qemu/target/arm/sve_helper.c

202 lines
5.9 KiB
C

/*
* ARM SVE Operations
*
* Copyright (c) 2018 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#include "exec/helper-proto.h"
#include "tcg/tcg-gvec-desc.h"
/* Return a value for NZCV as per the ARM PredTest pseudofunction.
*
* The return value has bit 31 set if N is set, bit 1 set if Z is clear,
* and bit 0 set if C is set. Compare the definitions of these variables
* within CPUARMState.
*/
/* For no G bits set, NZCV = C. */
#define PREDTEST_INIT 1
/* This is an iterative function, called for each Pd and Pg word
* moving forward.
*/
static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
{
if (likely(g)) {
/* Compute N from first D & G.
Use bit 2 to signal first G bit seen. */
if (!(flags & 4)) {
flags |= ((d & (g & -g)) != 0) << 31;
flags |= 4;
}
/* Accumulate Z from each D & G. */
flags |= ((d & g) != 0) << 1;
/* Compute C from last !(D & G). Replace previous. */
flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
}
return flags;
}
/* The same for a single word predicate. */
uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
{
return iter_predtest_fwd(d, g, PREDTEST_INIT);
}
/* The same for a multi-word predicate. */
uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
{
uint32_t flags = PREDTEST_INIT;
uint64_t *d = vd, *g = vg;
uintptr_t i = 0;
do {
flags = iter_predtest_fwd(d[i], g[i], flags);
} while (++i < words);
return flags;
}
#define LOGICAL_PPPP(NAME, FUNC) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
{ \
uintptr_t opr_sz = simd_oprsz(desc); \
uint64_t *d = vd, *n = vn, *m = vm, *g = vg; \
uintptr_t i; \
for (i = 0; i < opr_sz / 8; ++i) { \
d[i] = FUNC(n[i], m[i], g[i]); \
} \
}
#define DO_AND(N, M, G) (((N) & (M)) & (G))
#define DO_BIC(N, M, G) (((N) & ~(M)) & (G))
#define DO_EOR(N, M, G) (((N) ^ (M)) & (G))
#define DO_ORR(N, M, G) (((N) | (M)) & (G))
#define DO_ORN(N, M, G) (((N) | ~(M)) & (G))
#define DO_NOR(N, M, G) (~((N) | (M)) & (G))
#define DO_NAND(N, M, G) (~((N) & (M)) & (G))
#define DO_SEL(N, M, G) (((N) & (G)) | ((M) & ~(G)))
LOGICAL_PPPP(sve_and_pppp, DO_AND)
LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
LOGICAL_PPPP(sve_nand_pppp, DO_NAND)
#undef DO_AND
#undef DO_BIC
#undef DO_EOR
#undef DO_ORR
#undef DO_ORN
#undef DO_NOR
#undef DO_NAND
#undef DO_SEL
#undef LOGICAL_PPPP
/* Similar to the ARM LastActiveElement pseudocode function, except the
result is multiplied by the element size. This includes the not found
indication; e.g. not found for esz=3 is -8. */
static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
{
uint64_t mask = pred_esz_masks[esz];
intptr_t i = words;
do {
uint64_t this_g = g[--i] & mask;
if (this_g) {
return i * 64 + (63 - clz64(this_g));
}
} while (i > 0);
return (intptr_t)-1 << esz;
}
uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t words)
{
uint32_t flags = PREDTEST_INIT;
uint64_t *d = vd, *g = vg;
intptr_t i = 0;
do {
uint64_t this_d = d[i];
uint64_t this_g = g[i];
if (this_g) {
if (!(flags & 4)) {
/* Set in D the first bit of G. */
this_d |= this_g & -this_g;
d[i] = this_d;
}
flags = iter_predtest_fwd(this_d, this_g, flags);
}
} while (++i < words);
return flags;
}
uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
{
intptr_t words = extract32(pred_desc, 0, SIMD_OPRSZ_BITS);
intptr_t esz = extract32(pred_desc, SIMD_DATA_SHIFT, 2);
uint32_t flags = PREDTEST_INIT;
uint64_t *d = vd, *g = vg, esz_mask;
intptr_t i, next;
next = last_active_element(vd, words, esz) + (1 << esz);
esz_mask = pred_esz_masks[esz];
/* Similar to the pseudocode for pnext, but scaled by ESZ
so that we find the correct bit. */
if (next < words * 64) {
uint64_t mask = -1;
if (next & 63) {
mask = ~((1ull << (next & 63)) - 1);
next &= -64;
}
do {
uint64_t this_g = g[next / 64] & esz_mask & mask;
if (this_g != 0) {
next = (next & -64) + ctz64(this_g);
break;
}
next += 64;
mask = -1;
} while (next < words * 64);
}
i = 0;
do {
uint64_t this_d = 0;
if (i == next / 64) {
this_d = 1ull << (next & 63);
}
d[i] = this_d;
flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
} while (++i < words);
return flags;
}