/* * QEMU PowerMac CUDA device support * * Copyright (c) 2004-2007 Fabrice Bellard * Copyright (c) 2007 Jocelyn Mayer * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "qemu/osdep.h" #include "hw/hw.h" #include "hw/ppc/mac.h" #include "hw/input/adb.h" #include "qemu/timer.h" #include "sysemu/sysemu.h" /* XXX: implement all timer modes */ /* debug CUDA */ //#define DEBUG_CUDA /* debug CUDA packets */ //#define DEBUG_CUDA_PACKET #ifdef DEBUG_CUDA #define CUDA_DPRINTF(fmt, ...) \ do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0) #else #define CUDA_DPRINTF(fmt, ...) #endif /* Bits in B data register: all active low */ #define TREQ 0x08 /* Transfer request (input) */ #define TACK 0x10 /* Transfer acknowledge (output) */ #define TIP 0x20 /* Transfer in progress (output) */ /* Bits in ACR */ #define SR_CTRL 0x1c /* Shift register control bits */ #define SR_EXT 0x0c /* Shift on external clock */ #define SR_OUT 0x10 /* Shift out if 1 */ /* Bits in IFR and IER */ #define IER_SET 0x80 /* set bits in IER */ #define IER_CLR 0 /* clear bits in IER */ #define SR_INT 0x04 /* Shift register full/empty */ #define SR_DATA_INT 0x08 #define SR_CLOCK_INT 0x10 #define T1_INT 0x40 /* Timer 1 interrupt */ #define T2_INT 0x20 /* Timer 2 interrupt */ /* Bits in ACR */ #define T1MODE 0xc0 /* Timer 1 mode */ #define T1MODE_CONT 0x40 /* continuous interrupts */ /* commands (1st byte) */ #define ADB_PACKET 0 #define CUDA_PACKET 1 #define ERROR_PACKET 2 #define TIMER_PACKET 3 #define POWER_PACKET 4 #define MACIIC_PACKET 5 #define PMU_PACKET 6 /* CUDA commands (2nd byte) */ #define CUDA_WARM_START 0x0 #define CUDA_AUTOPOLL 0x1 #define CUDA_GET_6805_ADDR 0x2 #define CUDA_GET_TIME 0x3 #define CUDA_GET_PRAM 0x7 #define CUDA_SET_6805_ADDR 0x8 #define CUDA_SET_TIME 0x9 #define CUDA_POWERDOWN 0xa #define CUDA_POWERUP_TIME 0xb #define CUDA_SET_PRAM 0xc #define CUDA_MS_RESET 0xd #define CUDA_SEND_DFAC 0xe #define CUDA_BATTERY_SWAP_SENSE 0x10 #define CUDA_RESET_SYSTEM 0x11 #define CUDA_SET_IPL 0x12 #define CUDA_FILE_SERVER_FLAG 0x13 #define CUDA_SET_AUTO_RATE 0x14 #define CUDA_GET_AUTO_RATE 0x16 #define CUDA_SET_DEVICE_LIST 0x19 #define CUDA_GET_DEVICE_LIST 0x1a #define CUDA_SET_ONE_SECOND_MODE 0x1b #define CUDA_SET_POWER_MESSAGES 0x21 #define CUDA_GET_SET_IIC 0x22 #define CUDA_WAKEUP 0x23 #define CUDA_TIMER_TICKLE 0x24 #define CUDA_COMBINED_FORMAT_IIC 0x25 #define CUDA_TIMER_FREQ (4700000 / 6) /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */ #define RTC_OFFSET 2082844800 /* CUDA registers */ #define CUDA_REG_B 0x00 #define CUDA_REG_A 0x01 #define CUDA_REG_DIRB 0x02 #define CUDA_REG_DIRA 0x03 #define CUDA_REG_T1CL 0x04 #define CUDA_REG_T1CH 0x05 #define CUDA_REG_T1LL 0x06 #define CUDA_REG_T1LH 0x07 #define CUDA_REG_T2CL 0x08 #define CUDA_REG_T2CH 0x09 #define CUDA_REG_SR 0x0a #define CUDA_REG_ACR 0x0b #define CUDA_REG_PCR 0x0c #define CUDA_REG_IFR 0x0d #define CUDA_REG_IER 0x0e #define CUDA_REG_ANH 0x0f static void cuda_update(CUDAState *s); static void cuda_receive_packet_from_host(CUDAState *s, const uint8_t *data, int len); static void cuda_timer_update(CUDAState *s, CUDATimer *ti, int64_t current_time); static void cuda_update_irq(CUDAState *s) { if (s->ifr & s->ier & (SR_INT | T1_INT | T2_INT)) { qemu_irq_raise(s->irq); } else { qemu_irq_lower(s->irq); } } static uint64_t get_tb(uint64_t time, uint64_t freq) { return muldiv64(time, freq, get_ticks_per_sec()); } static unsigned int get_counter(CUDATimer *ti) { int64_t d; unsigned int counter; uint64_t tb_diff; uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */ tb_diff = get_tb(current_time, ti->frequency) - ti->load_time; d = (tb_diff * 0xBF401675E5DULL) / (ti->frequency << 24); if (ti->index == 0) { /* the timer goes down from latch to -1 (period of latch + 2) */ if (d <= (ti->counter_value + 1)) { counter = (ti->counter_value - d) & 0xffff; } else { counter = (d - (ti->counter_value + 1)) % (ti->latch + 2); counter = (ti->latch - counter) & 0xffff; } } else { counter = (ti->counter_value - d) & 0xffff; } return counter; } static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val) { CUDA_DPRINTF("T%d.counter=%d\n", 1 + ti->index, val); ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), s->frequency); ti->counter_value = val; cuda_timer_update(s, ti, ti->load_time); } static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time) { int64_t d, next_time; unsigned int counter; /* current counter value */ d = muldiv64(current_time - s->load_time, CUDA_TIMER_FREQ, get_ticks_per_sec()); /* the timer goes down from latch to -1 (period of latch + 2) */ if (d <= (s->counter_value + 1)) { counter = (s->counter_value - d) & 0xffff; } else { counter = (d - (s->counter_value + 1)) % (s->latch + 2); counter = (s->latch - counter) & 0xffff; } /* Note: we consider the irq is raised on 0 */ if (counter == 0xffff) { next_time = d + s->latch + 1; } else if (counter == 0) { next_time = d + s->latch + 2; } else { next_time = d + counter; } CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n", s->latch, d, next_time - d); next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) + s->load_time; if (next_time <= current_time) next_time = current_time + 1; return next_time; } static void cuda_timer_update(CUDAState *s, CUDATimer *ti, int64_t current_time) { if (!ti->timer) return; if (ti->index == 0 && (s->acr & T1MODE) != T1MODE_CONT) { timer_del(ti->timer); } else { ti->next_irq_time = get_next_irq_time(ti, current_time); timer_mod(ti->timer, ti->next_irq_time); } } static void cuda_timer1(void *opaque) { CUDAState *s = opaque; CUDATimer *ti = &s->timers[0]; cuda_timer_update(s, ti, ti->next_irq_time); s->ifr |= T1_INT; cuda_update_irq(s); } static void cuda_timer2(void *opaque) { CUDAState *s = opaque; CUDATimer *ti = &s->timers[1]; cuda_timer_update(s, ti, ti->next_irq_time); s->ifr |= T2_INT; cuda_update_irq(s); } static void cuda_set_sr_int(void *opaque) { CUDAState *s = opaque; CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__); s->ifr |= SR_INT; cuda_update_irq(s); } static void cuda_delay_set_sr_int(CUDAState *s) { int64_t expire; if (s->dirb == 0xff) { /* Not in Mac OS, fire the IRQ directly */ cuda_set_sr_int(s); return; } CUDA_DPRINTF("CUDA: %s:%d\n", __func__, __LINE__); expire = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 300 * SCALE_US; timer_mod(s->sr_delay_timer, expire); } static uint32_t cuda_readb(void *opaque, hwaddr addr) { CUDAState *s = opaque; uint32_t val; addr = (addr >> 9) & 0xf; switch(addr) { case CUDA_REG_B: val = s->b; break; case CUDA_REG_A: val = s->a; break; case CUDA_REG_DIRB: val = s->dirb; break; case CUDA_REG_DIRA: val = s->dira; break; case CUDA_REG_T1CL: val = get_counter(&s->timers[0]) & 0xff; s->ifr &= ~T1_INT; cuda_update_irq(s); break; case CUDA_REG_T1CH: val = get_counter(&s->timers[0]) >> 8; cuda_update_irq(s); break; case CUDA_REG_T1LL: val = s->timers[0].latch & 0xff; break; case CUDA_REG_T1LH: /* XXX: check this */ val = (s->timers[0].latch >> 8) & 0xff; break; case CUDA_REG_T2CL: val = get_counter(&s->timers[1]) & 0xff; s->ifr &= ~T2_INT; cuda_update_irq(s); break; case CUDA_REG_T2CH: val = get_counter(&s->timers[1]) >> 8; break; case CUDA_REG_SR: val = s->sr; s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT); cuda_update_irq(s); break; case CUDA_REG_ACR: val = s->acr; break; case CUDA_REG_PCR: val = s->pcr; break; case CUDA_REG_IFR: val = s->ifr; if (s->ifr & s->ier) { val |= 0x80; } break; case CUDA_REG_IER: val = s->ier | 0x80; break; default: case CUDA_REG_ANH: val = s->anh; break; } if (addr != CUDA_REG_IFR || val != 0) { CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val); } return val; } static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val) { CUDAState *s = opaque; addr = (addr >> 9) & 0xf; CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val); switch(addr) { case CUDA_REG_B: s->b = val; cuda_update(s); break; case CUDA_REG_A: s->a = val; break; case CUDA_REG_DIRB: s->dirb = val; break; case CUDA_REG_DIRA: s->dira = val; break; case CUDA_REG_T1CL: s->timers[0].latch = (s->timers[0].latch & 0xff00) | val; cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); break; case CUDA_REG_T1CH: s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8); s->ifr &= ~T1_INT; set_counter(s, &s->timers[0], s->timers[0].latch); break; case CUDA_REG_T1LL: s->timers[0].latch = (s->timers[0].latch & 0xff00) | val; cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); break; case CUDA_REG_T1LH: s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8); s->ifr &= ~T1_INT; cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); break; case CUDA_REG_T2CL: s->timers[1].latch = (s->timers[1].latch & 0xff00) | val; break; case CUDA_REG_T2CH: /* To ensure T2 generates an interrupt on zero crossing with the common timer code, write the value directly from the latch to the counter */ s->timers[1].latch = (s->timers[1].latch & 0xff) | (val << 8); s->ifr &= ~T2_INT; set_counter(s, &s->timers[1], s->timers[1].latch); break; case CUDA_REG_SR: s->sr = val; break; case CUDA_REG_ACR: s->acr = val; cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); cuda_update(s); break; case CUDA_REG_PCR: s->pcr = val; break; case CUDA_REG_IFR: /* reset bits */ s->ifr &= ~val; cuda_update_irq(s); break; case CUDA_REG_IER: if (val & IER_SET) { /* set bits */ s->ier |= val & 0x7f; } else { /* reset bits */ s->ier &= ~val; } cuda_update_irq(s); break; default: case CUDA_REG_ANH: s->anh = val; break; } } /* NOTE: TIP and TREQ are negated */ static void cuda_update(CUDAState *s) { int packet_received, len; packet_received = 0; if (!(s->b & TIP)) { /* transfer requested from host */ if (s->acr & SR_OUT) { /* data output */ if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) { if (s->data_out_index < sizeof(s->data_out)) { CUDA_DPRINTF("send: %02x\n", s->sr); s->data_out[s->data_out_index++] = s->sr; cuda_delay_set_sr_int(s); } } } else { if (s->data_in_index < s->data_in_size) { /* data input */ if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) { s->sr = s->data_in[s->data_in_index++]; CUDA_DPRINTF("recv: %02x\n", s->sr); /* indicate end of transfer */ if (s->data_in_index >= s->data_in_size) { s->b = (s->b | TREQ); } cuda_delay_set_sr_int(s); } } } } else { /* no transfer requested: handle sync case */ if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) { /* update TREQ state each time TACK change state */ if (s->b & TACK) s->b = (s->b | TREQ); else s->b = (s->b & ~TREQ); cuda_delay_set_sr_int(s); } else { if (!(s->last_b & TIP)) { /* handle end of host to cuda transfer */ packet_received = (s->data_out_index > 0); /* always an IRQ at the end of transfer */ cuda_delay_set_sr_int(s); } /* signal if there is data to read */ if (s->data_in_index < s->data_in_size) { s->b = (s->b & ~TREQ); } } } s->last_acr = s->acr; s->last_b = s->b; /* NOTE: cuda_receive_packet_from_host() can call cuda_update() recursively */ if (packet_received) { len = s->data_out_index; s->data_out_index = 0; cuda_receive_packet_from_host(s, s->data_out, len); } } static void cuda_send_packet_to_host(CUDAState *s, const uint8_t *data, int len) { #ifdef DEBUG_CUDA_PACKET { int i; printf("cuda_send_packet_to_host:\n"); for(i = 0; i < len; i++) printf(" %02x", data[i]); printf("\n"); } #endif memcpy(s->data_in, data, len); s->data_in_size = len; s->data_in_index = 0; cuda_update(s); cuda_delay_set_sr_int(s); } static void cuda_adb_poll(void *opaque) { CUDAState *s = opaque; uint8_t obuf[ADB_MAX_OUT_LEN + 2]; int olen; olen = adb_poll(&s->adb_bus, obuf + 2, s->adb_poll_mask); if (olen > 0) { obuf[0] = ADB_PACKET; obuf[1] = 0x40; /* polled data */ cuda_send_packet_to_host(s, obuf, olen + 2); } timer_mod(s->adb_poll_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / (1000 / s->autopoll_rate_ms))); } /* description of commands */ typedef struct CudaCommand { uint8_t command; const char *name; bool (*handler)(CUDAState *s, const uint8_t *in_args, int in_len, uint8_t *out_args, int *out_len); } CudaCommand; static bool cuda_cmd_autopoll(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { int autopoll; if (in_len != 1) { return false; } autopoll = (in_data[0] != 0); if (autopoll != s->autopoll) { s->autopoll = autopoll; if (autopoll) { timer_mod(s->adb_poll_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / (1000 / s->autopoll_rate_ms))); } else { timer_del(s->adb_poll_timer); } } return true; } static bool cuda_cmd_set_autorate(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 1) { return false; } /* we don't want a period of 0 ms */ /* FIXME: check what real hardware does */ if (in_data[0] == 0) { return false; } s->autopoll_rate_ms = in_data[0]; if (s->autopoll) { timer_mod(s->adb_poll_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (get_ticks_per_sec() / (1000 / s->autopoll_rate_ms))); } return true; } static bool cuda_cmd_set_device_list(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 2) { return false; } s->adb_poll_mask = (((uint16_t)in_data[0]) << 8) | in_data[1]; return true; } static bool cuda_cmd_powerdown(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 0) { return false; } qemu_system_shutdown_request(); return true; } static bool cuda_cmd_reset_system(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 0) { return false; } qemu_system_reset_request(); return true; } static bool cuda_cmd_set_file_server_flag(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 1) { return false; } qemu_log_mask(LOG_UNIMP, "CUDA: unimplemented command FILE_SERVER_FLAG %d\n", in_data[0]); return true; } static bool cuda_cmd_set_power_message(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { if (in_len != 1) { return false; } qemu_log_mask(LOG_UNIMP, "CUDA: unimplemented command SET_POWER_MESSAGE %d\n", in_data[0]); return true; } static bool cuda_cmd_get_time(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { uint32_t ti; if (in_len != 0) { return false; } ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec()); out_data[0] = ti >> 24; out_data[1] = ti >> 16; out_data[2] = ti >> 8; out_data[3] = ti; *out_len = 4; return true; } static bool cuda_cmd_set_time(CUDAState *s, const uint8_t *in_data, int in_len, uint8_t *out_data, int *out_len) { uint32_t ti; if (in_len != 4) { return false; } ti = (((uint32_t)in_data[1]) << 24) + (((uint32_t)in_data[2]) << 16) + (((uint32_t)in_data[3]) << 8) + in_data[4]; s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec()); return true; } static const CudaCommand handlers[] = { { CUDA_AUTOPOLL, "AUTOPOLL", cuda_cmd_autopoll }, { CUDA_SET_AUTO_RATE, "SET_AUTO_RATE", cuda_cmd_set_autorate }, { CUDA_SET_DEVICE_LIST, "SET_DEVICE_LIST", cuda_cmd_set_device_list }, { CUDA_POWERDOWN, "POWERDOWN", cuda_cmd_powerdown }, { CUDA_RESET_SYSTEM, "RESET_SYSTEM", cuda_cmd_reset_system }, { CUDA_FILE_SERVER_FLAG, "FILE_SERVER_FLAG", cuda_cmd_set_file_server_flag }, { CUDA_SET_POWER_MESSAGES, "SET_POWER_MESSAGES", cuda_cmd_set_power_message }, { CUDA_GET_TIME, "GET_TIME", cuda_cmd_get_time }, { CUDA_SET_TIME, "SET_TIME", cuda_cmd_set_time }, }; static void cuda_receive_packet(CUDAState *s, const uint8_t *data, int len) { uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] }; int i, out_len = 0; for (i = 0; i < ARRAY_SIZE(handlers); i++) { const CudaCommand *desc = &handlers[i]; if (desc->command == data[0]) { CUDA_DPRINTF("handling command %s\n", desc->name); out_len = 0; if (desc->handler(s, data + 1, len - 1, obuf + 3, &out_len)) { cuda_send_packet_to_host(s, obuf, 3 + out_len); } else { qemu_log_mask(LOG_GUEST_ERROR, "CUDA: %s: wrong parameters %d\n", desc->name, len); obuf[0] = ERROR_PACKET; obuf[1] = 0x5; /* bad parameters */ obuf[2] = CUDA_PACKET; obuf[3] = data[0]; cuda_send_packet_to_host(s, obuf, 4); } return; } } qemu_log_mask(LOG_GUEST_ERROR, "CUDA: unknown command 0x%02x\n", data[0]); obuf[0] = ERROR_PACKET; obuf[1] = 0x2; /* unknown command */ obuf[2] = CUDA_PACKET; obuf[3] = data[0]; cuda_send_packet_to_host(s, obuf, 4); } static void cuda_receive_packet_from_host(CUDAState *s, const uint8_t *data, int len) { #ifdef DEBUG_CUDA_PACKET { int i; printf("cuda_receive_packet_from_host:\n"); for(i = 0; i < len; i++) printf(" %02x", data[i]); printf("\n"); } #endif switch(data[0]) { case ADB_PACKET: { uint8_t obuf[ADB_MAX_OUT_LEN + 3]; int olen; olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1); if (olen > 0) { obuf[0] = ADB_PACKET; obuf[1] = 0x00; cuda_send_packet_to_host(s, obuf, olen + 2); } else { /* error */ obuf[0] = ADB_PACKET; obuf[1] = -olen; obuf[2] = data[1]; olen = 0; cuda_send_packet_to_host(s, obuf, olen + 3); } } break; case CUDA_PACKET: cuda_receive_packet(s, data + 1, len - 1); break; } } static void cuda_writew (void *opaque, hwaddr addr, uint32_t value) { } static void cuda_writel (void *opaque, hwaddr addr, uint32_t value) { } static uint32_t cuda_readw (void *opaque, hwaddr addr) { return 0; } static uint32_t cuda_readl (void *opaque, hwaddr addr) { return 0; } static const MemoryRegionOps cuda_ops = { .old_mmio = { .write = { cuda_writeb, cuda_writew, cuda_writel, }, .read = { cuda_readb, cuda_readw, cuda_readl, }, }, .endianness = DEVICE_NATIVE_ENDIAN, }; static bool cuda_timer_exist(void *opaque, int version_id) { CUDATimer *s = opaque; return s->timer != NULL; } static const VMStateDescription vmstate_cuda_timer = { .name = "cuda_timer", .version_id = 0, .minimum_version_id = 0, .fields = (VMStateField[]) { VMSTATE_UINT16(latch, CUDATimer), VMSTATE_UINT16(counter_value, CUDATimer), VMSTATE_INT64(load_time, CUDATimer), VMSTATE_INT64(next_irq_time, CUDATimer), VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist), VMSTATE_END_OF_LIST() } }; static const VMStateDescription vmstate_cuda = { .name = "cuda", .version_id = 4, .minimum_version_id = 4, .fields = (VMStateField[]) { VMSTATE_UINT8(a, CUDAState), VMSTATE_UINT8(b, CUDAState), VMSTATE_UINT8(last_b, CUDAState), VMSTATE_UINT8(dira, CUDAState), VMSTATE_UINT8(dirb, CUDAState), VMSTATE_UINT8(sr, CUDAState), VMSTATE_UINT8(acr, CUDAState), VMSTATE_UINT8(last_acr, CUDAState), VMSTATE_UINT8(pcr, CUDAState), VMSTATE_UINT8(ifr, CUDAState), VMSTATE_UINT8(ier, CUDAState), VMSTATE_UINT8(anh, CUDAState), VMSTATE_INT32(data_in_size, CUDAState), VMSTATE_INT32(data_in_index, CUDAState), VMSTATE_INT32(data_out_index, CUDAState), VMSTATE_UINT8(autopoll, CUDAState), VMSTATE_UINT8(autopoll_rate_ms, CUDAState), VMSTATE_UINT16(adb_poll_mask, CUDAState), VMSTATE_BUFFER(data_in, CUDAState), VMSTATE_BUFFER(data_out, CUDAState), VMSTATE_UINT32(tick_offset, CUDAState), VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1, vmstate_cuda_timer, CUDATimer), VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState), VMSTATE_TIMER_PTR(sr_delay_timer, CUDAState), VMSTATE_END_OF_LIST() } }; static void cuda_reset(DeviceState *dev) { CUDAState *s = CUDA(dev); s->b = 0; s->a = 0; s->dirb = 0xff; s->dira = 0; s->sr = 0; s->acr = 0; s->pcr = 0; s->ifr = 0; s->ier = 0; // s->ier = T1_INT | SR_INT; s->anh = 0; s->data_in_size = 0; s->data_in_index = 0; s->data_out_index = 0; s->autopoll = 0; s->timers[0].latch = 0xffff; set_counter(s, &s->timers[0], 0xffff); s->timers[1].latch = 0xffff; s->sr_delay_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_set_sr_int, s); } static void cuda_realizefn(DeviceState *dev, Error **errp) { CUDAState *s = CUDA(dev); struct tm tm; s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s); s->timers[0].frequency = s->frequency; s->timers[1].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer2, s); s->timers[1].frequency = (SCALE_US * 6000) / 4700; qemu_get_timedate(&tm, 0); s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET; s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s); s->autopoll_rate_ms = 20; s->adb_poll_mask = 0xffff; } static void cuda_initfn(Object *obj) { SysBusDevice *d = SYS_BUS_DEVICE(obj); CUDAState *s = CUDA(obj); int i; memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000); sysbus_init_mmio(d, &s->mem); sysbus_init_irq(d, &s->irq); for (i = 0; i < ARRAY_SIZE(s->timers); i++) { s->timers[i].index = i; } qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS, DEVICE(obj), "adb.0"); } static Property cuda_properties[] = { DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0), DEFINE_PROP_END_OF_LIST() }; static void cuda_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); dc->realize = cuda_realizefn; dc->reset = cuda_reset; dc->vmsd = &vmstate_cuda; dc->props = cuda_properties; set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories); } static const TypeInfo cuda_type_info = { .name = TYPE_CUDA, .parent = TYPE_SYS_BUS_DEVICE, .instance_size = sizeof(CUDAState), .instance_init = cuda_initfn, .class_init = cuda_class_init, }; static void cuda_register_types(void) { type_register_static(&cuda_type_info); } type_init(cuda_register_types)