/* This is the Linux kernel elf-loading code, ported into user space */ #include #include #include #include #include #include #include #include #include #include #include #include #include "qemu.h" #include "disas.h" #ifdef _ARCH_PPC64 #undef ARCH_DLINFO #undef ELF_PLATFORM #undef ELF_HWCAP #undef ELF_CLASS #undef ELF_DATA #undef ELF_ARCH #endif #define ELF_OSABI ELFOSABI_SYSV /* from personality.h */ /* * Flags for bug emulation. * * These occupy the top three bytes. */ enum { ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors (signal handling) */ MMAP_PAGE_ZERO = 0x0100000, ADDR_COMPAT_LAYOUT = 0x0200000, READ_IMPLIES_EXEC = 0x0400000, ADDR_LIMIT_32BIT = 0x0800000, SHORT_INODE = 0x1000000, WHOLE_SECONDS = 0x2000000, STICKY_TIMEOUTS = 0x4000000, ADDR_LIMIT_3GB = 0x8000000, }; /* * Personality types. * * These go in the low byte. Avoid using the top bit, it will * conflict with error returns. */ enum { PER_LINUX = 0x0000, PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, PER_BSD = 0x0006, PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, PER_LINUX32 = 0x0008, PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ PER_RISCOS = 0x000c, PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, PER_OSF4 = 0x000f, /* OSF/1 v4 */ PER_HPUX = 0x0010, PER_MASK = 0x00ff, }; /* * Return the base personality without flags. */ #define personality(pers) (pers & PER_MASK) /* this flag is uneffective under linux too, should be deleted */ #ifndef MAP_DENYWRITE #define MAP_DENYWRITE 0 #endif /* should probably go in elf.h */ #ifndef ELIBBAD #define ELIBBAD 80 #endif #ifdef TARGET_WORDS_BIGENDIAN #define ELF_DATA ELFDATA2MSB #else #define ELF_DATA ELFDATA2LSB #endif typedef target_ulong target_elf_greg_t; #ifdef USE_UID16 typedef uint16_t target_uid_t; typedef uint16_t target_gid_t; #else typedef uint32_t target_uid_t; typedef uint32_t target_gid_t; #endif typedef int32_t target_pid_t; #ifdef TARGET_I386 #define ELF_PLATFORM get_elf_platform() static const char *get_elf_platform(void) { static char elf_platform[] = "i386"; int family = (thread_env->cpuid_version >> 8) & 0xff; if (family > 6) family = 6; if (family >= 3) elf_platform[1] = '0' + family; return elf_platform; } #define ELF_HWCAP get_elf_hwcap() static uint32_t get_elf_hwcap(void) { return thread_env->cpuid_features; } #ifdef TARGET_X86_64 #define ELF_START_MMAP 0x2aaaaab000ULL #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_X86_64 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->rax = 0; regs->rsp = infop->start_stack; regs->rip = infop->entry; } #define ELF_NREG 27 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* * Note that ELF_NREG should be 29 as there should be place for * TRAPNO and ERR "registers" as well but linux doesn't dump * those. * * See linux kernel: arch/x86/include/asm/elf.h */ static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) { (*regs)[0] = env->regs[15]; (*regs)[1] = env->regs[14]; (*regs)[2] = env->regs[13]; (*regs)[3] = env->regs[12]; (*regs)[4] = env->regs[R_EBP]; (*regs)[5] = env->regs[R_EBX]; (*regs)[6] = env->regs[11]; (*regs)[7] = env->regs[10]; (*regs)[8] = env->regs[9]; (*regs)[9] = env->regs[8]; (*regs)[10] = env->regs[R_EAX]; (*regs)[11] = env->regs[R_ECX]; (*regs)[12] = env->regs[R_EDX]; (*regs)[13] = env->regs[R_ESI]; (*regs)[14] = env->regs[R_EDI]; (*regs)[15] = env->regs[R_EAX]; /* XXX */ (*regs)[16] = env->eip; (*regs)[17] = env->segs[R_CS].selector & 0xffff; (*regs)[18] = env->eflags; (*regs)[19] = env->regs[R_ESP]; (*regs)[20] = env->segs[R_SS].selector & 0xffff; (*regs)[21] = env->segs[R_FS].selector & 0xffff; (*regs)[22] = env->segs[R_GS].selector & 0xffff; (*regs)[23] = env->segs[R_DS].selector & 0xffff; (*regs)[24] = env->segs[R_ES].selector & 0xffff; (*regs)[25] = env->segs[R_FS].selector & 0xffff; (*regs)[26] = env->segs[R_GS].selector & 0xffff; } #else #define ELF_START_MMAP 0x80000000 /* * This is used to ensure we don't load something for the wrong architecture. */ #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) /* * These are used to set parameters in the core dumps. */ #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_386 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->esp = infop->start_stack; regs->eip = infop->entry; /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program starts %edx contains a pointer to a function which might be registered using `atexit'. This provides a mean for the dynamic linker to call DT_FINI functions for shared libraries that have been loaded before the code runs. A value of 0 tells we have no such handler. */ regs->edx = 0; } #define ELF_NREG 17 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* * Note that ELF_NREG should be 19 as there should be place for * TRAPNO and ERR "registers" as well but linux doesn't dump * those. * * See linux kernel: arch/x86/include/asm/elf.h */ static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) { (*regs)[0] = env->regs[R_EBX]; (*regs)[1] = env->regs[R_ECX]; (*regs)[2] = env->regs[R_EDX]; (*regs)[3] = env->regs[R_ESI]; (*regs)[4] = env->regs[R_EDI]; (*regs)[5] = env->regs[R_EBP]; (*regs)[6] = env->regs[R_EAX]; (*regs)[7] = env->segs[R_DS].selector & 0xffff; (*regs)[8] = env->segs[R_ES].selector & 0xffff; (*regs)[9] = env->segs[R_FS].selector & 0xffff; (*regs)[10] = env->segs[R_GS].selector & 0xffff; (*regs)[11] = env->regs[R_EAX]; /* XXX */ (*regs)[12] = env->eip; (*regs)[13] = env->segs[R_CS].selector & 0xffff; (*regs)[14] = env->eflags; (*regs)[15] = env->regs[R_ESP]; (*regs)[16] = env->segs[R_SS].selector & 0xffff; } #endif #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif #ifdef TARGET_ARM #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_ARM ) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_ARM static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { abi_long stack = infop->start_stack; memset(regs, 0, sizeof(*regs)); regs->ARM_cpsr = 0x10; if (infop->entry & 1) regs->ARM_cpsr |= CPSR_T; regs->ARM_pc = infop->entry & 0xfffffffe; regs->ARM_sp = infop->start_stack; /* FIXME - what to for failure of get_user()? */ get_user_ual(regs->ARM_r2, stack + 8); /* envp */ get_user_ual(regs->ARM_r1, stack + 4); /* envp */ /* XXX: it seems that r0 is zeroed after ! */ regs->ARM_r0 = 0; /* For uClinux PIC binaries. */ /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ regs->ARM_r10 = infop->start_data; } #define ELF_NREG 18 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) { (*regs)[0] = tswapl(env->regs[0]); (*regs)[1] = tswapl(env->regs[1]); (*regs)[2] = tswapl(env->regs[2]); (*regs)[3] = tswapl(env->regs[3]); (*regs)[4] = tswapl(env->regs[4]); (*regs)[5] = tswapl(env->regs[5]); (*regs)[6] = tswapl(env->regs[6]); (*regs)[7] = tswapl(env->regs[7]); (*regs)[8] = tswapl(env->regs[8]); (*regs)[9] = tswapl(env->regs[9]); (*regs)[10] = tswapl(env->regs[10]); (*regs)[11] = tswapl(env->regs[11]); (*regs)[12] = tswapl(env->regs[12]); (*regs)[13] = tswapl(env->regs[13]); (*regs)[14] = tswapl(env->regs[14]); (*regs)[15] = tswapl(env->regs[15]); (*regs)[16] = tswapl(cpsr_read((CPUState *)env)); (*regs)[17] = tswapl(env->regs[0]); /* XXX */ } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 enum { ARM_HWCAP_ARM_SWP = 1 << 0, ARM_HWCAP_ARM_HALF = 1 << 1, ARM_HWCAP_ARM_THUMB = 1 << 2, ARM_HWCAP_ARM_26BIT = 1 << 3, ARM_HWCAP_ARM_FAST_MULT = 1 << 4, ARM_HWCAP_ARM_FPA = 1 << 5, ARM_HWCAP_ARM_VFP = 1 << 6, ARM_HWCAP_ARM_EDSP = 1 << 7, ARM_HWCAP_ARM_JAVA = 1 << 8, ARM_HWCAP_ARM_IWMMXT = 1 << 9, ARM_HWCAP_ARM_THUMBEE = 1 << 10, ARM_HWCAP_ARM_NEON = 1 << 11, ARM_HWCAP_ARM_VFPv3 = 1 << 12, ARM_HWCAP_ARM_VFPv3D16 = 1 << 13, }; #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \ | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 ) #endif #ifdef TARGET_SPARC #ifdef TARGET_SPARC64 #define ELF_START_MMAP 0x80000000 #ifndef TARGET_ABI32 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) #else #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) #endif #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_SPARCV9 #define STACK_BIAS 2047 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { #ifndef TARGET_ABI32 regs->tstate = 0; #endif regs->pc = infop->entry; regs->npc = regs->pc + 4; regs->y = 0; #ifdef TARGET_ABI32 regs->u_regs[14] = infop->start_stack - 16 * 4; #else if (personality(infop->personality) == PER_LINUX32) regs->u_regs[14] = infop->start_stack - 16 * 4; else regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; #endif } #else #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_SPARC ) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_SPARC static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->psr = 0; regs->pc = infop->entry; regs->npc = regs->pc + 4; regs->y = 0; regs->u_regs[14] = infop->start_stack - 16 * 4; } #endif #endif #ifdef TARGET_PPC #define ELF_START_MMAP 0x80000000 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) #define elf_check_arch(x) ( (x) == EM_PPC64 ) #define ELF_CLASS ELFCLASS64 #else #define elf_check_arch(x) ( (x) == EM_PPC ) #define ELF_CLASS ELFCLASS32 #endif #define ELF_ARCH EM_PPC /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). See arch/powerpc/include/asm/cputable.h. */ enum { QEMU_PPC_FEATURE_32 = 0x80000000, QEMU_PPC_FEATURE_64 = 0x40000000, QEMU_PPC_FEATURE_601_INSTR = 0x20000000, QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, QEMU_PPC_FEATURE_NO_TB = 0x00100000, QEMU_PPC_FEATURE_POWER4 = 0x00080000, QEMU_PPC_FEATURE_POWER5 = 0x00040000, QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, QEMU_PPC_FEATURE_CELL = 0x00010000, QEMU_PPC_FEATURE_BOOKE = 0x00008000, QEMU_PPC_FEATURE_SMT = 0x00004000, QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, QEMU_PPC_FEATURE_PA6T = 0x00000800, QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, QEMU_PPC_FEATURE_PPC_LE = 0x00000001, }; #define ELF_HWCAP get_elf_hwcap() static uint32_t get_elf_hwcap(void) { CPUState *e = thread_env; uint32_t features = 0; /* We don't have to be terribly complete here; the high points are Altivec/FP/SPE support. Anything else is just a bonus. */ #define GET_FEATURE(flag, feature) \ do {if (e->insns_flags & flag) features |= feature; } while(0) GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); #undef GET_FEATURE return features; } /* * The requirements here are: * - keep the final alignment of sp (sp & 0xf) * - make sure the 32-bit value at the first 16 byte aligned position of * AUXV is greater than 16 for glibc compatibility. * AT_IGNOREPPC is used for that. * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. */ #define DLINFO_ARCH_ITEMS 5 #define ARCH_DLINFO \ do { \ NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ /* \ * Now handle glibc compatibility. \ */ \ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ } while (0) static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) { _regs->gpr[1] = infop->start_stack; #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr; infop->entry = ldq_raw(infop->entry) + infop->load_addr; #endif _regs->nip = infop->entry; } /* See linux kernel: arch/powerpc/include/asm/elf.h. */ #define ELF_NREG 48 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) { int i; target_ulong ccr = 0; for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { (*regs)[i] = tswapl(env->gpr[i]); } (*regs)[32] = tswapl(env->nip); (*regs)[33] = tswapl(env->msr); (*regs)[35] = tswapl(env->ctr); (*regs)[36] = tswapl(env->lr); (*regs)[37] = tswapl(env->xer); for (i = 0; i < ARRAY_SIZE(env->crf); i++) { ccr |= env->crf[i] << (32 - ((i + 1) * 4)); } (*regs)[38] = tswapl(ccr); } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif #ifdef TARGET_MIPS #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_MIPS ) #ifdef TARGET_MIPS64 #define ELF_CLASS ELFCLASS64 #else #define ELF_CLASS ELFCLASS32 #endif #define ELF_ARCH EM_MIPS static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->cp0_status = 2 << CP0St_KSU; regs->cp0_epc = infop->entry; regs->regs[29] = infop->start_stack; } /* See linux kernel: arch/mips/include/asm/elf.h. */ #define ELF_NREG 45 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* See linux kernel: arch/mips/include/asm/reg.h. */ enum { #ifdef TARGET_MIPS64 TARGET_EF_R0 = 0, #else TARGET_EF_R0 = 6, #endif TARGET_EF_R26 = TARGET_EF_R0 + 26, TARGET_EF_R27 = TARGET_EF_R0 + 27, TARGET_EF_LO = TARGET_EF_R0 + 32, TARGET_EF_HI = TARGET_EF_R0 + 33, TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 }; /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) { int i; for (i = 0; i < TARGET_EF_R0; i++) { (*regs)[i] = 0; } (*regs)[TARGET_EF_R0] = 0; for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]); } (*regs)[TARGET_EF_R26] = 0; (*regs)[TARGET_EF_R27] = 0; (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]); (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]); (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC); (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr); (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status); (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause); } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif /* TARGET_MIPS */ #ifdef TARGET_MICROBLAZE #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_MICROBLAZE static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->pc = infop->entry; regs->r1 = infop->start_stack; } #define ELF_EXEC_PAGESIZE 4096 #define USE_ELF_CORE_DUMP #define ELF_NREG 38 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) { int i, pos = 0; for (i = 0; i < 32; i++) { (*regs)[pos++] = tswapl(env->regs[i]); } for (i = 0; i < 6; i++) { (*regs)[pos++] = tswapl(env->sregs[i]); } } #endif /* TARGET_MICROBLAZE */ #ifdef TARGET_SH4 #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_SH ) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_SH static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { /* Check other registers XXXXX */ regs->pc = infop->entry; regs->regs[15] = infop->start_stack; } /* See linux kernel: arch/sh/include/asm/elf.h. */ #define ELF_NREG 23 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; /* See linux kernel: arch/sh/include/asm/ptrace.h. */ enum { TARGET_REG_PC = 16, TARGET_REG_PR = 17, TARGET_REG_SR = 18, TARGET_REG_GBR = 19, TARGET_REG_MACH = 20, TARGET_REG_MACL = 21, TARGET_REG_SYSCALL = 22 }; static inline void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) { int i; for (i = 0; i < 16; i++) { (*regs[i]) = tswapl(env->gregs[i]); } (*regs)[TARGET_REG_PC] = tswapl(env->pc); (*regs)[TARGET_REG_PR] = tswapl(env->pr); (*regs)[TARGET_REG_SR] = tswapl(env->sr); (*regs)[TARGET_REG_GBR] = tswapl(env->gbr); (*regs)[TARGET_REG_MACH] = tswapl(env->mach); (*regs)[TARGET_REG_MACL] = tswapl(env->macl); (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 4096 #endif #ifdef TARGET_CRIS #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_CRIS ) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_CRIS static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->erp = infop->entry; } #define ELF_EXEC_PAGESIZE 8192 #endif #ifdef TARGET_M68K #define ELF_START_MMAP 0x80000000 #define elf_check_arch(x) ( (x) == EM_68K ) #define ELF_CLASS ELFCLASS32 #define ELF_ARCH EM_68K /* ??? Does this need to do anything? #define ELF_PLAT_INIT(_r) */ static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->usp = infop->start_stack; regs->sr = 0; regs->pc = infop->entry; } /* See linux kernel: arch/m68k/include/asm/elf.h. */ #define ELF_NREG 20 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) { (*regs)[0] = tswapl(env->dregs[1]); (*regs)[1] = tswapl(env->dregs[2]); (*regs)[2] = tswapl(env->dregs[3]); (*regs)[3] = tswapl(env->dregs[4]); (*regs)[4] = tswapl(env->dregs[5]); (*regs)[5] = tswapl(env->dregs[6]); (*regs)[6] = tswapl(env->dregs[7]); (*regs)[7] = tswapl(env->aregs[0]); (*regs)[8] = tswapl(env->aregs[1]); (*regs)[9] = tswapl(env->aregs[2]); (*regs)[10] = tswapl(env->aregs[3]); (*regs)[11] = tswapl(env->aregs[4]); (*regs)[12] = tswapl(env->aregs[5]); (*regs)[13] = tswapl(env->aregs[6]); (*regs)[14] = tswapl(env->dregs[0]); (*regs)[15] = tswapl(env->aregs[7]); (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */ (*regs)[17] = tswapl(env->sr); (*regs)[18] = tswapl(env->pc); (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ } #define USE_ELF_CORE_DUMP #define ELF_EXEC_PAGESIZE 8192 #endif #ifdef TARGET_ALPHA #define ELF_START_MMAP (0x30000000000ULL) #define elf_check_arch(x) ( (x) == ELF_ARCH ) #define ELF_CLASS ELFCLASS64 #define ELF_ARCH EM_ALPHA static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) { regs->pc = infop->entry; regs->ps = 8; regs->usp = infop->start_stack; } #define ELF_EXEC_PAGESIZE 8192 #endif /* TARGET_ALPHA */ #ifndef ELF_PLATFORM #define ELF_PLATFORM (NULL) #endif #ifndef ELF_HWCAP #define ELF_HWCAP 0 #endif #ifdef TARGET_ABI32 #undef ELF_CLASS #define ELF_CLASS ELFCLASS32 #undef bswaptls #define bswaptls(ptr) bswap32s(ptr) #endif #include "elf.h" struct exec { unsigned int a_info; /* Use macros N_MAGIC, etc for access */ unsigned int a_text; /* length of text, in bytes */ unsigned int a_data; /* length of data, in bytes */ unsigned int a_bss; /* length of uninitialized data area, in bytes */ unsigned int a_syms; /* length of symbol table data in file, in bytes */ unsigned int a_entry; /* start address */ unsigned int a_trsize; /* length of relocation info for text, in bytes */ unsigned int a_drsize; /* length of relocation info for data, in bytes */ }; #define N_MAGIC(exec) ((exec).a_info & 0xffff) #define OMAGIC 0407 #define NMAGIC 0410 #define ZMAGIC 0413 #define QMAGIC 0314 /* max code+data+bss+brk space allocated to ET_DYN executables */ #define ET_DYN_MAP_SIZE (128 * 1024 * 1024) /* Necessary parameters */ #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) #define INTERPRETER_NONE 0 #define INTERPRETER_AOUT 1 #define INTERPRETER_ELF 2 #define DLINFO_ITEMS 12 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) { memcpy(to, from, n); } static int load_aout_interp(void * exptr, int interp_fd); #ifdef BSWAP_NEEDED static void bswap_ehdr(struct elfhdr *ehdr) { bswap16s(&ehdr->e_type); /* Object file type */ bswap16s(&ehdr->e_machine); /* Architecture */ bswap32s(&ehdr->e_version); /* Object file version */ bswaptls(&ehdr->e_entry); /* Entry point virtual address */ bswaptls(&ehdr->e_phoff); /* Program header table file offset */ bswaptls(&ehdr->e_shoff); /* Section header table file offset */ bswap32s(&ehdr->e_flags); /* Processor-specific flags */ bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ bswap16s(&ehdr->e_phnum); /* Program header table entry count */ bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ bswap16s(&ehdr->e_shnum); /* Section header table entry count */ bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ } static void bswap_phdr(struct elf_phdr *phdr, int phnum) { int i; for (i = 0; i < phnum; ++i, ++phdr) { bswap32s(&phdr->p_type); /* Segment type */ bswap32s(&phdr->p_flags); /* Segment flags */ bswaptls(&phdr->p_offset); /* Segment file offset */ bswaptls(&phdr->p_vaddr); /* Segment virtual address */ bswaptls(&phdr->p_paddr); /* Segment physical address */ bswaptls(&phdr->p_filesz); /* Segment size in file */ bswaptls(&phdr->p_memsz); /* Segment size in memory */ bswaptls(&phdr->p_align); /* Segment alignment */ } } static void bswap_shdr(struct elf_shdr *shdr, int shnum) { int i; for (i = 0; i < shnum; ++i, ++shdr) { bswap32s(&shdr->sh_name); bswap32s(&shdr->sh_type); bswaptls(&shdr->sh_flags); bswaptls(&shdr->sh_addr); bswaptls(&shdr->sh_offset); bswaptls(&shdr->sh_size); bswap32s(&shdr->sh_link); bswap32s(&shdr->sh_info); bswaptls(&shdr->sh_addralign); bswaptls(&shdr->sh_entsize); } } static void bswap_sym(struct elf_sym *sym) { bswap32s(&sym->st_name); bswaptls(&sym->st_value); bswaptls(&sym->st_size); bswap16s(&sym->st_shndx); } #else static inline void bswap_ehdr(struct elfhdr *ehdr) { } static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } static inline void bswap_sym(struct elf_sym *sym) { } #endif #ifdef USE_ELF_CORE_DUMP static int elf_core_dump(int, const CPUState *); #endif /* USE_ELF_CORE_DUMP */ static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); /* Verify the portions of EHDR within E_IDENT for the target. This can be performed before bswapping the entire header. */ static bool elf_check_ident(struct elfhdr *ehdr) { return (ehdr->e_ident[EI_MAG0] == ELFMAG0 && ehdr->e_ident[EI_MAG1] == ELFMAG1 && ehdr->e_ident[EI_MAG2] == ELFMAG2 && ehdr->e_ident[EI_MAG3] == ELFMAG3 && ehdr->e_ident[EI_CLASS] == ELF_CLASS && ehdr->e_ident[EI_DATA] == ELF_DATA && ehdr->e_ident[EI_VERSION] == EV_CURRENT); } /* Verify the portions of EHDR outside of E_IDENT for the target. This has to wait until after bswapping the header. */ static bool elf_check_ehdr(struct elfhdr *ehdr) { return (elf_check_arch(ehdr->e_machine) && ehdr->e_ehsize == sizeof(struct elfhdr) && ehdr->e_phentsize == sizeof(struct elf_phdr) && ehdr->e_shentsize == sizeof(struct elf_shdr) && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); } /* * 'copy_elf_strings()' copies argument/envelope strings from user * memory to free pages in kernel mem. These are in a format ready * to be put directly into the top of new user memory. * */ static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, abi_ulong p) { char *tmp, *tmp1, *pag = NULL; int len, offset = 0; if (!p) { return 0; /* bullet-proofing */ } while (argc-- > 0) { tmp = argv[argc]; if (!tmp) { fprintf(stderr, "VFS: argc is wrong"); exit(-1); } tmp1 = tmp; while (*tmp++); len = tmp - tmp1; if (p < len) { /* this shouldn't happen - 128kB */ return 0; } while (len) { --p; --tmp; --len; if (--offset < 0) { offset = p % TARGET_PAGE_SIZE; pag = (char *)page[p/TARGET_PAGE_SIZE]; if (!pag) { pag = (char *)malloc(TARGET_PAGE_SIZE); memset(pag, 0, TARGET_PAGE_SIZE); page[p/TARGET_PAGE_SIZE] = pag; if (!pag) return 0; } } if (len == 0 || offset == 0) { *(pag + offset) = *tmp; } else { int bytes_to_copy = (len > offset) ? offset : len; tmp -= bytes_to_copy; p -= bytes_to_copy; offset -= bytes_to_copy; len -= bytes_to_copy; memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); } } } return p; } static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, struct image_info *info) { abi_ulong stack_base, size, error, guard; int i; /* Create enough stack to hold everything. If we don't use it for args, we'll use it for something else. */ size = guest_stack_size; if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; } guard = TARGET_PAGE_SIZE; if (guard < qemu_real_host_page_size) { guard = qemu_real_host_page_size; } error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (error == -1) { perror("mmap stack"); exit(-1); } /* We reserve one extra page at the top of the stack as guard. */ target_mprotect(error, guard, PROT_NONE); info->stack_limit = error + guard; stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; p += stack_base; for (i = 0 ; i < MAX_ARG_PAGES ; i++) { if (bprm->page[i]) { info->rss++; /* FIXME - check return value of memcpy_to_target() for failure */ memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); free(bprm->page[i]); } stack_base += TARGET_PAGE_SIZE; } return p; } /* Map and zero the bss. We need to explicitly zero any fractional pages after the data section (i.e. bss). */ static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) { uintptr_t host_start, host_map_start, host_end; last_bss = TARGET_PAGE_ALIGN(last_bss); /* ??? There is confusion between qemu_real_host_page_size and qemu_host_page_size here and elsewhere in target_mmap, which may lead to the end of the data section mapping from the file not being mapped. At least there was an explicit test and comment for that here, suggesting that "the file size must be known". The comment probably pre-dates the introduction of the fstat system call in target_mmap which does in fact find out the size. What isn't clear is if the workaround here is still actually needed. For now, continue with it, but merge it with the "normal" mmap that would allocate the bss. */ host_start = (uintptr_t) g2h(elf_bss); host_end = (uintptr_t) g2h(last_bss); host_map_start = (host_start + qemu_real_host_page_size - 1); host_map_start &= -qemu_real_host_page_size; if (host_map_start < host_end) { void *p = mmap((void *)host_map_start, host_end - host_map_start, prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); if (p == MAP_FAILED) { perror("cannot mmap brk"); exit(-1); } /* Since we didn't use target_mmap, make sure to record the validity of the pages with qemu. */ page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID); } if (host_start < host_map_start) { memset((void *)host_start, 0, host_map_start - host_start); } } static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, struct elfhdr * exec, abi_ulong load_addr, abi_ulong load_bias, abi_ulong interp_load_addr, int ibcs, struct image_info *info) { abi_ulong sp; int size; abi_ulong u_platform; const char *k_platform; const int n = sizeof(elf_addr_t); sp = p; u_platform = 0; k_platform = ELF_PLATFORM; if (k_platform) { size_t len = strlen(k_platform) + 1; sp -= (len + n - 1) & ~(n - 1); u_platform = sp; /* FIXME - check return value of memcpy_to_target() for failure */ memcpy_to_target(sp, k_platform, len); } /* * Force 16 byte _final_ alignment here for generality. */ sp = sp &~ (abi_ulong)15; size = (DLINFO_ITEMS + 1) * 2; if (k_platform) size += 2; #ifdef DLINFO_ARCH_ITEMS size += DLINFO_ARCH_ITEMS * 2; #endif size += envc + argc + 2; size += (!ibcs ? 3 : 1); /* argc itself */ size *= n; if (size & 15) sp -= 16 - (size & 15); /* This is correct because Linux defines * elf_addr_t as Elf32_Off / Elf64_Off */ #define NEW_AUX_ENT(id, val) do { \ sp -= n; put_user_ual(val, sp); \ sp -= n; put_user_ual(id, sp); \ } while(0) NEW_AUX_ENT (AT_NULL, 0); /* There must be exactly DLINFO_ITEMS entries here. */ NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff)); NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr)); NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry); NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); if (k_platform) NEW_AUX_ENT(AT_PLATFORM, u_platform); #ifdef ARCH_DLINFO /* * ARCH_DLINFO must come last so platform specific code can enforce * special alignment requirements on the AUXV if necessary (eg. PPC). */ ARCH_DLINFO; #endif #undef NEW_AUX_ENT info->saved_auxv = sp; sp = loader_build_argptr(envc, argc, sp, p, !ibcs); return sp; } static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex, int interpreter_fd, abi_ulong *interp_load_addr, char bprm_buf[BPRM_BUF_SIZE]) { struct elf_phdr *elf_phdata = NULL; abi_ulong load_addr, load_bias, loaddr, hiaddr; int retval; abi_ulong error; int i; bswap_ehdr(interp_elf_ex); if (!elf_check_ehdr(interp_elf_ex)) { return ~((abi_ulong)0UL); } /* Now read in all of the header information */ elf_phdata = (struct elf_phdr *) malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum); if (!elf_phdata) return ~((abi_ulong)0UL); i = interp_elf_ex->e_phnum * sizeof(struct elf_phdr); if (interp_elf_ex->e_phoff + i <= BPRM_BUF_SIZE) { memcpy(elf_phdata, bprm_buf + interp_elf_ex->e_phoff, i); } else { retval = pread(interpreter_fd, elf_phdata, i, interp_elf_ex->e_phoff); if (retval != i) { perror("load_elf_interp"); exit(-1); } } bswap_phdr(elf_phdata, interp_elf_ex->e_phnum); /* Find the maximum size of the image and allocate an appropriate amount of memory to handle that. */ loaddr = -1, hiaddr = 0; for (i = 0; i < interp_elf_ex->e_phnum; ++i) { if (elf_phdata[i].p_type == PT_LOAD) { abi_ulong a = elf_phdata[i].p_vaddr; if (a < loaddr) { loaddr = a; } a += elf_phdata[i].p_memsz; if (a > hiaddr) { hiaddr = a; } } } load_addr = loaddr; if (interp_elf_ex->e_type == ET_DYN) { /* The image indicates that it can be loaded anywhere. Find a location that can hold the memory space required. If the image is pre-linked, LOADDR will be non-zero. Since we do not supply MAP_FIXED here we'll use that address if and only if it remains available. */ load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, -1, 0); if (load_addr == -1) { perror("mmap"); exit(-1); } } load_bias = load_addr - loaddr; for (i = 0; i < interp_elf_ex->e_phnum; i++) { struct elf_phdr *eppnt = elf_phdata + i; if (eppnt->p_type == PT_LOAD) { abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; int elf_prot = 0; if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; vaddr = load_bias + eppnt->p_vaddr; vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); vaddr_ps = TARGET_ELF_PAGESTART(vaddr); error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, elf_prot, MAP_PRIVATE | MAP_FIXED, interpreter_fd, eppnt->p_offset - vaddr_po); if (error == -1) { /* Real error */ close(interpreter_fd); free(elf_phdata); return ~((abi_ulong)0UL); } vaddr_ef = vaddr + eppnt->p_filesz; vaddr_em = vaddr + eppnt->p_memsz; /* If the load segment requests extra zeros (e.g. bss), map it. */ if (vaddr_ef < vaddr_em) { zero_bss(vaddr_ef, vaddr_em, elf_prot); } } } if (qemu_log_enabled()) { load_symbols(interp_elf_ex, interpreter_fd, load_bias); } close(interpreter_fd); free(elf_phdata); *interp_load_addr = load_addr; return ((abi_ulong) interp_elf_ex->e_entry) + load_bias; } static int symfind(const void *s0, const void *s1) { struct elf_sym *key = (struct elf_sym *)s0; struct elf_sym *sym = (struct elf_sym *)s1; int result = 0; if (key->st_value < sym->st_value) { result = -1; } else if (key->st_value >= sym->st_value + sym->st_size) { result = 1; } return result; } static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) { #if ELF_CLASS == ELFCLASS32 struct elf_sym *syms = s->disas_symtab.elf32; #else struct elf_sym *syms = s->disas_symtab.elf64; #endif // binary search struct elf_sym key; struct elf_sym *sym; key.st_value = orig_addr; sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind); if (sym != NULL) { return s->disas_strtab + sym->st_name; } return ""; } /* FIXME: This should use elf_ops.h */ static int symcmp(const void *s0, const void *s1) { struct elf_sym *sym0 = (struct elf_sym *)s0; struct elf_sym *sym1 = (struct elf_sym *)s1; return (sym0->st_value < sym1->st_value) ? -1 : ((sym0->st_value > sym1->st_value) ? 1 : 0); } /* Best attempt to load symbols from this ELF object. */ static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) { int i, shnum, nsyms, sym_idx = 0, str_idx = 0; struct elf_shdr *shdr; char *strings; struct syminfo *s; struct elf_sym *syms; shnum = hdr->e_shnum; i = shnum * sizeof(struct elf_shdr); shdr = (struct elf_shdr *)alloca(i); if (pread(fd, shdr, i, hdr->e_shoff) != i) { return; } bswap_shdr(shdr, shnum); for (i = 0; i < shnum; ++i) { if (shdr[i].sh_type == SHT_SYMTAB) { sym_idx = i; str_idx = shdr[i].sh_link; goto found; } } /* There will be no symbol table if the file was stripped. */ return; found: /* Now know where the strtab and symtab are. Snarf them. */ s = malloc(sizeof(*s)); if (!s) { return; } i = shdr[str_idx].sh_size; s->disas_strtab = strings = malloc(i); if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { free(s); free(strings); return; } i = shdr[sym_idx].sh_size; syms = malloc(i); if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { free(s); free(strings); free(syms); return; } nsyms = i / sizeof(struct elf_sym); for (i = 0; i < nsyms; ) { bswap_sym(syms + i); /* Throw away entries which we do not need. */ if (syms[i].st_shndx == SHN_UNDEF || syms[i].st_shndx >= SHN_LORESERVE || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { if (i < --nsyms) { syms[i] = syms[nsyms]; } } else { #if defined(TARGET_ARM) || defined (TARGET_MIPS) /* The bottom address bit marks a Thumb or MIPS16 symbol. */ syms[i].st_value &= ~(target_ulong)1; #endif syms[i].st_value += load_bias; i++; } } syms = realloc(syms, nsyms * sizeof(*syms)); qsort(syms, nsyms, sizeof(*syms), symcmp); s->disas_num_syms = nsyms; #if ELF_CLASS == ELFCLASS32 s->disas_symtab.elf32 = syms; #else s->disas_symtab.elf64 = syms; #endif s->lookup_symbol = lookup_symbolxx; s->next = syminfos; syminfos = s; } int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, struct image_info * info) { struct elfhdr elf_ex; struct elfhdr interp_elf_ex; struct exec interp_ex; int interpreter_fd = -1; /* avoid warning */ abi_ulong load_addr, load_bias; int load_addr_set = 0; unsigned int interpreter_type = INTERPRETER_NONE; unsigned char ibcs2_interpreter; int i; abi_ulong mapped_addr; struct elf_phdr * elf_ppnt; struct elf_phdr *elf_phdata; abi_ulong k, elf_brk; int retval; char * elf_interpreter; abi_ulong elf_entry, interp_load_addr = 0; int status; abi_ulong start_code, end_code, start_data, end_data; abi_ulong reloc_func_desc = 0; abi_ulong elf_stack; char passed_fileno[6]; ibcs2_interpreter = 0; status = 0; load_addr = 0; load_bias = 0; elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */ /* First of all, some simple consistency checks */ if (!elf_check_ident(&elf_ex)) { return -ENOEXEC; } bswap_ehdr(&elf_ex); if (!elf_check_ehdr(&elf_ex)) { return -ENOEXEC; } bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); if (!bprm->p) { retval = -E2BIG; } /* Now read in all of the header information */ elf_phdata = (struct elf_phdr *) malloc(elf_ex.e_phnum * sizeof(struct elf_phdr)); if (elf_phdata == NULL) { return -ENOMEM; } i = elf_ex.e_phnum * sizeof(struct elf_phdr); if (elf_ex.e_phoff + i <= BPRM_BUF_SIZE) { memcpy(elf_phdata, bprm->buf + elf_ex.e_phoff, i); } else { retval = pread(bprm->fd, (char *) elf_phdata, i, elf_ex.e_phoff); if (retval != i) { perror("load_elf_binary"); exit(-1); } } bswap_phdr(elf_phdata, elf_ex.e_phnum); elf_brk = 0; elf_stack = ~((abi_ulong)0UL); elf_interpreter = NULL; start_code = ~((abi_ulong)0UL); end_code = 0; start_data = 0; end_data = 0; interp_ex.a_info = 0; elf_ppnt = elf_phdata; for(i=0;i < elf_ex.e_phnum; i++) { if (elf_ppnt->p_type == PT_INTERP) { if ( elf_interpreter != NULL ) { free (elf_phdata); free(elf_interpreter); close(bprm->fd); return -EINVAL; } /* This is the program interpreter used for * shared libraries - for now assume that this * is an a.out format binary */ elf_interpreter = (char *)malloc(elf_ppnt->p_filesz); if (elf_interpreter == NULL) { free (elf_phdata); close(bprm->fd); return -ENOMEM; } if (elf_ppnt->p_offset + elf_ppnt->p_filesz <= BPRM_BUF_SIZE) { memcpy(elf_interpreter, bprm->buf + elf_ppnt->p_offset, elf_ppnt->p_filesz); } else { retval = pread(bprm->fd, elf_interpreter, elf_ppnt->p_filesz, elf_ppnt->p_offset); if (retval != elf_ppnt->p_filesz) { perror("load_elf_binary2"); exit(-1); } } /* If the program interpreter is one of these two, then assume an iBCS2 image. Otherwise assume a native linux image. */ /* JRP - Need to add X86 lib dir stuff here... */ if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 || strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) { ibcs2_interpreter = 1; } retval = open(path(elf_interpreter), O_RDONLY); if (retval < 0) { perror(elf_interpreter); exit(-1); } interpreter_fd = retval; retval = read(interpreter_fd, bprm->buf, BPRM_BUF_SIZE); if (retval < 0) { perror("load_elf_binary3"); exit(-1); } if (retval < BPRM_BUF_SIZE) { memset(bprm->buf, 0, BPRM_BUF_SIZE - retval); } interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */ interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */ } elf_ppnt++; } /* Some simple consistency checks for the interpreter */ if (elf_interpreter){ interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT; /* Now figure out which format our binary is */ if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) && (N_MAGIC(interp_ex) != QMAGIC)) { interpreter_type = INTERPRETER_ELF; } if (!elf_check_ident(&interp_elf_ex)) { interpreter_type &= ~INTERPRETER_ELF; } if (!interpreter_type) { free(elf_interpreter); free(elf_phdata); close(bprm->fd); return -ELIBBAD; } } /* OK, we are done with that, now set up the arg stuff, and then start this sucker up */ { char * passed_p; if (interpreter_type == INTERPRETER_AOUT) { snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd); passed_p = passed_fileno; if (elf_interpreter) { bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p); bprm->argc++; } } if (!bprm->p) { if (elf_interpreter) { free(elf_interpreter); } free (elf_phdata); close(bprm->fd); return -E2BIG; } } /* OK, This is the point of no return */ info->end_data = 0; info->end_code = 0; info->start_mmap = (abi_ulong)ELF_START_MMAP; info->mmap = 0; elf_entry = (abi_ulong) elf_ex.e_entry; #if defined(CONFIG_USE_GUEST_BASE) /* * In case where user has not explicitly set the guest_base, we * probe here that should we set it automatically. */ if (!(have_guest_base || reserved_va)) { /* * Go through ELF program header table and find the address * range used by loadable segments. Check that this is available on * the host, and if not find a suitable value for guest_base. */ abi_ulong app_start = ~0; abi_ulong app_end = 0; abi_ulong addr; unsigned long host_start; unsigned long real_start; unsigned long host_size; for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { if (elf_ppnt->p_type != PT_LOAD) continue; addr = elf_ppnt->p_vaddr; if (addr < app_start) { app_start = addr; } addr += elf_ppnt->p_memsz; if (addr > app_end) { app_end = addr; } } /* If we don't have any loadable segments then something is very wrong. */ assert(app_start < app_end); /* Round addresses to page boundaries. */ app_start = app_start & qemu_host_page_mask; app_end = HOST_PAGE_ALIGN(app_end); if (app_start < mmap_min_addr) { host_start = HOST_PAGE_ALIGN(mmap_min_addr); } else { host_start = app_start; if (host_start != app_start) { fprintf(stderr, "qemu: Address overflow loading ELF binary\n"); abort(); } } host_size = app_end - app_start; while (1) { /* Do not use mmap_find_vma here because that is limited to the guest address space. We are going to make the guest address space fit whatever we're given. */ real_start = (unsigned long)mmap((void *)host_start, host_size, PROT_NONE, MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0); if (real_start == (unsigned long)-1) { fprintf(stderr, "qemu: Virtual memory exausted\n"); abort(); } if (real_start == host_start) { break; } /* That address didn't work. Unmap and try a different one. The address the host picked because is typically right at the top of the host address space and leaves the guest with no usable address space. Resort to a linear search. We already compensated for mmap_min_addr, so this should not happen often. Probably means we got unlucky and host address space randomization put a shared library somewhere inconvenient. */ munmap((void *)real_start, host_size); host_start += qemu_host_page_size; if (host_start == app_start) { /* Theoretically possible if host doesn't have any suitably aligned areas. Normally the first mmap will fail. */ fprintf(stderr, "qemu: Unable to find space for application\n"); abort(); } } qemu_log("Relocating guest address space from 0x" TARGET_ABI_FMT_lx " to 0x%lx\n", app_start, real_start); guest_base = real_start - app_start; } #endif /* CONFIG_USE_GUEST_BASE */ /* Do this so that we can load the interpreter, if need be. We will change some of these later */ info->rss = 0; bprm->p = setup_arg_pages(bprm->p, bprm, info); info->start_stack = bprm->p; /* Now we do a little grungy work by mmaping the ELF image into * the correct location in memory. At this point, we assume that * the image should be loaded at fixed address, not at a variable * address. */ for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) { int elf_prot = 0; int elf_flags = 0; abi_ulong error; if (elf_ppnt->p_type != PT_LOAD) continue; if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ; if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; elf_flags = MAP_PRIVATE | MAP_DENYWRITE; if (elf_ex.e_type == ET_EXEC || load_addr_set) { elf_flags |= MAP_FIXED; } else if (elf_ex.e_type == ET_DYN) { /* Try and get dynamic programs out of the way of the default mmap base, as well as whatever program they might try to exec. This is because the brk will follow the loader, and is not movable. */ /* NOTE: for qemu, we do a big mmap to get enough space without hardcoding any address */ error = target_mmap(0, ET_DYN_MAP_SIZE, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0); if (error == -1) { perror("mmap"); exit(-1); } load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr); } error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr), (elf_ppnt->p_filesz + TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)), elf_prot, (MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE), bprm->fd, (elf_ppnt->p_offset - TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr))); if (error == -1) { perror("mmap"); exit(-1); } #ifdef LOW_ELF_STACK if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack) elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr); #endif if (!load_addr_set) { load_addr_set = 1; load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset; if (elf_ex.e_type == ET_DYN) { load_bias += error - TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr); load_addr += load_bias; reloc_func_desc = load_bias; } } k = elf_ppnt->p_vaddr; if (k < start_code) start_code = k; if (start_data < k) start_data = k; k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; if ((elf_ppnt->p_flags & PF_X) && end_code < k) end_code = k; if (end_data < k) end_data = k; k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; if (k > elf_brk) { elf_brk = TARGET_PAGE_ALIGN(k); } /* If the load segment requests extra zeros (e.g. bss), map it. */ if (elf_ppnt->p_filesz < elf_ppnt->p_memsz) { abi_ulong base = load_bias + elf_ppnt->p_vaddr; zero_bss(base + elf_ppnt->p_filesz, base + elf_ppnt->p_memsz, elf_prot); } } elf_entry += load_bias; elf_brk += load_bias; start_code += load_bias; end_code += load_bias; start_data += load_bias; end_data += load_bias; if (elf_interpreter) { if (interpreter_type & 1) { elf_entry = load_aout_interp(&interp_ex, interpreter_fd); } else if (interpreter_type & 2) { elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd, &interp_load_addr, bprm->buf); } reloc_func_desc = interp_load_addr; close(interpreter_fd); free(elf_interpreter); if (elf_entry == ~((abi_ulong)0UL)) { printf("Unable to load interpreter\n"); free(elf_phdata); exit(-1); return 0; } } free(elf_phdata); if (qemu_log_enabled()) { load_symbols(&elf_ex, bprm->fd, load_bias); } if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd); info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX); #ifdef LOW_ELF_STACK info->start_stack = bprm->p = elf_stack - 4; #endif bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, load_addr, load_bias, interp_load_addr, (interpreter_type == INTERPRETER_AOUT ? 0 : 1), info); info->load_addr = reloc_func_desc; info->start_brk = info->brk = elf_brk; info->end_code = end_code; info->start_code = start_code; info->start_data = start_data; info->end_data = end_data; info->start_stack = bprm->p; #if 0 printf("(start_brk) %x\n" , info->start_brk); printf("(end_code) %x\n" , info->end_code); printf("(start_code) %x\n" , info->start_code); printf("(end_data) %x\n" , info->end_data); printf("(start_stack) %x\n" , info->start_stack); printf("(brk) %x\n" , info->brk); #endif if ( info->personality == PER_SVR4 ) { /* Why this, you ask??? Well SVr4 maps page 0 as read-only, and some applications "depend" upon this behavior. Since we do not have the power to recompile these, we emulate the SVr4 behavior. Sigh. */ mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, MAP_FIXED | MAP_PRIVATE, -1, 0); } info->entry = elf_entry; #ifdef USE_ELF_CORE_DUMP bprm->core_dump = &elf_core_dump; #endif return 0; } #ifdef USE_ELF_CORE_DUMP /* * Definitions to generate Intel SVR4-like core files. * These mostly have the same names as the SVR4 types with "target_elf_" * tacked on the front to prevent clashes with linux definitions, * and the typedef forms have been avoided. This is mostly like * the SVR4 structure, but more Linuxy, with things that Linux does * not support and which gdb doesn't really use excluded. * * Fields we don't dump (their contents is zero) in linux-user qemu * are marked with XXX. * * Core dump code is copied from linux kernel (fs/binfmt_elf.c). * * Porting ELF coredump for target is (quite) simple process. First you * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for * the target resides): * * #define USE_ELF_CORE_DUMP * * Next you define type of register set used for dumping. ELF specification * says that it needs to be array of elf_greg_t that has size of ELF_NREG. * * typedef target_elf_greg_t; * #define ELF_NREG * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; * * Last step is to implement target specific function that copies registers * from given cpu into just specified register set. Prototype is: * * static void elf_core_copy_regs(taret_elf_gregset_t *regs, * const CPUState *env); * * Parameters: * regs - copy register values into here (allocated and zeroed by caller) * env - copy registers from here * * Example for ARM target is provided in this file. */ /* An ELF note in memory */ struct memelfnote { const char *name; size_t namesz; size_t namesz_rounded; int type; size_t datasz; void *data; size_t notesz; }; struct target_elf_siginfo { int si_signo; /* signal number */ int si_code; /* extra code */ int si_errno; /* errno */ }; struct target_elf_prstatus { struct target_elf_siginfo pr_info; /* Info associated with signal */ short pr_cursig; /* Current signal */ target_ulong pr_sigpend; /* XXX */ target_ulong pr_sighold; /* XXX */ target_pid_t pr_pid; target_pid_t pr_ppid; target_pid_t pr_pgrp; target_pid_t pr_sid; struct target_timeval pr_utime; /* XXX User time */ struct target_timeval pr_stime; /* XXX System time */ struct target_timeval pr_cutime; /* XXX Cumulative user time */ struct target_timeval pr_cstime; /* XXX Cumulative system time */ target_elf_gregset_t pr_reg; /* GP registers */ int pr_fpvalid; /* XXX */ }; #define ELF_PRARGSZ (80) /* Number of chars for args */ struct target_elf_prpsinfo { char pr_state; /* numeric process state */ char pr_sname; /* char for pr_state */ char pr_zomb; /* zombie */ char pr_nice; /* nice val */ target_ulong pr_flag; /* flags */ target_uid_t pr_uid; target_gid_t pr_gid; target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; /* Lots missing */ char pr_fname[16]; /* filename of executable */ char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ }; /* Here is the structure in which status of each thread is captured. */ struct elf_thread_status { QTAILQ_ENTRY(elf_thread_status) ets_link; struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ #if 0 elf_fpregset_t fpu; /* NT_PRFPREG */ struct task_struct *thread; elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ #endif struct memelfnote notes[1]; int num_notes; }; struct elf_note_info { struct memelfnote *notes; struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; #if 0 /* * Current version of ELF coredump doesn't support * dumping fp regs etc. */ elf_fpregset_t *fpu; elf_fpxregset_t *xfpu; int thread_status_size; #endif int notes_size; int numnote; }; struct vm_area_struct { abi_ulong vma_start; /* start vaddr of memory region */ abi_ulong vma_end; /* end vaddr of memory region */ abi_ulong vma_flags; /* protection etc. flags for the region */ QTAILQ_ENTRY(vm_area_struct) vma_link; }; struct mm_struct { QTAILQ_HEAD(, vm_area_struct) mm_mmap; int mm_count; /* number of mappings */ }; static struct mm_struct *vma_init(void); static void vma_delete(struct mm_struct *); static int vma_add_mapping(struct mm_struct *, abi_ulong, abi_ulong, abi_ulong); static int vma_get_mapping_count(const struct mm_struct *); static struct vm_area_struct *vma_first(const struct mm_struct *); static struct vm_area_struct *vma_next(struct vm_area_struct *); static abi_ulong vma_dump_size(const struct vm_area_struct *); static int vma_walker(void *priv, abi_ulong start, abi_ulong end, unsigned long flags); static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); static void fill_note(struct memelfnote *, const char *, int, unsigned int, void *); static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); static void fill_auxv_note(struct memelfnote *, const TaskState *); static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); static size_t note_size(const struct memelfnote *); static void free_note_info(struct elf_note_info *); static int fill_note_info(struct elf_note_info *, long, const CPUState *); static void fill_thread_info(struct elf_note_info *, const CPUState *); static int core_dump_filename(const TaskState *, char *, size_t); static int dump_write(int, const void *, size_t); static int write_note(struct memelfnote *, int); static int write_note_info(struct elf_note_info *, int); #ifdef BSWAP_NEEDED static void bswap_prstatus(struct target_elf_prstatus *prstatus) { prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo); prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code); prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno); prstatus->pr_cursig = tswap16(prstatus->pr_cursig); prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend); prstatus->pr_sighold = tswapl(prstatus->pr_sighold); prstatus->pr_pid = tswap32(prstatus->pr_pid); prstatus->pr_ppid = tswap32(prstatus->pr_ppid); prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); prstatus->pr_sid = tswap32(prstatus->pr_sid); /* cpu times are not filled, so we skip them */ /* regs should be in correct format already */ prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); } static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) { psinfo->pr_flag = tswapl(psinfo->pr_flag); psinfo->pr_uid = tswap16(psinfo->pr_uid); psinfo->pr_gid = tswap16(psinfo->pr_gid); psinfo->pr_pid = tswap32(psinfo->pr_pid); psinfo->pr_ppid = tswap32(psinfo->pr_ppid); psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); psinfo->pr_sid = tswap32(psinfo->pr_sid); } static void bswap_note(struct elf_note *en) { bswap32s(&en->n_namesz); bswap32s(&en->n_descsz); bswap32s(&en->n_type); } #else static inline void bswap_prstatus(struct target_elf_prstatus *p) { } static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} static inline void bswap_note(struct elf_note *en) { } #endif /* BSWAP_NEEDED */ /* * Minimal support for linux memory regions. These are needed * when we are finding out what memory exactly belongs to * emulated process. No locks needed here, as long as * thread that received the signal is stopped. */ static struct mm_struct *vma_init(void) { struct mm_struct *mm; if ((mm = qemu_malloc(sizeof (*mm))) == NULL) return (NULL); mm->mm_count = 0; QTAILQ_INIT(&mm->mm_mmap); return (mm); } static void vma_delete(struct mm_struct *mm) { struct vm_area_struct *vma; while ((vma = vma_first(mm)) != NULL) { QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); qemu_free(vma); } qemu_free(mm); } static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, abi_ulong end, abi_ulong flags) { struct vm_area_struct *vma; if ((vma = qemu_mallocz(sizeof (*vma))) == NULL) return (-1); vma->vma_start = start; vma->vma_end = end; vma->vma_flags = flags; QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); mm->mm_count++; return (0); } static struct vm_area_struct *vma_first(const struct mm_struct *mm) { return (QTAILQ_FIRST(&mm->mm_mmap)); } static struct vm_area_struct *vma_next(struct vm_area_struct *vma) { return (QTAILQ_NEXT(vma, vma_link)); } static int vma_get_mapping_count(const struct mm_struct *mm) { return (mm->mm_count); } /* * Calculate file (dump) size of given memory region. */ static abi_ulong vma_dump_size(const struct vm_area_struct *vma) { /* if we cannot even read the first page, skip it */ if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) return (0); /* * Usually we don't dump executable pages as they contain * non-writable code that debugger can read directly from * target library etc. However, thread stacks are marked * also executable so we read in first page of given region * and check whether it contains elf header. If there is * no elf header, we dump it. */ if (vma->vma_flags & PROT_EXEC) { char page[TARGET_PAGE_SIZE]; copy_from_user(page, vma->vma_start, sizeof (page)); if ((page[EI_MAG0] == ELFMAG0) && (page[EI_MAG1] == ELFMAG1) && (page[EI_MAG2] == ELFMAG2) && (page[EI_MAG3] == ELFMAG3)) { /* * Mappings are possibly from ELF binary. Don't dump * them. */ return (0); } } return (vma->vma_end - vma->vma_start); } static int vma_walker(void *priv, abi_ulong start, abi_ulong end, unsigned long flags) { struct mm_struct *mm = (struct mm_struct *)priv; vma_add_mapping(mm, start, end, flags); return (0); } static void fill_note(struct memelfnote *note, const char *name, int type, unsigned int sz, void *data) { unsigned int namesz; namesz = strlen(name) + 1; note->name = name; note->namesz = namesz; note->namesz_rounded = roundup(namesz, sizeof (int32_t)); note->type = type; note->datasz = roundup(sz, sizeof (int32_t));; note->data = data; /* * We calculate rounded up note size here as specified by * ELF document. */ note->notesz = sizeof (struct elf_note) + note->namesz_rounded + note->datasz; } static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, uint32_t flags) { (void) memset(elf, 0, sizeof(*elf)); (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); elf->e_ident[EI_CLASS] = ELF_CLASS; elf->e_ident[EI_DATA] = ELF_DATA; elf->e_ident[EI_VERSION] = EV_CURRENT; elf->e_ident[EI_OSABI] = ELF_OSABI; elf->e_type = ET_CORE; elf->e_machine = machine; elf->e_version = EV_CURRENT; elf->e_phoff = sizeof(struct elfhdr); elf->e_flags = flags; elf->e_ehsize = sizeof(struct elfhdr); elf->e_phentsize = sizeof(struct elf_phdr); elf->e_phnum = segs; bswap_ehdr(elf); } static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) { phdr->p_type = PT_NOTE; phdr->p_offset = offset; phdr->p_vaddr = 0; phdr->p_paddr = 0; phdr->p_filesz = sz; phdr->p_memsz = 0; phdr->p_flags = 0; phdr->p_align = 0; bswap_phdr(phdr, 1); } static size_t note_size(const struct memelfnote *note) { return (note->notesz); } static void fill_prstatus(struct target_elf_prstatus *prstatus, const TaskState *ts, int signr) { (void) memset(prstatus, 0, sizeof (*prstatus)); prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; prstatus->pr_pid = ts->ts_tid; prstatus->pr_ppid = getppid(); prstatus->pr_pgrp = getpgrp(); prstatus->pr_sid = getsid(0); bswap_prstatus(prstatus); } static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) { char *filename, *base_filename; unsigned int i, len; (void) memset(psinfo, 0, sizeof (*psinfo)); len = ts->info->arg_end - ts->info->arg_start; if (len >= ELF_PRARGSZ) len = ELF_PRARGSZ - 1; if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) return -EFAULT; for (i = 0; i < len; i++) if (psinfo->pr_psargs[i] == 0) psinfo->pr_psargs[i] = ' '; psinfo->pr_psargs[len] = 0; psinfo->pr_pid = getpid(); psinfo->pr_ppid = getppid(); psinfo->pr_pgrp = getpgrp(); psinfo->pr_sid = getsid(0); psinfo->pr_uid = getuid(); psinfo->pr_gid = getgid(); filename = strdup(ts->bprm->filename); base_filename = strdup(basename(filename)); (void) strncpy(psinfo->pr_fname, base_filename, sizeof(psinfo->pr_fname)); free(base_filename); free(filename); bswap_psinfo(psinfo); return (0); } static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) { elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; elf_addr_t orig_auxv = auxv; abi_ulong val; void *ptr; int i, len; /* * Auxiliary vector is stored in target process stack. It contains * {type, value} pairs that we need to dump into note. This is not * strictly necessary but we do it here for sake of completeness. */ /* find out lenght of the vector, AT_NULL is terminator */ i = len = 0; do { get_user_ual(val, auxv); i += 2; auxv += 2 * sizeof (elf_addr_t); } while (val != AT_NULL); len = i * sizeof (elf_addr_t); /* read in whole auxv vector and copy it to memelfnote */ ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); if (ptr != NULL) { fill_note(note, "CORE", NT_AUXV, len, ptr); unlock_user(ptr, auxv, len); } } /* * Constructs name of coredump file. We have following convention * for the name: * qemu__-