/* * sPAPR CPU core device, acts as container of CPU thread devices. * * Copyright (C) 2016 Bharata B Rao * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. */ #include "qemu/osdep.h" #include "hw/cpu/core.h" #include "hw/ppc/spapr_cpu_core.h" #include "migration/vmstate.h" #include "target/ppc/cpu.h" #include "hw/ppc/spapr.h" #include "hw/boards.h" #include "qapi/error.h" #include "sysemu/cpus.h" #include "sysemu/kvm.h" #include "target/ppc/kvm_ppc.h" #include "hw/ppc/ppc.h" #include "target/ppc/mmu-hash64.h" #include "sysemu/numa.h" #include "sysemu/reset.h" #include "sysemu/hw_accel.h" #include "qemu/error-report.h" static void spapr_cpu_reset(void *opaque) { PowerPCCPU *cpu = opaque; CPUState *cs = CPU(cpu); CPUPPCState *env = &cpu->env; PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); target_ulong lpcr; cpu_reset(cs); /* All CPUs start halted. CPU0 is unhalted from the machine level * reset code and the rest are explicitly started up by the guest * using an RTAS call */ cs->halted = 1; /* Set compatibility mode to match the boot CPU, which was either set * by the machine reset code or by CAS. This should never fail. */ ppc_set_compat(cpu, POWERPC_CPU(first_cpu)->compat_pvr, &error_abort); env->spr[SPR_HIOR] = 0; lpcr = env->spr[SPR_LPCR]; /* Set emulated LPCR to not send interrupts to hypervisor. Note that * under KVM, the actual HW LPCR will be set differently by KVM itself, * the settings below ensure proper operations with TCG in absence of * a real hypervisor. * * Clearing VPM0 will also cause us to use RMOR in mmu-hash64.c for * real mode accesses, which thankfully defaults to 0 and isn't * accessible in guest mode. * * Disable Power-saving mode Exit Cause exceptions for the CPU, so * we don't get spurious wakups before an RTAS start-cpu call. * For the same reason, set PSSCR_EC. */ lpcr &= ~(LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV | pcc->lpcr_pm); lpcr |= LPCR_LPES0 | LPCR_LPES1; env->spr[SPR_PSSCR] |= PSSCR_EC; /* Set RMLS to the max (ie, 16G) */ lpcr &= ~LPCR_RMLS; lpcr |= 1ull << LPCR_RMLS_SHIFT; ppc_store_lpcr(cpu, lpcr); /* Set a full AMOR so guest can use the AMR as it sees fit */ env->spr[SPR_AMOR] = 0xffffffffffffffffull; spapr_cpu->vpa_addr = 0; spapr_cpu->slb_shadow_addr = 0; spapr_cpu->slb_shadow_size = 0; spapr_cpu->dtl_addr = 0; spapr_cpu->dtl_size = 0; spapr_caps_cpu_apply(SPAPR_MACHINE(qdev_get_machine()), cpu); kvm_check_mmu(cpu, &error_fatal); } void spapr_cpu_set_entry_state(PowerPCCPU *cpu, target_ulong nip, target_ulong r3) { PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); CPUPPCState *env = &cpu->env; env->nip = nip; env->gpr[3] = r3; kvmppc_set_reg_ppc_online(cpu, 1); CPU(cpu)->halted = 0; /* Enable Power-saving mode Exit Cause exceptions */ ppc_store_lpcr(cpu, env->spr[SPR_LPCR] | pcc->lpcr_pm); } /* * Return the sPAPR CPU core type for @model which essentially is the CPU * model specified with -cpu cmdline option. */ const char *spapr_get_cpu_core_type(const char *cpu_type) { int len = strlen(cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); char *core_type = g_strdup_printf(SPAPR_CPU_CORE_TYPE_NAME("%.*s"), len, cpu_type); ObjectClass *oc = object_class_by_name(core_type); g_free(core_type); if (!oc) { return NULL; } return object_class_get_name(oc); } static bool slb_shadow_needed(void *opaque) { SpaprCpuState *spapr_cpu = opaque; return spapr_cpu->slb_shadow_addr != 0; } static const VMStateDescription vmstate_spapr_cpu_slb_shadow = { .name = "spapr_cpu/vpa/slb_shadow", .version_id = 1, .minimum_version_id = 1, .needed = slb_shadow_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(slb_shadow_addr, SpaprCpuState), VMSTATE_UINT64(slb_shadow_size, SpaprCpuState), VMSTATE_END_OF_LIST() } }; static bool dtl_needed(void *opaque) { SpaprCpuState *spapr_cpu = opaque; return spapr_cpu->dtl_addr != 0; } static const VMStateDescription vmstate_spapr_cpu_dtl = { .name = "spapr_cpu/vpa/dtl", .version_id = 1, .minimum_version_id = 1, .needed = dtl_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(dtl_addr, SpaprCpuState), VMSTATE_UINT64(dtl_size, SpaprCpuState), VMSTATE_END_OF_LIST() } }; static bool vpa_needed(void *opaque) { SpaprCpuState *spapr_cpu = opaque; return spapr_cpu->vpa_addr != 0; } static const VMStateDescription vmstate_spapr_cpu_vpa = { .name = "spapr_cpu/vpa", .version_id = 1, .minimum_version_id = 1, .needed = vpa_needed, .fields = (VMStateField[]) { VMSTATE_UINT64(vpa_addr, SpaprCpuState), VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &vmstate_spapr_cpu_slb_shadow, &vmstate_spapr_cpu_dtl, NULL } }; static const VMStateDescription vmstate_spapr_cpu_state = { .name = "spapr_cpu", .version_id = 1, .minimum_version_id = 1, .fields = (VMStateField[]) { VMSTATE_END_OF_LIST() }, .subsections = (const VMStateDescription * []) { &vmstate_spapr_cpu_vpa, NULL } }; static void spapr_unrealize_vcpu(PowerPCCPU *cpu, SpaprCpuCore *sc) { if (!sc->pre_3_0_migration) { vmstate_unregister(NULL, &vmstate_spapr_cpu_state, cpu->machine_data); } qemu_unregister_reset(spapr_cpu_reset, cpu); if (spapr_cpu_state(cpu)->icp) { object_unparent(OBJECT(spapr_cpu_state(cpu)->icp)); } if (spapr_cpu_state(cpu)->tctx) { object_unparent(OBJECT(spapr_cpu_state(cpu)->tctx)); } cpu_remove_sync(CPU(cpu)); object_unparent(OBJECT(cpu)); } static void spapr_cpu_core_unrealize(DeviceState *dev, Error **errp) { SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); CPUCore *cc = CPU_CORE(dev); int i; for (i = 0; i < cc->nr_threads; i++) { spapr_unrealize_vcpu(sc->threads[i], sc); } g_free(sc->threads); } static void spapr_realize_vcpu(PowerPCCPU *cpu, SpaprMachineState *spapr, SpaprCpuCore *sc, Error **errp) { CPUPPCState *env = &cpu->env; CPUState *cs = CPU(cpu); Error *local_err = NULL; object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); if (local_err) { goto error; } /* Set time-base frequency to 512 MHz */ cpu_ppc_tb_init(env, SPAPR_TIMEBASE_FREQ); cpu_ppc_set_vhyp(cpu, PPC_VIRTUAL_HYPERVISOR(spapr)); kvmppc_set_papr(cpu); qemu_register_reset(spapr_cpu_reset, cpu); spapr_cpu_reset(cpu); spapr->irq->cpu_intc_create(spapr, cpu, &local_err); if (local_err) { goto error_unregister; } if (!sc->pre_3_0_migration) { vmstate_register(NULL, cs->cpu_index, &vmstate_spapr_cpu_state, cpu->machine_data); } return; error_unregister: qemu_unregister_reset(spapr_cpu_reset, cpu); cpu_remove_sync(CPU(cpu)); error: error_propagate(errp, local_err); } static PowerPCCPU *spapr_create_vcpu(SpaprCpuCore *sc, int i, Error **errp) { SpaprCpuCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(sc); CPUCore *cc = CPU_CORE(sc); Object *obj; char *id; CPUState *cs; PowerPCCPU *cpu; Error *local_err = NULL; obj = object_new(scc->cpu_type); cs = CPU(obj); cpu = POWERPC_CPU(obj); cs->cpu_index = cc->core_id + i; spapr_set_vcpu_id(cpu, cs->cpu_index, &local_err); if (local_err) { goto err; } cpu->node_id = sc->node_id; id = g_strdup_printf("thread[%d]", i); object_property_add_child(OBJECT(sc), id, obj, &local_err); g_free(id); if (local_err) { goto err; } cpu->machine_data = g_new0(SpaprCpuState, 1); object_unref(obj); return cpu; err: object_unref(obj); error_propagate(errp, local_err); return NULL; } static void spapr_delete_vcpu(PowerPCCPU *cpu, SpaprCpuCore *sc) { SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); cpu->machine_data = NULL; g_free(spapr_cpu); object_unparent(OBJECT(cpu)); } static void spapr_cpu_core_realize(DeviceState *dev, Error **errp) { /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user * tries to add a sPAPR CPU core to a non-pseries machine. */ SpaprMachineState *spapr = (SpaprMachineState *) object_dynamic_cast(qdev_get_machine(), TYPE_SPAPR_MACHINE); SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); CPUCore *cc = CPU_CORE(OBJECT(dev)); Error *local_err = NULL; int i, j; if (!spapr) { error_setg(errp, TYPE_SPAPR_CPU_CORE " needs a pseries machine"); return; } sc->threads = g_new(PowerPCCPU *, cc->nr_threads); for (i = 0; i < cc->nr_threads; i++) { sc->threads[i] = spapr_create_vcpu(sc, i, &local_err); if (local_err) { goto err; } } for (j = 0; j < cc->nr_threads; j++) { spapr_realize_vcpu(sc->threads[j], spapr, sc, &local_err); if (local_err) { goto err_unrealize; } } return; err_unrealize: while (--j >= 0) { spapr_unrealize_vcpu(sc->threads[j], sc); } err: while (--i >= 0) { spapr_delete_vcpu(sc->threads[i], sc); } g_free(sc->threads); error_propagate(errp, local_err); } static Property spapr_cpu_core_properties[] = { DEFINE_PROP_INT32("node-id", SpaprCpuCore, node_id, CPU_UNSET_NUMA_NODE_ID), DEFINE_PROP_BOOL("pre-3.0-migration", SpaprCpuCore, pre_3_0_migration, false), DEFINE_PROP_END_OF_LIST() }; static void spapr_cpu_core_class_init(ObjectClass *oc, void *data) { DeviceClass *dc = DEVICE_CLASS(oc); SpaprCpuCoreClass *scc = SPAPR_CPU_CORE_CLASS(oc); dc->realize = spapr_cpu_core_realize; dc->unrealize = spapr_cpu_core_unrealize; dc->props = spapr_cpu_core_properties; scc->cpu_type = data; } #define DEFINE_SPAPR_CPU_CORE_TYPE(cpu_model) \ { \ .parent = TYPE_SPAPR_CPU_CORE, \ .class_data = (void *) POWERPC_CPU_TYPE_NAME(cpu_model), \ .class_init = spapr_cpu_core_class_init, \ .name = SPAPR_CPU_CORE_TYPE_NAME(cpu_model), \ } static const TypeInfo spapr_cpu_core_type_infos[] = { { .name = TYPE_SPAPR_CPU_CORE, .parent = TYPE_CPU_CORE, .abstract = true, .instance_size = sizeof(SpaprCpuCore), .class_size = sizeof(SpaprCpuCoreClass), }, DEFINE_SPAPR_CPU_CORE_TYPE("970_v2.2"), DEFINE_SPAPR_CPU_CORE_TYPE("970mp_v1.0"), DEFINE_SPAPR_CPU_CORE_TYPE("970mp_v1.1"), DEFINE_SPAPR_CPU_CORE_TYPE("power5+_v2.1"), DEFINE_SPAPR_CPU_CORE_TYPE("power7_v2.3"), DEFINE_SPAPR_CPU_CORE_TYPE("power7+_v2.1"), DEFINE_SPAPR_CPU_CORE_TYPE("power8_v2.0"), DEFINE_SPAPR_CPU_CORE_TYPE("power8e_v2.1"), DEFINE_SPAPR_CPU_CORE_TYPE("power8nvl_v1.0"), DEFINE_SPAPR_CPU_CORE_TYPE("power9_v1.0"), DEFINE_SPAPR_CPU_CORE_TYPE("power9_v2.0"), #ifdef CONFIG_KVM DEFINE_SPAPR_CPU_CORE_TYPE("host"), #endif }; DEFINE_TYPES(spapr_cpu_core_type_infos)