support to ARMv7
CPUs. Fix this by adding a new feature ARM_FEATURE_VBAR which can used
for ARMv7 and ARM1176 CPUs.
The VBAR feature is always set for ARMv7 because some legacy boards
require it even if this is not architecturally correct.
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Message-id: 1481810970-9692-1-git-send-email-clg@kaod.org
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
The value of the MVFR1 (Media and VFP Feature Register 1) register for
the Cortex-A8 appears to be incorrect (according to the TRM, DDI0344K),
with the "full denormal arithmetic" and "propagation of NaN" fields
holding both 0 instead of both 1.
I had a go tracing the history of the use of this value, and it seems
it's always just been wrong in QEMU: maybe it was derived from early
documentation, or guessed based on the use of a "VFP Lite" implementation
in the Cortex-A8.
Depending on the startup/early-boot code in use, this can manifest as
failure to perform denormal arithmetic properly: in our case, selecting
a Cortex-A8 CPU when using QEMU as an instruction-set simulator for
bare-metal GCC testing caused tests using denormal arithmetic to
fail. Problems might be masked (or not occur) when using a full OS kernel
with suitable trap handlers (I'm not sure).
Signed-off-by: Julian Brown <julian@codesourcery.com>
Message-id: 1481130858-31767-1-git-send-email-julian@codesourcery.com
Reviewed-by: Peter Maydell <peter.maydell@linaro.org>
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
We've currently got 18 architectures in QEMU, and thus 18 target-xxx
folders in the root folder of the QEMU source tree. More architectures
(e.g. RISC-V, AVR) are likely to be included soon, too, so the main
folder of the QEMU sources slowly gets quite overcrowded with the
target-xxx folders.
To disburden the main folder a little bit, let's move the target-xxx
folders into a dedicated target/ folder, so that target-xxx/ simply
becomes target/xxx/ instead.
Acked-by: Laurent Vivier <laurent@vivier.eu> [m68k part]
Acked-by: Bastian Koppelmann <kbastian@mail.uni-paderborn.de> [tricore part]
Acked-by: Michael Walle <michael@walle.cc> [lm32 part]
Acked-by: Cornelia Huck <cornelia.huck@de.ibm.com> [s390x part]
Reviewed-by: Christian Borntraeger <borntraeger@de.ibm.com> [s390x part]
Acked-by: Eduardo Habkost <ehabkost@redhat.com> [i386 part]
Acked-by: Artyom Tarasenko <atar4qemu@gmail.com> [sparc part]
Acked-by: Richard Henderson <rth@twiddle.net> [alpha part]
Acked-by: Max Filippov <jcmvbkbc@gmail.com> [xtensa part]
Reviewed-by: David Gibson <david@gibson.dropbear.id.au> [ppc part]
Acked-by: Edgar E. Iglesias <edgar.iglesias@xilinx.com> [crisµblaze part]
Acked-by: Guan Xuetao <gxt@mprc.pku.edu.cn> [unicore32 part]
Signed-off-by: Thomas Huth <thuth@redhat.com>