/* * IMX31 Clock Control Module * * Copyright (C) 2012 NICTA * Updated by Jean-Christophe Dubois * * This work is licensed under the terms of the GNU GPL, version 2 or later. * See the COPYING file in the top-level directory. * * To get the timer frequencies right, we need to emulate at least part of * the i.MX31 CCM. */ #include "qemu/osdep.h" #include "hw/misc/imx31_ccm.h" #define CKIH_FREQ 26000000 /* 26MHz crystal input */ #ifndef DEBUG_IMX31_CCM #define DEBUG_IMX31_CCM 0 #endif #define DPRINTF(fmt, args...) \ do { \ if (DEBUG_IMX31_CCM) { \ fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX31_CCM, \ __func__, ##args); \ } \ } while (0) static char const *imx31_ccm_reg_name(uint32_t reg) { static char unknown[20]; switch (reg) { case IMX31_CCM_CCMR_REG: return "CCMR"; case IMX31_CCM_PDR0_REG: return "PDR0"; case IMX31_CCM_PDR1_REG: return "PDR1"; case IMX31_CCM_RCSR_REG: return "RCSR"; case IMX31_CCM_MPCTL_REG: return "MPCTL"; case IMX31_CCM_UPCTL_REG: return "UPCTL"; case IMX31_CCM_SPCTL_REG: return "SPCTL"; case IMX31_CCM_COSR_REG: return "COSR"; case IMX31_CCM_CGR0_REG: return "CGR0"; case IMX31_CCM_CGR1_REG: return "CGR1"; case IMX31_CCM_CGR2_REG: return "CGR2"; case IMX31_CCM_WIMR_REG: return "WIMR"; case IMX31_CCM_LDC_REG: return "LDC"; case IMX31_CCM_DCVR0_REG: return "DCVR0"; case IMX31_CCM_DCVR1_REG: return "DCVR1"; case IMX31_CCM_DCVR2_REG: return "DCVR2"; case IMX31_CCM_DCVR3_REG: return "DCVR3"; case IMX31_CCM_LTR0_REG: return "LTR0"; case IMX31_CCM_LTR1_REG: return "LTR1"; case IMX31_CCM_LTR2_REG: return "LTR2"; case IMX31_CCM_LTR3_REG: return "LTR3"; case IMX31_CCM_LTBR0_REG: return "LTBR0"; case IMX31_CCM_LTBR1_REG: return "LTBR1"; case IMX31_CCM_PMCR0_REG: return "PMCR0"; case IMX31_CCM_PMCR1_REG: return "PMCR1"; case IMX31_CCM_PDR2_REG: return "PDR2"; default: sprintf(unknown, "[%d ?]", reg); return unknown; } } static const VMStateDescription vmstate_imx31_ccm = { .name = TYPE_IMX31_CCM, .version_id = 2, .minimum_version_id = 2, .fields = (VMStateField[]) { VMSTATE_UINT32_ARRAY(reg, IMX31CCMState, IMX31_CCM_MAX_REG), VMSTATE_END_OF_LIST() }, }; static uint32_t imx31_ccm_get_pll_ref_clk(IMXCCMState *dev) { uint32_t freq = 0; IMX31CCMState *s = IMX31_CCM(dev); if ((s->reg[IMX31_CCM_CCMR_REG] & CCMR_PRCS) == 2) { if (s->reg[IMX31_CCM_CCMR_REG] & CCMR_FPME) { freq = CKIL_FREQ; if (s->reg[IMX31_CCM_CCMR_REG] & CCMR_FPMF) { freq *= 1024; } } } else { freq = CKIH_FREQ; } DPRINTF("freq = %d\n", freq); return freq; } static uint32_t imx31_ccm_get_mpll_clk(IMXCCMState *dev) { uint32_t freq; IMX31CCMState *s = IMX31_CCM(dev); freq = imx_ccm_calc_pll(s->reg[IMX31_CCM_MPCTL_REG], imx31_ccm_get_pll_ref_clk(dev)); DPRINTF("freq = %d\n", freq); return freq; } static uint32_t imx31_ccm_get_mcu_main_clk(IMXCCMState *dev) { uint32_t freq; IMX31CCMState *s = IMX31_CCM(dev); if ((s->reg[IMX31_CCM_CCMR_REG] & CCMR_MDS) || !(s->reg[IMX31_CCM_CCMR_REG] & CCMR_MPE)) { freq = imx31_ccm_get_pll_ref_clk(dev); } else { freq = imx31_ccm_get_mpll_clk(dev); } DPRINTF("freq = %d\n", freq); return freq; } static uint32_t imx31_ccm_get_hclk_clk(IMXCCMState *dev) { uint32_t freq; IMX31CCMState *s = IMX31_CCM(dev); freq = imx31_ccm_get_mcu_main_clk(dev) / (1 + EXTRACT(s->reg[IMX31_CCM_PDR0_REG], MAX)); DPRINTF("freq = %d\n", freq); return freq; } static uint32_t imx31_ccm_get_ipg_clk(IMXCCMState *dev) { uint32_t freq; IMX31CCMState *s = IMX31_CCM(dev); freq = imx31_ccm_get_hclk_clk(dev) / (1 + EXTRACT(s->reg[IMX31_CCM_PDR0_REG], IPG)); DPRINTF("freq = %d\n", freq); return freq; } static uint32_t imx31_ccm_get_clock_frequency(IMXCCMState *dev, IMXClk clock) { uint32_t freq = 0; switch (clock) { case CLK_NONE: break; case CLK_IPG: freq = imx31_ccm_get_ipg_clk(dev); break; case CLK_32k: freq = CKIL_FREQ; break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: unsupported clock %d\n", TYPE_IMX31_CCM, __func__, clock); break; } DPRINTF("Clock = %d) = %d\n", clock, freq); return freq; } static void imx31_ccm_reset(DeviceState *dev) { IMX31CCMState *s = IMX31_CCM(dev); DPRINTF("()\n"); memset(s->reg, 0, sizeof(uint32_t) * IMX31_CCM_MAX_REG); s->reg[IMX31_CCM_CCMR_REG] = 0x074b0b7d; s->reg[IMX31_CCM_PDR0_REG] = 0xff870b48; s->reg[IMX31_CCM_PDR1_REG] = 0x49fcfe7f; s->reg[IMX31_CCM_RCSR_REG] = 0x007f0000; s->reg[IMX31_CCM_MPCTL_REG] = 0x04001800; s->reg[IMX31_CCM_UPCTL_REG] = 0x04051c03; s->reg[IMX31_CCM_SPCTL_REG] = 0x04043001; s->reg[IMX31_CCM_COSR_REG] = 0x00000280; s->reg[IMX31_CCM_CGR0_REG] = 0xffffffff; s->reg[IMX31_CCM_CGR1_REG] = 0xffffffff; s->reg[IMX31_CCM_CGR2_REG] = 0xffffffff; s->reg[IMX31_CCM_WIMR_REG] = 0xffffffff; s->reg[IMX31_CCM_LTR1_REG] = 0x00004040; s->reg[IMX31_CCM_PMCR0_REG] = 0x80209828; s->reg[IMX31_CCM_PMCR1_REG] = 0x00aa0000; s->reg[IMX31_CCM_PDR2_REG] = 0x00000285; } static uint64_t imx31_ccm_read(void *opaque, hwaddr offset, unsigned size) { uint32_t value = 0; IMX31CCMState *s = (IMX31CCMState *)opaque; if ((offset >> 2) < IMX31_CCM_MAX_REG) { value = s->reg[offset >> 2]; } else { qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX31_CCM, __func__, offset); } DPRINTF("reg[%s] => 0x%" PRIx32 "\n", imx31_ccm_reg_name(offset >> 2), value); return (uint64_t)value; } static void imx31_ccm_write(void *opaque, hwaddr offset, uint64_t value, unsigned size) { IMX31CCMState *s = (IMX31CCMState *)opaque; DPRINTF("reg[%s] <= 0x%" PRIx32 "\n", imx31_ccm_reg_name(offset >> 2), (uint32_t)value); switch (offset >> 2) { case IMX31_CCM_CCMR_REG: s->reg[IMX31_CCM_CCMR_REG] = CCMR_FPMF | (value & 0x3b6fdfff); break; case IMX31_CCM_PDR0_REG: s->reg[IMX31_CCM_PDR0_REG] = value & 0xff9f3fff; break; case IMX31_CCM_PDR1_REG: s->reg[IMX31_CCM_PDR1_REG] = value; break; case IMX31_CCM_MPCTL_REG: s->reg[IMX31_CCM_MPCTL_REG] = value & 0xbfff3fff; break; case IMX31_CCM_SPCTL_REG: s->reg[IMX31_CCM_SPCTL_REG] = value & 0xbfff3fff; break; case IMX31_CCM_CGR0_REG: s->reg[IMX31_CCM_CGR0_REG] = value; break; case IMX31_CCM_CGR1_REG: s->reg[IMX31_CCM_CGR1_REG] = value; break; case IMX31_CCM_CGR2_REG: s->reg[IMX31_CCM_CGR2_REG] = value; break; default: qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", TYPE_IMX31_CCM, __func__, offset); break; } } static const struct MemoryRegionOps imx31_ccm_ops = { .read = imx31_ccm_read, .write = imx31_ccm_write, .endianness = DEVICE_NATIVE_ENDIAN, .valid = { /* * Our device would not work correctly if the guest was doing * unaligned access. This might not be a limitation on the real * device but in practice there is no reason for a guest to access * this device unaligned. */ .min_access_size = 4, .max_access_size = 4, .unaligned = false, }, }; static void imx31_ccm_init(Object *obj) { DeviceState *dev = DEVICE(obj); SysBusDevice *sd = SYS_BUS_DEVICE(obj); IMX31CCMState *s = IMX31_CCM(obj); memory_region_init_io(&s->iomem, OBJECT(dev), &imx31_ccm_ops, s, TYPE_IMX31_CCM, 0x1000); sysbus_init_mmio(sd, &s->iomem); } static void imx31_ccm_class_init(ObjectClass *klass, void *data) { DeviceClass *dc = DEVICE_CLASS(klass); IMXCCMClass *ccm = IMX_CCM_CLASS(klass); dc->reset = imx31_ccm_reset; dc->vmsd = &vmstate_imx31_ccm; dc->desc = "i.MX31 Clock Control Module"; ccm->get_clock_frequency = imx31_ccm_get_clock_frequency; } static const TypeInfo imx31_ccm_info = { .name = TYPE_IMX31_CCM, .parent = TYPE_IMX_CCM, .instance_size = sizeof(IMX31CCMState), .instance_init = imx31_ccm_init, .class_init = imx31_ccm_class_init, }; static void imx31_ccm_register_types(void) { type_register_static(&imx31_ccm_info); } type_init(imx31_ccm_register_types)