mirror of https://gitee.com/openkylin/qemu.git
820 lines
23 KiB
C
820 lines
23 KiB
C
/*
|
|
* TPR optimization for 32-bit Windows guests (XP and Server 2003)
|
|
*
|
|
* Copyright (C) 2007-2008 Qumranet Technologies
|
|
* Copyright (C) 2012 Jan Kiszka, Siemens AG
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL version 2, or
|
|
* (at your option) any later version. See the COPYING file in the
|
|
* top-level directory.
|
|
*/
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/cpus.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "apic_internal.h"
|
|
|
|
#define APIC_DEFAULT_ADDRESS 0xfee00000
|
|
|
|
#define VAPIC_IO_PORT 0x7e
|
|
|
|
#define VAPIC_CPU_SHIFT 7
|
|
|
|
#define ROM_BLOCK_SIZE 512
|
|
#define ROM_BLOCK_MASK (~(ROM_BLOCK_SIZE - 1))
|
|
|
|
typedef enum VAPICMode {
|
|
VAPIC_INACTIVE = 0,
|
|
VAPIC_ACTIVE = 1,
|
|
VAPIC_STANDBY = 2,
|
|
} VAPICMode;
|
|
|
|
typedef struct VAPICHandlers {
|
|
uint32_t set_tpr;
|
|
uint32_t set_tpr_eax;
|
|
uint32_t get_tpr[8];
|
|
uint32_t get_tpr_stack;
|
|
} QEMU_PACKED VAPICHandlers;
|
|
|
|
typedef struct GuestROMState {
|
|
char signature[8];
|
|
uint32_t vaddr;
|
|
uint32_t fixup_start;
|
|
uint32_t fixup_end;
|
|
uint32_t vapic_vaddr;
|
|
uint32_t vapic_size;
|
|
uint32_t vcpu_shift;
|
|
uint32_t real_tpr_addr;
|
|
VAPICHandlers up;
|
|
VAPICHandlers mp;
|
|
} QEMU_PACKED GuestROMState;
|
|
|
|
typedef struct VAPICROMState {
|
|
SysBusDevice busdev;
|
|
MemoryRegion io;
|
|
MemoryRegion rom;
|
|
uint32_t state;
|
|
uint32_t rom_state_paddr;
|
|
uint32_t rom_state_vaddr;
|
|
uint32_t vapic_paddr;
|
|
uint32_t real_tpr_addr;
|
|
GuestROMState rom_state;
|
|
size_t rom_size;
|
|
bool rom_mapped_writable;
|
|
} VAPICROMState;
|
|
|
|
#define TPR_INSTR_ABS_MODRM 0x1
|
|
#define TPR_INSTR_MATCH_MODRM_REG 0x2
|
|
|
|
typedef struct TPRInstruction {
|
|
uint8_t opcode;
|
|
uint8_t modrm_reg;
|
|
unsigned int flags;
|
|
TPRAccess access;
|
|
size_t length;
|
|
off_t addr_offset;
|
|
} TPRInstruction;
|
|
|
|
/* must be sorted by length, shortest first */
|
|
static const TPRInstruction tpr_instr[] = {
|
|
{ /* mov abs to eax */
|
|
.opcode = 0xa1,
|
|
.access = TPR_ACCESS_READ,
|
|
.length = 5,
|
|
.addr_offset = 1,
|
|
},
|
|
{ /* mov eax to abs */
|
|
.opcode = 0xa3,
|
|
.access = TPR_ACCESS_WRITE,
|
|
.length = 5,
|
|
.addr_offset = 1,
|
|
},
|
|
{ /* mov r32 to r/m32 */
|
|
.opcode = 0x89,
|
|
.flags = TPR_INSTR_ABS_MODRM,
|
|
.access = TPR_ACCESS_WRITE,
|
|
.length = 6,
|
|
.addr_offset = 2,
|
|
},
|
|
{ /* mov r/m32 to r32 */
|
|
.opcode = 0x8b,
|
|
.flags = TPR_INSTR_ABS_MODRM,
|
|
.access = TPR_ACCESS_READ,
|
|
.length = 6,
|
|
.addr_offset = 2,
|
|
},
|
|
{ /* push r/m32 */
|
|
.opcode = 0xff,
|
|
.modrm_reg = 6,
|
|
.flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
|
|
.access = TPR_ACCESS_READ,
|
|
.length = 6,
|
|
.addr_offset = 2,
|
|
},
|
|
{ /* mov imm32, r/m32 (c7/0) */
|
|
.opcode = 0xc7,
|
|
.modrm_reg = 0,
|
|
.flags = TPR_INSTR_ABS_MODRM | TPR_INSTR_MATCH_MODRM_REG,
|
|
.access = TPR_ACCESS_WRITE,
|
|
.length = 10,
|
|
.addr_offset = 2,
|
|
},
|
|
};
|
|
|
|
static void read_guest_rom_state(VAPICROMState *s)
|
|
{
|
|
cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
|
|
sizeof(GuestROMState), 0);
|
|
}
|
|
|
|
static void write_guest_rom_state(VAPICROMState *s)
|
|
{
|
|
cpu_physical_memory_rw(s->rom_state_paddr, (void *)&s->rom_state,
|
|
sizeof(GuestROMState), 1);
|
|
}
|
|
|
|
static void update_guest_rom_state(VAPICROMState *s)
|
|
{
|
|
read_guest_rom_state(s);
|
|
|
|
s->rom_state.real_tpr_addr = cpu_to_le32(s->real_tpr_addr);
|
|
s->rom_state.vcpu_shift = cpu_to_le32(VAPIC_CPU_SHIFT);
|
|
|
|
write_guest_rom_state(s);
|
|
}
|
|
|
|
static int find_real_tpr_addr(VAPICROMState *s, CPUX86State *env)
|
|
{
|
|
hwaddr paddr;
|
|
target_ulong addr;
|
|
|
|
if (s->state == VAPIC_ACTIVE) {
|
|
return 0;
|
|
}
|
|
/*
|
|
* If there is no prior TPR access instruction we could analyze (which is
|
|
* the case after resume from hibernation), we need to scan the possible
|
|
* virtual address space for the APIC mapping.
|
|
*/
|
|
for (addr = 0xfffff000; addr >= 0x80000000; addr -= TARGET_PAGE_SIZE) {
|
|
paddr = cpu_get_phys_page_debug(env, addr);
|
|
if (paddr != APIC_DEFAULT_ADDRESS) {
|
|
continue;
|
|
}
|
|
s->real_tpr_addr = addr + 0x80;
|
|
update_guest_rom_state(s);
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static uint8_t modrm_reg(uint8_t modrm)
|
|
{
|
|
return (modrm >> 3) & 7;
|
|
}
|
|
|
|
static bool is_abs_modrm(uint8_t modrm)
|
|
{
|
|
return (modrm & 0xc7) == 0x05;
|
|
}
|
|
|
|
static bool opcode_matches(uint8_t *opcode, const TPRInstruction *instr)
|
|
{
|
|
return opcode[0] == instr->opcode &&
|
|
(!(instr->flags & TPR_INSTR_ABS_MODRM) || is_abs_modrm(opcode[1])) &&
|
|
(!(instr->flags & TPR_INSTR_MATCH_MODRM_REG) ||
|
|
modrm_reg(opcode[1]) == instr->modrm_reg);
|
|
}
|
|
|
|
static int evaluate_tpr_instruction(VAPICROMState *s, CPUX86State *env,
|
|
target_ulong *pip, TPRAccess access)
|
|
{
|
|
const TPRInstruction *instr;
|
|
target_ulong ip = *pip;
|
|
uint8_t opcode[2];
|
|
uint32_t real_tpr_addr;
|
|
int i;
|
|
|
|
if ((ip & 0xf0000000ULL) != 0x80000000ULL &&
|
|
(ip & 0xf0000000ULL) != 0xe0000000ULL) {
|
|
return -1;
|
|
}
|
|
|
|
/*
|
|
* Early Windows 2003 SMP initialization contains a
|
|
*
|
|
* mov imm32, r/m32
|
|
*
|
|
* instruction that is patched by TPR optimization. The problem is that
|
|
* RSP, used by the patched instruction, is zero, so the guest gets a
|
|
* double fault and dies.
|
|
*/
|
|
if (env->regs[R_ESP] == 0) {
|
|
return -1;
|
|
}
|
|
|
|
if (kvm_enabled() && !kvm_irqchip_in_kernel()) {
|
|
/*
|
|
* KVM without kernel-based TPR access reporting will pass an IP that
|
|
* points after the accessing instruction. So we need to look backward
|
|
* to find the reason.
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
|
|
instr = &tpr_instr[i];
|
|
if (instr->access != access) {
|
|
continue;
|
|
}
|
|
if (cpu_memory_rw_debug(env, ip - instr->length, opcode,
|
|
sizeof(opcode), 0) < 0) {
|
|
return -1;
|
|
}
|
|
if (opcode_matches(opcode, instr)) {
|
|
ip -= instr->length;
|
|
goto instruction_ok;
|
|
}
|
|
}
|
|
return -1;
|
|
} else {
|
|
if (cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0) < 0) {
|
|
return -1;
|
|
}
|
|
for (i = 0; i < ARRAY_SIZE(tpr_instr); i++) {
|
|
instr = &tpr_instr[i];
|
|
if (opcode_matches(opcode, instr)) {
|
|
goto instruction_ok;
|
|
}
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
instruction_ok:
|
|
/*
|
|
* Grab the virtual TPR address from the instruction
|
|
* and update the cached values.
|
|
*/
|
|
if (cpu_memory_rw_debug(env, ip + instr->addr_offset,
|
|
(void *)&real_tpr_addr,
|
|
sizeof(real_tpr_addr), 0) < 0) {
|
|
return -1;
|
|
}
|
|
real_tpr_addr = le32_to_cpu(real_tpr_addr);
|
|
if ((real_tpr_addr & 0xfff) != 0x80) {
|
|
return -1;
|
|
}
|
|
s->real_tpr_addr = real_tpr_addr;
|
|
update_guest_rom_state(s);
|
|
|
|
*pip = ip;
|
|
return 0;
|
|
}
|
|
|
|
static int update_rom_mapping(VAPICROMState *s, CPUX86State *env, target_ulong ip)
|
|
{
|
|
hwaddr paddr;
|
|
uint32_t rom_state_vaddr;
|
|
uint32_t pos, patch, offset;
|
|
|
|
/* nothing to do if already activated */
|
|
if (s->state == VAPIC_ACTIVE) {
|
|
return 0;
|
|
}
|
|
|
|
/* bail out if ROM init code was not executed (missing ROM?) */
|
|
if (s->state == VAPIC_INACTIVE) {
|
|
return -1;
|
|
}
|
|
|
|
/* find out virtual address of the ROM */
|
|
rom_state_vaddr = s->rom_state_paddr + (ip & 0xf0000000);
|
|
paddr = cpu_get_phys_page_debug(env, rom_state_vaddr);
|
|
if (paddr == -1) {
|
|
return -1;
|
|
}
|
|
paddr += rom_state_vaddr & ~TARGET_PAGE_MASK;
|
|
if (paddr != s->rom_state_paddr) {
|
|
return -1;
|
|
}
|
|
read_guest_rom_state(s);
|
|
if (memcmp(s->rom_state.signature, "kvm aPiC", 8) != 0) {
|
|
return -1;
|
|
}
|
|
s->rom_state_vaddr = rom_state_vaddr;
|
|
|
|
/* fixup addresses in ROM if needed */
|
|
if (rom_state_vaddr == le32_to_cpu(s->rom_state.vaddr)) {
|
|
return 0;
|
|
}
|
|
for (pos = le32_to_cpu(s->rom_state.fixup_start);
|
|
pos < le32_to_cpu(s->rom_state.fixup_end);
|
|
pos += 4) {
|
|
cpu_physical_memory_rw(paddr + pos - s->rom_state.vaddr,
|
|
(void *)&offset, sizeof(offset), 0);
|
|
offset = le32_to_cpu(offset);
|
|
cpu_physical_memory_rw(paddr + offset, (void *)&patch,
|
|
sizeof(patch), 0);
|
|
patch = le32_to_cpu(patch);
|
|
patch += rom_state_vaddr - le32_to_cpu(s->rom_state.vaddr);
|
|
patch = cpu_to_le32(patch);
|
|
cpu_physical_memory_rw(paddr + offset, (void *)&patch,
|
|
sizeof(patch), 1);
|
|
}
|
|
read_guest_rom_state(s);
|
|
s->vapic_paddr = paddr + le32_to_cpu(s->rom_state.vapic_vaddr) -
|
|
le32_to_cpu(s->rom_state.vaddr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Tries to read the unique processor number from the Kernel Processor Control
|
|
* Region (KPCR) of 32-bit Windows XP and Server 2003. Returns -1 if the KPCR
|
|
* cannot be accessed or is considered invalid. This also ensures that we are
|
|
* not patching the wrong guest.
|
|
*/
|
|
static int get_kpcr_number(CPUX86State *env)
|
|
{
|
|
struct kpcr {
|
|
uint8_t fill1[0x1c];
|
|
uint32_t self;
|
|
uint8_t fill2[0x31];
|
|
uint8_t number;
|
|
} QEMU_PACKED kpcr;
|
|
|
|
if (cpu_memory_rw_debug(env, env->segs[R_FS].base,
|
|
(void *)&kpcr, sizeof(kpcr), 0) < 0 ||
|
|
kpcr.self != env->segs[R_FS].base) {
|
|
return -1;
|
|
}
|
|
return kpcr.number;
|
|
}
|
|
|
|
static int vapic_enable(VAPICROMState *s, CPUX86State *env)
|
|
{
|
|
int cpu_number = get_kpcr_number(env);
|
|
hwaddr vapic_paddr;
|
|
static const uint8_t enabled = 1;
|
|
|
|
if (cpu_number < 0) {
|
|
return -1;
|
|
}
|
|
vapic_paddr = s->vapic_paddr +
|
|
(((hwaddr)cpu_number) << VAPIC_CPU_SHIFT);
|
|
cpu_physical_memory_rw(vapic_paddr + offsetof(VAPICState, enabled),
|
|
(void *)&enabled, sizeof(enabled), 1);
|
|
apic_enable_vapic(env->apic_state, vapic_paddr);
|
|
|
|
s->state = VAPIC_ACTIVE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void patch_byte(CPUX86State *env, target_ulong addr, uint8_t byte)
|
|
{
|
|
cpu_memory_rw_debug(env, addr, &byte, 1, 1);
|
|
}
|
|
|
|
static void patch_call(VAPICROMState *s, CPUX86State *env, target_ulong ip,
|
|
uint32_t target)
|
|
{
|
|
uint32_t offset;
|
|
|
|
offset = cpu_to_le32(target - ip - 5);
|
|
patch_byte(env, ip, 0xe8); /* call near */
|
|
cpu_memory_rw_debug(env, ip + 1, (void *)&offset, sizeof(offset), 1);
|
|
}
|
|
|
|
static void patch_instruction(VAPICROMState *s, CPUX86State *env, target_ulong ip)
|
|
{
|
|
VAPICHandlers *handlers;
|
|
uint8_t opcode[2];
|
|
uint32_t imm32;
|
|
target_ulong current_pc = 0;
|
|
target_ulong current_cs_base = 0;
|
|
int current_flags = 0;
|
|
|
|
if (smp_cpus == 1) {
|
|
handlers = &s->rom_state.up;
|
|
} else {
|
|
handlers = &s->rom_state.mp;
|
|
}
|
|
|
|
if (!kvm_enabled()) {
|
|
cpu_restore_state(env, env->mem_io_pc);
|
|
cpu_get_tb_cpu_state(env, ¤t_pc, ¤t_cs_base,
|
|
¤t_flags);
|
|
}
|
|
|
|
pause_all_vcpus();
|
|
|
|
cpu_memory_rw_debug(env, ip, opcode, sizeof(opcode), 0);
|
|
|
|
switch (opcode[0]) {
|
|
case 0x89: /* mov r32 to r/m32 */
|
|
patch_byte(env, ip, 0x50 + modrm_reg(opcode[1])); /* push reg */
|
|
patch_call(s, env, ip + 1, handlers->set_tpr);
|
|
break;
|
|
case 0x8b: /* mov r/m32 to r32 */
|
|
patch_byte(env, ip, 0x90);
|
|
patch_call(s, env, ip + 1, handlers->get_tpr[modrm_reg(opcode[1])]);
|
|
break;
|
|
case 0xa1: /* mov abs to eax */
|
|
patch_call(s, env, ip, handlers->get_tpr[0]);
|
|
break;
|
|
case 0xa3: /* mov eax to abs */
|
|
patch_call(s, env, ip, handlers->set_tpr_eax);
|
|
break;
|
|
case 0xc7: /* mov imm32, r/m32 (c7/0) */
|
|
patch_byte(env, ip, 0x68); /* push imm32 */
|
|
cpu_memory_rw_debug(env, ip + 6, (void *)&imm32, sizeof(imm32), 0);
|
|
cpu_memory_rw_debug(env, ip + 1, (void *)&imm32, sizeof(imm32), 1);
|
|
patch_call(s, env, ip + 5, handlers->set_tpr);
|
|
break;
|
|
case 0xff: /* push r/m32 */
|
|
patch_byte(env, ip, 0x50); /* push eax */
|
|
patch_call(s, env, ip + 1, handlers->get_tpr_stack);
|
|
break;
|
|
default:
|
|
abort();
|
|
}
|
|
|
|
resume_all_vcpus();
|
|
|
|
if (!kvm_enabled()) {
|
|
env->current_tb = NULL;
|
|
tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
|
|
cpu_resume_from_signal(env, NULL);
|
|
}
|
|
}
|
|
|
|
void vapic_report_tpr_access(DeviceState *dev, void *cpu, target_ulong ip,
|
|
TPRAccess access)
|
|
{
|
|
VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
|
|
CPUX86State *env = cpu;
|
|
|
|
cpu_synchronize_state(env);
|
|
|
|
if (evaluate_tpr_instruction(s, env, &ip, access) < 0) {
|
|
if (s->state == VAPIC_ACTIVE) {
|
|
vapic_enable(s, env);
|
|
}
|
|
return;
|
|
}
|
|
if (update_rom_mapping(s, env, ip) < 0) {
|
|
return;
|
|
}
|
|
if (vapic_enable(s, env) < 0) {
|
|
return;
|
|
}
|
|
patch_instruction(s, env, ip);
|
|
}
|
|
|
|
typedef struct VAPICEnableTPRReporting {
|
|
DeviceState *apic;
|
|
bool enable;
|
|
} VAPICEnableTPRReporting;
|
|
|
|
static void vapic_do_enable_tpr_reporting(void *data)
|
|
{
|
|
VAPICEnableTPRReporting *info = data;
|
|
|
|
apic_enable_tpr_access_reporting(info->apic, info->enable);
|
|
}
|
|
|
|
static void vapic_enable_tpr_reporting(bool enable)
|
|
{
|
|
VAPICEnableTPRReporting info = {
|
|
.enable = enable,
|
|
};
|
|
X86CPU *cpu;
|
|
CPUX86State *env;
|
|
|
|
for (env = first_cpu; env != NULL; env = env->next_cpu) {
|
|
cpu = x86_env_get_cpu(env);
|
|
info.apic = env->apic_state;
|
|
run_on_cpu(CPU(cpu), vapic_do_enable_tpr_reporting, &info);
|
|
}
|
|
}
|
|
|
|
static void vapic_reset(DeviceState *dev)
|
|
{
|
|
VAPICROMState *s = DO_UPCAST(VAPICROMState, busdev.qdev, dev);
|
|
|
|
if (s->state == VAPIC_ACTIVE) {
|
|
s->state = VAPIC_STANDBY;
|
|
}
|
|
vapic_enable_tpr_reporting(false);
|
|
}
|
|
|
|
/*
|
|
* Set the IRQ polling hypercalls to the supported variant:
|
|
* - vmcall if using KVM in-kernel irqchip
|
|
* - 32-bit VAPIC port write otherwise
|
|
*/
|
|
static int patch_hypercalls(VAPICROMState *s)
|
|
{
|
|
hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
|
|
static const uint8_t vmcall_pattern[] = { /* vmcall */
|
|
0xb8, 0x1, 0, 0, 0, 0xf, 0x1, 0xc1
|
|
};
|
|
static const uint8_t outl_pattern[] = { /* nop; outl %eax,0x7e */
|
|
0xb8, 0x1, 0, 0, 0, 0x90, 0xe7, 0x7e
|
|
};
|
|
uint8_t alternates[2];
|
|
const uint8_t *pattern;
|
|
const uint8_t *patch;
|
|
int patches = 0;
|
|
off_t pos;
|
|
uint8_t *rom;
|
|
|
|
rom = g_malloc(s->rom_size);
|
|
cpu_physical_memory_rw(rom_paddr, rom, s->rom_size, 0);
|
|
|
|
for (pos = 0; pos < s->rom_size - sizeof(vmcall_pattern); pos++) {
|
|
if (kvm_irqchip_in_kernel()) {
|
|
pattern = outl_pattern;
|
|
alternates[0] = outl_pattern[7];
|
|
alternates[1] = outl_pattern[7];
|
|
patch = &vmcall_pattern[5];
|
|
} else {
|
|
pattern = vmcall_pattern;
|
|
alternates[0] = vmcall_pattern[7];
|
|
alternates[1] = 0xd9; /* AMD's VMMCALL */
|
|
patch = &outl_pattern[5];
|
|
}
|
|
if (memcmp(rom + pos, pattern, 7) == 0 &&
|
|
(rom[pos + 7] == alternates[0] || rom[pos + 7] == alternates[1])) {
|
|
cpu_physical_memory_rw(rom_paddr + pos + 5, (uint8_t *)patch,
|
|
3, 1);
|
|
/*
|
|
* Don't flush the tb here. Under ordinary conditions, the patched
|
|
* calls are miles away from the current IP. Under malicious
|
|
* conditions, the guest could trick us to crash.
|
|
*/
|
|
}
|
|
}
|
|
|
|
g_free(rom);
|
|
|
|
if (patches != 0 && patches != 2) {
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* For TCG mode or the time KVM honors read-only memory regions, we need to
|
|
* enable write access to the option ROM so that variables can be updated by
|
|
* the guest.
|
|
*/
|
|
static void vapic_map_rom_writable(VAPICROMState *s)
|
|
{
|
|
hwaddr rom_paddr = s->rom_state_paddr & ROM_BLOCK_MASK;
|
|
MemoryRegionSection section;
|
|
MemoryRegion *as;
|
|
size_t rom_size;
|
|
uint8_t *ram;
|
|
|
|
as = sysbus_address_space(&s->busdev);
|
|
|
|
if (s->rom_mapped_writable) {
|
|
memory_region_del_subregion(as, &s->rom);
|
|
memory_region_destroy(&s->rom);
|
|
}
|
|
|
|
/* grab RAM memory region (region @rom_paddr may still be pc.rom) */
|
|
section = memory_region_find(as, 0, 1);
|
|
|
|
/* read ROM size from RAM region */
|
|
ram = memory_region_get_ram_ptr(section.mr);
|
|
rom_size = ram[rom_paddr + 2] * ROM_BLOCK_SIZE;
|
|
s->rom_size = rom_size;
|
|
|
|
/* We need to round to avoid creating subpages
|
|
* from which we cannot run code. */
|
|
rom_size += rom_paddr & ~TARGET_PAGE_MASK;
|
|
rom_paddr &= TARGET_PAGE_MASK;
|
|
rom_size = TARGET_PAGE_ALIGN(rom_size);
|
|
|
|
memory_region_init_alias(&s->rom, "kvmvapic-rom", section.mr, rom_paddr,
|
|
rom_size);
|
|
memory_region_add_subregion_overlap(as, rom_paddr, &s->rom, 1000);
|
|
s->rom_mapped_writable = true;
|
|
}
|
|
|
|
static int vapic_prepare(VAPICROMState *s)
|
|
{
|
|
vapic_map_rom_writable(s);
|
|
|
|
if (patch_hypercalls(s) < 0) {
|
|
return -1;
|
|
}
|
|
|
|
vapic_enable_tpr_reporting(true);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void vapic_write(void *opaque, hwaddr addr, uint64_t data,
|
|
unsigned int size)
|
|
{
|
|
CPUX86State *env = cpu_single_env;
|
|
hwaddr rom_paddr;
|
|
VAPICROMState *s = opaque;
|
|
|
|
cpu_synchronize_state(env);
|
|
|
|
/*
|
|
* The VAPIC supports two PIO-based hypercalls, both via port 0x7E.
|
|
* o 16-bit write access:
|
|
* Reports the option ROM initialization to the hypervisor. Written
|
|
* value is the offset of the state structure in the ROM.
|
|
* o 8-bit write access:
|
|
* Reactivates the VAPIC after a guest hibernation, i.e. after the
|
|
* option ROM content has been re-initialized by a guest power cycle.
|
|
* o 32-bit write access:
|
|
* Poll for pending IRQs, considering the current VAPIC state.
|
|
*/
|
|
switch (size) {
|
|
case 2:
|
|
if (s->state == VAPIC_INACTIVE) {
|
|
rom_paddr = (env->segs[R_CS].base + env->eip) & ROM_BLOCK_MASK;
|
|
s->rom_state_paddr = rom_paddr + data;
|
|
|
|
s->state = VAPIC_STANDBY;
|
|
}
|
|
if (vapic_prepare(s) < 0) {
|
|
s->state = VAPIC_INACTIVE;
|
|
break;
|
|
}
|
|
break;
|
|
case 1:
|
|
if (kvm_enabled()) {
|
|
/*
|
|
* Disable triggering instruction in ROM by writing a NOP.
|
|
*
|
|
* We cannot do this in TCG mode as the reported IP is not
|
|
* accurate.
|
|
*/
|
|
pause_all_vcpus();
|
|
patch_byte(env, env->eip - 2, 0x66);
|
|
patch_byte(env, env->eip - 1, 0x90);
|
|
resume_all_vcpus();
|
|
}
|
|
|
|
if (s->state == VAPIC_ACTIVE) {
|
|
break;
|
|
}
|
|
if (update_rom_mapping(s, env, env->eip) < 0) {
|
|
break;
|
|
}
|
|
if (find_real_tpr_addr(s, env) < 0) {
|
|
break;
|
|
}
|
|
vapic_enable(s, env);
|
|
break;
|
|
default:
|
|
case 4:
|
|
if (!kvm_irqchip_in_kernel()) {
|
|
apic_poll_irq(env->apic_state);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps vapic_ops = {
|
|
.write = vapic_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
static int vapic_init(SysBusDevice *dev)
|
|
{
|
|
VAPICROMState *s = FROM_SYSBUS(VAPICROMState, dev);
|
|
|
|
memory_region_init_io(&s->io, &vapic_ops, s, "kvmvapic", 2);
|
|
sysbus_add_io(dev, VAPIC_IO_PORT, &s->io);
|
|
sysbus_init_ioports(dev, VAPIC_IO_PORT, 2);
|
|
|
|
option_rom[nb_option_roms].name = "kvmvapic.bin";
|
|
option_rom[nb_option_roms].bootindex = -1;
|
|
nb_option_roms++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void do_vapic_enable(void *data)
|
|
{
|
|
VAPICROMState *s = data;
|
|
|
|
vapic_enable(s, first_cpu);
|
|
}
|
|
|
|
static int vapic_post_load(void *opaque, int version_id)
|
|
{
|
|
VAPICROMState *s = opaque;
|
|
uint8_t *zero;
|
|
|
|
/*
|
|
* The old implementation of qemu-kvm did not provide the state
|
|
* VAPIC_STANDBY. Reconstruct it.
|
|
*/
|
|
if (s->state == VAPIC_INACTIVE && s->rom_state_paddr != 0) {
|
|
s->state = VAPIC_STANDBY;
|
|
}
|
|
|
|
if (s->state != VAPIC_INACTIVE) {
|
|
if (vapic_prepare(s) < 0) {
|
|
return -1;
|
|
}
|
|
}
|
|
if (s->state == VAPIC_ACTIVE) {
|
|
if (smp_cpus == 1) {
|
|
run_on_cpu(ENV_GET_CPU(first_cpu), do_vapic_enable, s);
|
|
} else {
|
|
zero = g_malloc0(s->rom_state.vapic_size);
|
|
cpu_physical_memory_rw(s->vapic_paddr, zero,
|
|
s->rom_state.vapic_size, 1);
|
|
g_free(zero);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const VMStateDescription vmstate_handlers = {
|
|
.name = "kvmvapic-handlers",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.minimum_version_id_old = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(set_tpr, VAPICHandlers),
|
|
VMSTATE_UINT32(set_tpr_eax, VAPICHandlers),
|
|
VMSTATE_UINT32_ARRAY(get_tpr, VAPICHandlers, 8),
|
|
VMSTATE_UINT32(get_tpr_stack, VAPICHandlers),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_guest_rom = {
|
|
.name = "kvmvapic-guest-rom",
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.minimum_version_id_old = 1,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UNUSED(8), /* signature */
|
|
VMSTATE_UINT32(vaddr, GuestROMState),
|
|
VMSTATE_UINT32(fixup_start, GuestROMState),
|
|
VMSTATE_UINT32(fixup_end, GuestROMState),
|
|
VMSTATE_UINT32(vapic_vaddr, GuestROMState),
|
|
VMSTATE_UINT32(vapic_size, GuestROMState),
|
|
VMSTATE_UINT32(vcpu_shift, GuestROMState),
|
|
VMSTATE_UINT32(real_tpr_addr, GuestROMState),
|
|
VMSTATE_STRUCT(up, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
|
|
VMSTATE_STRUCT(mp, GuestROMState, 0, vmstate_handlers, VAPICHandlers),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const VMStateDescription vmstate_vapic = {
|
|
.name = "kvm-tpr-opt", /* compatible with qemu-kvm VAPIC */
|
|
.version_id = 1,
|
|
.minimum_version_id = 1,
|
|
.minimum_version_id_old = 1,
|
|
.post_load = vapic_post_load,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_STRUCT(rom_state, VAPICROMState, 0, vmstate_guest_rom,
|
|
GuestROMState),
|
|
VMSTATE_UINT32(state, VAPICROMState),
|
|
VMSTATE_UINT32(real_tpr_addr, VAPICROMState),
|
|
VMSTATE_UINT32(rom_state_vaddr, VAPICROMState),
|
|
VMSTATE_UINT32(vapic_paddr, VAPICROMState),
|
|
VMSTATE_UINT32(rom_state_paddr, VAPICROMState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static void vapic_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
SysBusDeviceClass *sc = SYS_BUS_DEVICE_CLASS(klass);
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->no_user = 1;
|
|
dc->reset = vapic_reset;
|
|
dc->vmsd = &vmstate_vapic;
|
|
sc->init = vapic_init;
|
|
}
|
|
|
|
static const TypeInfo vapic_type = {
|
|
.name = "kvmvapic",
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(VAPICROMState),
|
|
.class_init = vapic_class_init,
|
|
};
|
|
|
|
static void vapic_register(void)
|
|
{
|
|
type_register_static(&vapic_type);
|
|
}
|
|
|
|
type_init(vapic_register);
|