/* * SCLP Support * * Copyright IBM, Corp. 2012 * * Authors: * Christian Borntraeger * Heinz Graalfs * * This work is licensed under the terms of the GNU GPL, version 2 or (at your * option) any later version. See the COPYING file in the top-level directory. * */ #include "cpu.h" #include "sysemu/kvm.h" #include "exec/memory.h" #include "sysemu/sysemu.h" #include "exec/address-spaces.h" #include "qemu/config-file.h" #include "hw/s390x/sclp.h" #include "hw/s390x/event-facility.h" #include "hw/s390x/s390-pci-bus.h" static inline SCLPDevice *get_sclp_device(void) { return SCLP(object_resolve_path_type("", TYPE_SCLP, NULL)); } /* Provide information about the configuration, CPUs and storage */ static void read_SCP_info(SCLPDevice *sclp, SCCB *sccb) { ReadInfo *read_info = (ReadInfo *) sccb; sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); CPUState *cpu; int cpu_count = 0; int i = 0; int increment_size = 20; int rnsize, rnmax; QemuOpts *opts = qemu_opts_find(qemu_find_opts("memory"), NULL); int slots = qemu_opt_get_number(opts, "slots", 0); int max_avail_slots = s390_get_memslot_count(kvm_state); if (slots > max_avail_slots) { slots = max_avail_slots; } CPU_FOREACH(cpu) { cpu_count++; } /* CPU information */ read_info->entries_cpu = cpu_to_be16(cpu_count); read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries)); read_info->highest_cpu = cpu_to_be16(max_cpus); for (i = 0; i < cpu_count; i++) { read_info->entries[i].address = i; read_info->entries[i].type = 0; } read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO | SCLP_HAS_PCI_RECONFIG); /* * The storage increment size is a multiple of 1M and is a power of 2. * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer. */ while ((ram_size >> increment_size) > MAX_STORAGE_INCREMENTS) { increment_size++; } rnmax = ram_size >> increment_size; /* Memory Hotplug is only supported for the ccw machine type */ if (mhd) { while ((mhd->standby_mem_size >> increment_size) > MAX_STORAGE_INCREMENTS) { increment_size++; } assert(increment_size == mhd->increment_size); mhd->standby_subregion_size = MEM_SECTION_SIZE; /* Deduct the memory slot already used for core */ if (slots > 0) { while ((mhd->standby_subregion_size * (slots - 1) < mhd->standby_mem_size)) { mhd->standby_subregion_size = mhd->standby_subregion_size << 1; } } /* * Initialize mapping of guest standby memory sections indicating which * are and are not online. Assume all standby memory begins offline. */ if (mhd->standby_state_map == 0) { if (mhd->standby_mem_size % mhd->standby_subregion_size) { mhd->standby_state_map = g_malloc0((mhd->standby_mem_size / mhd->standby_subregion_size + 1) * (mhd->standby_subregion_size / MEM_SECTION_SIZE)); } else { mhd->standby_state_map = g_malloc0(mhd->standby_mem_size / MEM_SECTION_SIZE); } } mhd->padded_ram_size = ram_size + mhd->pad_size; mhd->rzm = 1 << mhd->increment_size; rnmax = ((ram_size + mhd->standby_mem_size + mhd->pad_size) >> mhd->increment_size); read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR); } rnsize = 1 << (increment_size - 20); if (rnsize <= 128) { read_info->rnsize = rnsize; } else { read_info->rnsize = 0; read_info->rnsize2 = cpu_to_be32(rnsize); } if (rnmax < 0x10000) { read_info->rnmax = cpu_to_be16(rnmax); } else { read_info->rnmax = cpu_to_be16(0); read_info->rnmax2 = cpu_to_be64(rnmax); } sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); } static void read_storage_element0_info(SCLPDevice *sclp, SCCB *sccb) { int i, assigned; int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID; ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); assert(mhd); if ((ram_size >> mhd->increment_size) >= 0x10000) { sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); return; } /* Return information regarding core memory */ storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); assigned = ram_size >> mhd->increment_size; storage_info->assigned = cpu_to_be16(assigned); for (i = 0; i < assigned; i++) { storage_info->entries[i] = cpu_to_be32(subincrement_id); subincrement_id += SCLP_INCREMENT_UNIT; } sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); } static void read_storage_element1_info(SCLPDevice *sclp, SCCB *sccb) { ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb; sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); assert(mhd); if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) { sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION); return; } /* Return information regarding standby memory */ storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0); storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >> mhd->increment_size); storage_info->standby = cpu_to_be16(mhd->standby_mem_size >> mhd->increment_size); sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION); } static void attach_storage_element(SCLPDevice *sclp, SCCB *sccb, uint16_t element) { int i, assigned, subincrement_id; AttachStorageElement *attach_info = (AttachStorageElement *) sccb; sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); assert(mhd); if (element != 1) { sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND); return; } assigned = mhd->standby_mem_size >> mhd->increment_size; attach_info->assigned = cpu_to_be16(assigned); subincrement_id = ((ram_size >> mhd->increment_size) << 16) + SCLP_STARTING_SUBINCREMENT_ID; for (i = 0; i < assigned; i++) { attach_info->entries[i] = cpu_to_be32(subincrement_id); subincrement_id += SCLP_INCREMENT_UNIT; } sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); } static void assign_storage(SCLPDevice *sclp, SCCB *sccb) { MemoryRegion *mr = NULL; uint64_t this_subregion_size; AssignStorage *assign_info = (AssignStorage *) sccb; sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); assert(mhd); ram_addr_t assign_addr = (assign_info->rn - 1) * mhd->rzm; MemoryRegion *sysmem = get_system_memory(); if ((assign_addr % MEM_SECTION_SIZE == 0) && (assign_addr >= mhd->padded_ram_size)) { /* Re-use existing memory region if found */ mr = memory_region_find(sysmem, assign_addr, 1).mr; memory_region_unref(mr); if (!mr) { MemoryRegion *standby_ram = g_new(MemoryRegion, 1); /* offset to align to standby_subregion_size for allocation */ ram_addr_t offset = assign_addr - (assign_addr - mhd->padded_ram_size) % mhd->standby_subregion_size; /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) + NULL */ char id[16]; snprintf(id, 16, "standby.ram%d", (int)((offset - mhd->padded_ram_size) / mhd->standby_subregion_size) + 1); /* Allocate a subregion of the calculated standby_subregion_size */ if (offset + mhd->standby_subregion_size > mhd->padded_ram_size + mhd->standby_mem_size) { this_subregion_size = mhd->padded_ram_size + mhd->standby_mem_size - offset; } else { this_subregion_size = mhd->standby_subregion_size; } memory_region_init_ram(standby_ram, NULL, id, this_subregion_size, &error_abort); /* This is a hack to make memory hotunplug work again. Once we have * subdevices, we have to unparent them when unassigning memory, * instead of doing it via the ref count of the MemoryRegion. */ object_ref(OBJECT(standby_ram)); object_unparent(OBJECT(standby_ram)); vmstate_register_ram_global(standby_ram); memory_region_add_subregion(sysmem, offset, standby_ram); } /* The specified subregion is no longer in standby */ mhd->standby_state_map[(assign_addr - mhd->padded_ram_size) / MEM_SECTION_SIZE] = 1; } sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); } static void unassign_storage(SCLPDevice *sclp, SCCB *sccb) { MemoryRegion *mr = NULL; AssignStorage *assign_info = (AssignStorage *) sccb; sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev(); assert(mhd); ram_addr_t unassign_addr = (assign_info->rn - 1) * mhd->rzm; MemoryRegion *sysmem = get_system_memory(); /* if the addr is a multiple of 256 MB */ if ((unassign_addr % MEM_SECTION_SIZE == 0) && (unassign_addr >= mhd->padded_ram_size)) { mhd->standby_state_map[(unassign_addr - mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0; /* find the specified memory region and destroy it */ mr = memory_region_find(sysmem, unassign_addr, 1).mr; memory_region_unref(mr); if (mr) { int i; int is_removable = 1; ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size - (unassign_addr - mhd->padded_ram_size) % mhd->standby_subregion_size); /* Mark all affected subregions as 'standby' once again */ for (i = 0; i < (mhd->standby_subregion_size / MEM_SECTION_SIZE); i++) { if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) { is_removable = 0; break; } } if (is_removable) { memory_region_del_subregion(sysmem, mr); object_unref(OBJECT(mr)); } } } sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION); } /* Provide information about the CPU */ static void sclp_read_cpu_info(SCLPDevice *sclp, SCCB *sccb) { ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb; CPUState *cpu; int cpu_count = 0; int i = 0; CPU_FOREACH(cpu) { cpu_count++; } cpu_info->nr_configured = cpu_to_be16(cpu_count); cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries)); cpu_info->nr_standby = cpu_to_be16(0); /* The standby offset is 16-byte for each CPU */ cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured + cpu_info->nr_configured*sizeof(CPUEntry)); for (i = 0; i < cpu_count; i++) { cpu_info->entries[i].address = i; cpu_info->entries[i].type = 0; } sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION); } static void sclp_execute(SCLPDevice *sclp, SCCB *sccb, uint32_t code) { SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); SCLPEventFacility *ef = sclp->event_facility; SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); switch (code & SCLP_CMD_CODE_MASK) { case SCLP_CMDW_READ_SCP_INFO: case SCLP_CMDW_READ_SCP_INFO_FORCED: sclp_c->read_SCP_info(sclp, sccb); break; case SCLP_CMDW_READ_CPU_INFO: sclp_c->read_cpu_info(sclp, sccb); break; case SCLP_READ_STORAGE_ELEMENT_INFO: if (code & 0xff00) { sclp_c->read_storage_element1_info(sclp, sccb); } else { sclp_c->read_storage_element0_info(sclp, sccb); } break; case SCLP_ATTACH_STORAGE_ELEMENT: sclp_c->attach_storage_element(sclp, sccb, (code & 0xff00) >> 8); break; case SCLP_ASSIGN_STORAGE: sclp_c->assign_storage(sclp, sccb); break; case SCLP_UNASSIGN_STORAGE: sclp_c->unassign_storage(sclp, sccb); break; case SCLP_CMDW_CONFIGURE_PCI: s390_pci_sclp_configure(1, sccb); break; case SCLP_CMDW_DECONFIGURE_PCI: s390_pci_sclp_configure(0, sccb); break; default: efc->command_handler(ef, sccb, code); break; } } int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code) { SCLPDevice *sclp = get_sclp_device(); SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); int r = 0; SCCB work_sccb; hwaddr sccb_len = sizeof(SCCB); /* first some basic checks on program checks */ if (env->psw.mask & PSW_MASK_PSTATE) { r = -PGM_PRIVILEGED; goto out; } if (cpu_physical_memory_is_io(sccb)) { r = -PGM_ADDRESSING; goto out; } if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa || (sccb & ~0x7ffffff8UL) != 0) { r = -PGM_SPECIFICATION; goto out; } /* * we want to work on a private copy of the sccb, to prevent guests * from playing dirty tricks by modifying the memory content after * the host has checked the values */ cpu_physical_memory_read(sccb, &work_sccb, sccb_len); /* Valid sccb sizes */ if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) || be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) { r = -PGM_SPECIFICATION; goto out; } sclp_c->execute(sclp, (SCCB *)&work_sccb, code); cpu_physical_memory_write(sccb, &work_sccb, be16_to_cpu(work_sccb.h.length)); sclp_c->service_interrupt(sclp, sccb); out: return r; } static void service_interrupt(SCLPDevice *sclp, uint32_t sccb) { SCLPEventFacility *ef = sclp->event_facility; SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef); uint32_t param = sccb & ~3; /* Indicate whether an event is still pending */ param |= efc->event_pending(ef) ? 1 : 0; if (!param) { /* No need to send an interrupt, there's nothing to be notified about */ return; } s390_sclp_extint(param); } void sclp_service_interrupt(uint32_t sccb) { SCLPDevice *sclp = get_sclp_device(); SCLPDeviceClass *sclp_c = SCLP_GET_CLASS(sclp); sclp_c->service_interrupt(sclp, sccb); } /* qemu object creation and initialization functions */ void s390_sclp_init(void) { Object *new = object_new(TYPE_SCLP); object_property_add_child(qdev_get_machine(), TYPE_SCLP, new, NULL); object_unref(OBJECT(new)); qdev_init_nofail(DEVICE(new)); } static void sclp_realize(DeviceState *dev, Error **errp) { SCLPDevice *sclp = SCLP(dev); Error *l_err = NULL; object_property_set_bool(OBJECT(sclp->event_facility), true, "realized", &l_err); if (l_err) { goto error; } return; error: assert(l_err); error_propagate(errp, l_err); } static void sclp_init(Object *obj) { SCLPDevice *sclp = SCLP(obj); Object *new; new = object_new(TYPE_SCLP_EVENT_FACILITY); object_property_add_child(obj, TYPE_SCLP_EVENT_FACILITY, new, NULL); /* qdev_device_add searches the sysbus for TYPE_SCLP_EVENTS_BUS */ qdev_set_parent_bus(DEVICE(new), sysbus_get_default()); object_unref(new); sclp->event_facility = EVENT_FACILITY(new); } static void sclp_class_init(ObjectClass *oc, void *data) { SCLPDeviceClass *sc = SCLP_CLASS(oc); DeviceClass *dc = DEVICE_CLASS(oc); dc->desc = "SCLP (Service-Call Logical Processor)"; dc->realize = sclp_realize; dc->hotpluggable = false; set_bit(DEVICE_CATEGORY_MISC, dc->categories); sc->read_SCP_info = read_SCP_info; sc->read_storage_element0_info = read_storage_element0_info; sc->read_storage_element1_info = read_storage_element1_info; sc->attach_storage_element = attach_storage_element; sc->assign_storage = assign_storage; sc->unassign_storage = unassign_storage; sc->read_cpu_info = sclp_read_cpu_info; sc->execute = sclp_execute; sc->service_interrupt = service_interrupt; } static TypeInfo sclp_info = { .name = TYPE_SCLP, .parent = TYPE_DEVICE, .instance_init = sclp_init, .instance_size = sizeof(SCLPDevice), .class_init = sclp_class_init, .class_size = sizeof(SCLPDeviceClass), }; sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void) { DeviceState *dev; dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV); object_property_add_child(qdev_get_machine(), TYPE_SCLP_MEMORY_HOTPLUG_DEV, OBJECT(dev), NULL); qdev_init_nofail(dev); return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); } sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void) { return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path( TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL)); } static void sclp_memory_hotplug_dev_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); set_bit(DEVICE_CATEGORY_MISC, dc->categories); } static TypeInfo sclp_memory_hotplug_dev_info = { .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(sclpMemoryHotplugDev), .class_init = sclp_memory_hotplug_dev_class_init, }; static void register_types(void) { type_register_static(&sclp_memory_hotplug_dev_info); type_register_static(&sclp_info); } type_init(register_types);