mirror of https://gitee.com/openkylin/qemu.git
2257 lines
57 KiB
C
2257 lines
57 KiB
C
/*
|
|
* ARM NEON vector operations.
|
|
*
|
|
* Copyright (c) 2007, 2008 CodeSourcery.
|
|
* Written by Paul Brook
|
|
*
|
|
* This code is licensed under the GNU GPL v2.
|
|
*/
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "cpu.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
#define SIGNBIT (uint32_t)0x80000000
|
|
#define SIGNBIT64 ((uint64_t)1 << 63)
|
|
|
|
#define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] |= CPSR_Q
|
|
|
|
#define NEON_TYPE1(name, type) \
|
|
typedef struct \
|
|
{ \
|
|
type v1; \
|
|
} neon_##name;
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
#define NEON_TYPE2(name, type) \
|
|
typedef struct \
|
|
{ \
|
|
type v2; \
|
|
type v1; \
|
|
} neon_##name;
|
|
#define NEON_TYPE4(name, type) \
|
|
typedef struct \
|
|
{ \
|
|
type v4; \
|
|
type v3; \
|
|
type v2; \
|
|
type v1; \
|
|
} neon_##name;
|
|
#else
|
|
#define NEON_TYPE2(name, type) \
|
|
typedef struct \
|
|
{ \
|
|
type v1; \
|
|
type v2; \
|
|
} neon_##name;
|
|
#define NEON_TYPE4(name, type) \
|
|
typedef struct \
|
|
{ \
|
|
type v1; \
|
|
type v2; \
|
|
type v3; \
|
|
type v4; \
|
|
} neon_##name;
|
|
#endif
|
|
|
|
NEON_TYPE4(s8, int8_t)
|
|
NEON_TYPE4(u8, uint8_t)
|
|
NEON_TYPE2(s16, int16_t)
|
|
NEON_TYPE2(u16, uint16_t)
|
|
NEON_TYPE1(s32, int32_t)
|
|
NEON_TYPE1(u32, uint32_t)
|
|
#undef NEON_TYPE4
|
|
#undef NEON_TYPE2
|
|
#undef NEON_TYPE1
|
|
|
|
/* Copy from a uint32_t to a vector structure type. */
|
|
#define NEON_UNPACK(vtype, dest, val) do { \
|
|
union { \
|
|
vtype v; \
|
|
uint32_t i; \
|
|
} conv_u; \
|
|
conv_u.i = (val); \
|
|
dest = conv_u.v; \
|
|
} while(0)
|
|
|
|
/* Copy from a vector structure type to a uint32_t. */
|
|
#define NEON_PACK(vtype, dest, val) do { \
|
|
union { \
|
|
vtype v; \
|
|
uint32_t i; \
|
|
} conv_u; \
|
|
conv_u.v = (val); \
|
|
dest = conv_u.i; \
|
|
} while(0)
|
|
|
|
#define NEON_DO1 \
|
|
NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
|
|
#define NEON_DO2 \
|
|
NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
|
|
NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
|
|
#define NEON_DO4 \
|
|
NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
|
|
NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
|
|
NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
|
|
NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
|
|
|
|
#define NEON_VOP_BODY(vtype, n) \
|
|
{ \
|
|
uint32_t res; \
|
|
vtype vsrc1; \
|
|
vtype vsrc2; \
|
|
vtype vdest; \
|
|
NEON_UNPACK(vtype, vsrc1, arg1); \
|
|
NEON_UNPACK(vtype, vsrc2, arg2); \
|
|
NEON_DO##n; \
|
|
NEON_PACK(vtype, res, vdest); \
|
|
return res; \
|
|
}
|
|
|
|
#define NEON_VOP(name, vtype, n) \
|
|
uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
|
|
NEON_VOP_BODY(vtype, n)
|
|
|
|
#define NEON_VOP_ENV(name, vtype, n) \
|
|
uint32_t HELPER(glue(neon_,name))(CPUARMState *env, uint32_t arg1, uint32_t arg2) \
|
|
NEON_VOP_BODY(vtype, n)
|
|
|
|
/* Pairwise operations. */
|
|
/* For 32-bit elements each segment only contains a single element, so
|
|
the elementwise and pairwise operations are the same. */
|
|
#define NEON_PDO2 \
|
|
NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
|
|
NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
|
|
#define NEON_PDO4 \
|
|
NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
|
|
NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
|
|
NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
|
|
NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
|
|
|
|
#define NEON_POP(name, vtype, n) \
|
|
uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
|
|
{ \
|
|
uint32_t res; \
|
|
vtype vsrc1; \
|
|
vtype vsrc2; \
|
|
vtype vdest; \
|
|
NEON_UNPACK(vtype, vsrc1, arg1); \
|
|
NEON_UNPACK(vtype, vsrc2, arg2); \
|
|
NEON_PDO##n; \
|
|
NEON_PACK(vtype, res, vdest); \
|
|
return res; \
|
|
}
|
|
|
|
/* Unary operators. */
|
|
#define NEON_VOP1(name, vtype, n) \
|
|
uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
|
|
{ \
|
|
vtype vsrc1; \
|
|
vtype vdest; \
|
|
NEON_UNPACK(vtype, vsrc1, arg); \
|
|
NEON_DO##n; \
|
|
NEON_PACK(vtype, arg, vdest); \
|
|
return arg; \
|
|
}
|
|
|
|
|
|
#define NEON_USAT(dest, src1, src2, type) do { \
|
|
uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
|
|
if (tmp != (type)tmp) { \
|
|
SET_QC(); \
|
|
dest = ~0; \
|
|
} else { \
|
|
dest = tmp; \
|
|
}} while(0)
|
|
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
|
|
NEON_VOP_ENV(qadd_u8, neon_u8, 4)
|
|
#undef NEON_FN
|
|
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
|
|
NEON_VOP_ENV(qadd_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
#undef NEON_USAT
|
|
|
|
uint32_t HELPER(neon_qadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t res = a + b;
|
|
if (res < a) {
|
|
SET_QC();
|
|
res = ~0;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t HELPER(neon_qadd_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
|
|
{
|
|
uint64_t res;
|
|
|
|
res = src1 + src2;
|
|
if (res < src1) {
|
|
SET_QC();
|
|
res = ~(uint64_t)0;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define NEON_SSAT(dest, src1, src2, type) do { \
|
|
int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
|
|
if (tmp != (type)tmp) { \
|
|
SET_QC(); \
|
|
if (src2 > 0) { \
|
|
tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
|
|
} else { \
|
|
tmp = 1 << (sizeof(type) * 8 - 1); \
|
|
} \
|
|
} \
|
|
dest = tmp; \
|
|
} while(0)
|
|
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
|
|
NEON_VOP_ENV(qadd_s8, neon_s8, 4)
|
|
#undef NEON_FN
|
|
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
|
|
NEON_VOP_ENV(qadd_s16, neon_s16, 2)
|
|
#undef NEON_FN
|
|
#undef NEON_SSAT
|
|
|
|
uint32_t HELPER(neon_qadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t res = a + b;
|
|
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
|
|
SET_QC();
|
|
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t HELPER(neon_qadd_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
|
|
{
|
|
uint64_t res;
|
|
|
|
res = src1 + src2;
|
|
if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
|
|
SET_QC();
|
|
res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Unsigned saturating accumulate of signed value
|
|
*
|
|
* Op1/Rn is treated as signed
|
|
* Op2/Rd is treated as unsigned
|
|
*
|
|
* Explicit casting is used to ensure the correct sign extension of
|
|
* inputs. The result is treated as a unsigned value and saturated as such.
|
|
*
|
|
* We use a macro for the 8/16 bit cases which expects signed integers of va,
|
|
* vb, and vr for interim calculation and an unsigned 32 bit result value r.
|
|
*/
|
|
|
|
#define USATACC(bits, shift) \
|
|
do { \
|
|
va = sextract32(a, shift, bits); \
|
|
vb = extract32(b, shift, bits); \
|
|
vr = va + vb; \
|
|
if (vr > UINT##bits##_MAX) { \
|
|
SET_QC(); \
|
|
vr = UINT##bits##_MAX; \
|
|
} else if (vr < 0) { \
|
|
SET_QC(); \
|
|
vr = 0; \
|
|
} \
|
|
r = deposit32(r, shift, bits, vr); \
|
|
} while (0)
|
|
|
|
uint32_t HELPER(neon_uqadd_s8)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
int16_t va, vb, vr;
|
|
uint32_t r = 0;
|
|
|
|
USATACC(8, 0);
|
|
USATACC(8, 8);
|
|
USATACC(8, 16);
|
|
USATACC(8, 24);
|
|
return r;
|
|
}
|
|
|
|
uint32_t HELPER(neon_uqadd_s16)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
int32_t va, vb, vr;
|
|
uint64_t r = 0;
|
|
|
|
USATACC(16, 0);
|
|
USATACC(16, 16);
|
|
return r;
|
|
}
|
|
|
|
#undef USATACC
|
|
|
|
uint32_t HELPER(neon_uqadd_s32)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
int64_t va = (int32_t)a;
|
|
int64_t vb = (uint32_t)b;
|
|
int64_t vr = va + vb;
|
|
if (vr > UINT32_MAX) {
|
|
SET_QC();
|
|
vr = UINT32_MAX;
|
|
} else if (vr < 0) {
|
|
SET_QC();
|
|
vr = 0;
|
|
}
|
|
return vr;
|
|
}
|
|
|
|
uint64_t HELPER(neon_uqadd_s64)(CPUARMState *env, uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t res;
|
|
res = a + b;
|
|
/* We only need to look at the pattern of SIGN bits to detect
|
|
* +ve/-ve saturation
|
|
*/
|
|
if (~a & b & ~res & SIGNBIT64) {
|
|
SET_QC();
|
|
res = UINT64_MAX;
|
|
} else if (a & ~b & res & SIGNBIT64) {
|
|
SET_QC();
|
|
res = 0;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
/* Signed saturating accumulate of unsigned value
|
|
*
|
|
* Op1/Rn is treated as unsigned
|
|
* Op2/Rd is treated as signed
|
|
*
|
|
* The result is treated as a signed value and saturated as such
|
|
*
|
|
* We use a macro for the 8/16 bit cases which expects signed integers of va,
|
|
* vb, and vr for interim calculation and an unsigned 32 bit result value r.
|
|
*/
|
|
|
|
#define SSATACC(bits, shift) \
|
|
do { \
|
|
va = extract32(a, shift, bits); \
|
|
vb = sextract32(b, shift, bits); \
|
|
vr = va + vb; \
|
|
if (vr > INT##bits##_MAX) { \
|
|
SET_QC(); \
|
|
vr = INT##bits##_MAX; \
|
|
} else if (vr < INT##bits##_MIN) { \
|
|
SET_QC(); \
|
|
vr = INT##bits##_MIN; \
|
|
} \
|
|
r = deposit32(r, shift, bits, vr); \
|
|
} while (0)
|
|
|
|
uint32_t HELPER(neon_sqadd_u8)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
int16_t va, vb, vr;
|
|
uint32_t r = 0;
|
|
|
|
SSATACC(8, 0);
|
|
SSATACC(8, 8);
|
|
SSATACC(8, 16);
|
|
SSATACC(8, 24);
|
|
return r;
|
|
}
|
|
|
|
uint32_t HELPER(neon_sqadd_u16)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
int32_t va, vb, vr;
|
|
uint32_t r = 0;
|
|
|
|
SSATACC(16, 0);
|
|
SSATACC(16, 16);
|
|
|
|
return r;
|
|
}
|
|
|
|
#undef SSATACC
|
|
|
|
uint32_t HELPER(neon_sqadd_u32)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
int64_t res;
|
|
int64_t op1 = (uint32_t)a;
|
|
int64_t op2 = (int32_t)b;
|
|
res = op1 + op2;
|
|
if (res > INT32_MAX) {
|
|
SET_QC();
|
|
res = INT32_MAX;
|
|
} else if (res < INT32_MIN) {
|
|
SET_QC();
|
|
res = INT32_MIN;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t HELPER(neon_sqadd_u64)(CPUARMState *env, uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t res;
|
|
res = a + b;
|
|
/* We only need to look at the pattern of SIGN bits to detect an overflow */
|
|
if (((a & res)
|
|
| (~b & res)
|
|
| (a & ~b)) & SIGNBIT64) {
|
|
SET_QC();
|
|
res = INT64_MAX;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
|
|
#define NEON_USAT(dest, src1, src2, type) do { \
|
|
uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
|
|
if (tmp != (type)tmp) { \
|
|
SET_QC(); \
|
|
dest = 0; \
|
|
} else { \
|
|
dest = tmp; \
|
|
}} while(0)
|
|
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
|
|
NEON_VOP_ENV(qsub_u8, neon_u8, 4)
|
|
#undef NEON_FN
|
|
#define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
|
|
NEON_VOP_ENV(qsub_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
#undef NEON_USAT
|
|
|
|
uint32_t HELPER(neon_qsub_u32)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t res = a - b;
|
|
if (res > a) {
|
|
SET_QC();
|
|
res = 0;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t HELPER(neon_qsub_u64)(CPUARMState *env, uint64_t src1, uint64_t src2)
|
|
{
|
|
uint64_t res;
|
|
|
|
if (src1 < src2) {
|
|
SET_QC();
|
|
res = 0;
|
|
} else {
|
|
res = src1 - src2;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define NEON_SSAT(dest, src1, src2, type) do { \
|
|
int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
|
|
if (tmp != (type)tmp) { \
|
|
SET_QC(); \
|
|
if (src2 < 0) { \
|
|
tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
|
|
} else { \
|
|
tmp = 1 << (sizeof(type) * 8 - 1); \
|
|
} \
|
|
} \
|
|
dest = tmp; \
|
|
} while(0)
|
|
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
|
|
NEON_VOP_ENV(qsub_s8, neon_s8, 4)
|
|
#undef NEON_FN
|
|
#define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
|
|
NEON_VOP_ENV(qsub_s16, neon_s16, 2)
|
|
#undef NEON_FN
|
|
#undef NEON_SSAT
|
|
|
|
uint32_t HELPER(neon_qsub_s32)(CPUARMState *env, uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t res = a - b;
|
|
if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
|
|
SET_QC();
|
|
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
|
|
}
|
|
return res;
|
|
}
|
|
|
|
uint64_t HELPER(neon_qsub_s64)(CPUARMState *env, uint64_t src1, uint64_t src2)
|
|
{
|
|
uint64_t res;
|
|
|
|
res = src1 - src2;
|
|
if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
|
|
SET_QC();
|
|
res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
|
|
}
|
|
return res;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
|
|
NEON_VOP(hadd_s8, neon_s8, 4)
|
|
NEON_VOP(hadd_u8, neon_u8, 4)
|
|
NEON_VOP(hadd_s16, neon_s16, 2)
|
|
NEON_VOP(hadd_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
|
|
{
|
|
int32_t dest;
|
|
|
|
dest = (src1 >> 1) + (src2 >> 1);
|
|
if (src1 & src2 & 1)
|
|
dest++;
|
|
return dest;
|
|
}
|
|
|
|
uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
|
|
{
|
|
uint32_t dest;
|
|
|
|
dest = (src1 >> 1) + (src2 >> 1);
|
|
if (src1 & src2 & 1)
|
|
dest++;
|
|
return dest;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
|
|
NEON_VOP(rhadd_s8, neon_s8, 4)
|
|
NEON_VOP(rhadd_u8, neon_u8, 4)
|
|
NEON_VOP(rhadd_s16, neon_s16, 2)
|
|
NEON_VOP(rhadd_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
|
|
{
|
|
int32_t dest;
|
|
|
|
dest = (src1 >> 1) + (src2 >> 1);
|
|
if ((src1 | src2) & 1)
|
|
dest++;
|
|
return dest;
|
|
}
|
|
|
|
uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
|
|
{
|
|
uint32_t dest;
|
|
|
|
dest = (src1 >> 1) + (src2 >> 1);
|
|
if ((src1 | src2) & 1)
|
|
dest++;
|
|
return dest;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
|
|
NEON_VOP(hsub_s8, neon_s8, 4)
|
|
NEON_VOP(hsub_u8, neon_u8, 4)
|
|
NEON_VOP(hsub_s16, neon_s16, 2)
|
|
NEON_VOP(hsub_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
|
|
{
|
|
int32_t dest;
|
|
|
|
dest = (src1 >> 1) - (src2 >> 1);
|
|
if ((~src1) & src2 & 1)
|
|
dest--;
|
|
return dest;
|
|
}
|
|
|
|
uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
|
|
{
|
|
uint32_t dest;
|
|
|
|
dest = (src1 >> 1) - (src2 >> 1);
|
|
if ((~src1) & src2 & 1)
|
|
dest--;
|
|
return dest;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
|
|
NEON_VOP(cgt_s8, neon_s8, 4)
|
|
NEON_VOP(cgt_u8, neon_u8, 4)
|
|
NEON_VOP(cgt_s16, neon_s16, 2)
|
|
NEON_VOP(cgt_u16, neon_u16, 2)
|
|
NEON_VOP(cgt_s32, neon_s32, 1)
|
|
NEON_VOP(cgt_u32, neon_u32, 1)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
|
|
NEON_VOP(cge_s8, neon_s8, 4)
|
|
NEON_VOP(cge_u8, neon_u8, 4)
|
|
NEON_VOP(cge_s16, neon_s16, 2)
|
|
NEON_VOP(cge_u16, neon_u16, 2)
|
|
NEON_VOP(cge_s32, neon_s32, 1)
|
|
NEON_VOP(cge_u32, neon_u32, 1)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
|
|
NEON_VOP(min_s8, neon_s8, 4)
|
|
NEON_VOP(min_u8, neon_u8, 4)
|
|
NEON_VOP(min_s16, neon_s16, 2)
|
|
NEON_VOP(min_u16, neon_u16, 2)
|
|
NEON_VOP(min_s32, neon_s32, 1)
|
|
NEON_VOP(min_u32, neon_u32, 1)
|
|
NEON_POP(pmin_s8, neon_s8, 4)
|
|
NEON_POP(pmin_u8, neon_u8, 4)
|
|
NEON_POP(pmin_s16, neon_s16, 2)
|
|
NEON_POP(pmin_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
|
|
NEON_VOP(max_s8, neon_s8, 4)
|
|
NEON_VOP(max_u8, neon_u8, 4)
|
|
NEON_VOP(max_s16, neon_s16, 2)
|
|
NEON_VOP(max_u16, neon_u16, 2)
|
|
NEON_VOP(max_s32, neon_s32, 1)
|
|
NEON_VOP(max_u32, neon_u32, 1)
|
|
NEON_POP(pmax_s8, neon_s8, 4)
|
|
NEON_POP(pmax_u8, neon_u8, 4)
|
|
NEON_POP(pmax_s16, neon_s16, 2)
|
|
NEON_POP(pmax_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src1, src2) \
|
|
dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
|
|
NEON_VOP(abd_s8, neon_s8, 4)
|
|
NEON_VOP(abd_u8, neon_u8, 4)
|
|
NEON_VOP(abd_s16, neon_s16, 2)
|
|
NEON_VOP(abd_u16, neon_u16, 2)
|
|
NEON_VOP(abd_s32, neon_s32, 1)
|
|
NEON_VOP(abd_u32, neon_u32, 1)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src1, src2) do { \
|
|
int8_t tmp; \
|
|
tmp = (int8_t)src2; \
|
|
if (tmp >= (ssize_t)sizeof(src1) * 8 || \
|
|
tmp <= -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = 0; \
|
|
} else if (tmp < 0) { \
|
|
dest = src1 >> -tmp; \
|
|
} else { \
|
|
dest = src1 << tmp; \
|
|
}} while (0)
|
|
NEON_VOP(shl_u8, neon_u8, 4)
|
|
NEON_VOP(shl_u16, neon_u16, 2)
|
|
NEON_VOP(shl_u32, neon_u32, 1)
|
|
#undef NEON_FN
|
|
|
|
uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
|
|
{
|
|
int8_t shift = (int8_t)shiftop;
|
|
if (shift >= 64 || shift <= -64) {
|
|
val = 0;
|
|
} else if (shift < 0) {
|
|
val >>= -shift;
|
|
} else {
|
|
val <<= shift;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) do { \
|
|
int8_t tmp; \
|
|
tmp = (int8_t)src2; \
|
|
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
|
|
dest = 0; \
|
|
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = src1 >> (sizeof(src1) * 8 - 1); \
|
|
} else if (tmp < 0) { \
|
|
dest = src1 >> -tmp; \
|
|
} else { \
|
|
dest = src1 << tmp; \
|
|
}} while (0)
|
|
NEON_VOP(shl_s8, neon_s8, 4)
|
|
NEON_VOP(shl_s16, neon_s16, 2)
|
|
NEON_VOP(shl_s32, neon_s32, 1)
|
|
#undef NEON_FN
|
|
|
|
uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
|
|
{
|
|
int8_t shift = (int8_t)shiftop;
|
|
int64_t val = valop;
|
|
if (shift >= 64) {
|
|
val = 0;
|
|
} else if (shift <= -64) {
|
|
val >>= 63;
|
|
} else if (shift < 0) {
|
|
val >>= -shift;
|
|
} else {
|
|
val <<= shift;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) do { \
|
|
int8_t tmp; \
|
|
tmp = (int8_t)src2; \
|
|
if ((tmp >= (ssize_t)sizeof(src1) * 8) \
|
|
|| (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
|
|
dest = 0; \
|
|
} else if (tmp < 0) { \
|
|
dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
|
|
} else { \
|
|
dest = src1 << tmp; \
|
|
}} while (0)
|
|
NEON_VOP(rshl_s8, neon_s8, 4)
|
|
NEON_VOP(rshl_s16, neon_s16, 2)
|
|
#undef NEON_FN
|
|
|
|
/* The addition of the rounding constant may overflow, so we use an
|
|
* intermediate 64 bit accumulator. */
|
|
uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
|
|
{
|
|
int32_t dest;
|
|
int32_t val = (int32_t)valop;
|
|
int8_t shift = (int8_t)shiftop;
|
|
if ((shift >= 32) || (shift <= -32)) {
|
|
dest = 0;
|
|
} else if (shift < 0) {
|
|
int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
|
|
dest = big_dest >> -shift;
|
|
} else {
|
|
dest = val << shift;
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
/* Handling addition overflow with 64 bit input values is more
|
|
* tricky than with 32 bit values. */
|
|
uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
|
|
{
|
|
int8_t shift = (int8_t)shiftop;
|
|
int64_t val = valop;
|
|
if ((shift >= 64) || (shift <= -64)) {
|
|
val = 0;
|
|
} else if (shift < 0) {
|
|
val >>= (-shift - 1);
|
|
if (val == INT64_MAX) {
|
|
/* In this case, it means that the rounding constant is 1,
|
|
* and the addition would overflow. Return the actual
|
|
* result directly. */
|
|
val = 0x4000000000000000LL;
|
|
} else {
|
|
val++;
|
|
val >>= 1;
|
|
}
|
|
} else {
|
|
val <<= shift;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) do { \
|
|
int8_t tmp; \
|
|
tmp = (int8_t)src2; \
|
|
if (tmp >= (ssize_t)sizeof(src1) * 8 || \
|
|
tmp < -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = 0; \
|
|
} else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = src1 >> (-tmp - 1); \
|
|
} else if (tmp < 0) { \
|
|
dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
|
|
} else { \
|
|
dest = src1 << tmp; \
|
|
}} while (0)
|
|
NEON_VOP(rshl_u8, neon_u8, 4)
|
|
NEON_VOP(rshl_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
/* The addition of the rounding constant may overflow, so we use an
|
|
* intermediate 64 bit accumulator. */
|
|
uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
|
|
{
|
|
uint32_t dest;
|
|
int8_t shift = (int8_t)shiftop;
|
|
if (shift >= 32 || shift < -32) {
|
|
dest = 0;
|
|
} else if (shift == -32) {
|
|
dest = val >> 31;
|
|
} else if (shift < 0) {
|
|
uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
|
|
dest = big_dest >> -shift;
|
|
} else {
|
|
dest = val << shift;
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
/* Handling addition overflow with 64 bit input values is more
|
|
* tricky than with 32 bit values. */
|
|
uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
|
|
{
|
|
int8_t shift = (uint8_t)shiftop;
|
|
if (shift >= 64 || shift < -64) {
|
|
val = 0;
|
|
} else if (shift == -64) {
|
|
/* Rounding a 1-bit result just preserves that bit. */
|
|
val >>= 63;
|
|
} else if (shift < 0) {
|
|
val >>= (-shift - 1);
|
|
if (val == UINT64_MAX) {
|
|
/* In this case, it means that the rounding constant is 1,
|
|
* and the addition would overflow. Return the actual
|
|
* result directly. */
|
|
val = 0x8000000000000000ULL;
|
|
} else {
|
|
val++;
|
|
val >>= 1;
|
|
}
|
|
} else {
|
|
val <<= shift;
|
|
}
|
|
return val;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) do { \
|
|
int8_t tmp; \
|
|
tmp = (int8_t)src2; \
|
|
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
|
|
if (src1) { \
|
|
SET_QC(); \
|
|
dest = ~0; \
|
|
} else { \
|
|
dest = 0; \
|
|
} \
|
|
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = 0; \
|
|
} else if (tmp < 0) { \
|
|
dest = src1 >> -tmp; \
|
|
} else { \
|
|
dest = src1 << tmp; \
|
|
if ((dest >> tmp) != src1) { \
|
|
SET_QC(); \
|
|
dest = ~0; \
|
|
} \
|
|
}} while (0)
|
|
NEON_VOP_ENV(qshl_u8, neon_u8, 4)
|
|
NEON_VOP_ENV(qshl_u16, neon_u16, 2)
|
|
NEON_VOP_ENV(qshl_u32, neon_u32, 1)
|
|
#undef NEON_FN
|
|
|
|
uint64_t HELPER(neon_qshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
|
|
{
|
|
int8_t shift = (int8_t)shiftop;
|
|
if (shift >= 64) {
|
|
if (val) {
|
|
val = ~(uint64_t)0;
|
|
SET_QC();
|
|
}
|
|
} else if (shift <= -64) {
|
|
val = 0;
|
|
} else if (shift < 0) {
|
|
val >>= -shift;
|
|
} else {
|
|
uint64_t tmp = val;
|
|
val <<= shift;
|
|
if ((val >> shift) != tmp) {
|
|
SET_QC();
|
|
val = ~(uint64_t)0;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) do { \
|
|
int8_t tmp; \
|
|
tmp = (int8_t)src2; \
|
|
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
|
|
if (src1) { \
|
|
SET_QC(); \
|
|
dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
|
|
if (src1 > 0) { \
|
|
dest--; \
|
|
} \
|
|
} else { \
|
|
dest = src1; \
|
|
} \
|
|
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = src1 >> 31; \
|
|
} else if (tmp < 0) { \
|
|
dest = src1 >> -tmp; \
|
|
} else { \
|
|
dest = src1 << tmp; \
|
|
if ((dest >> tmp) != src1) { \
|
|
SET_QC(); \
|
|
dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
|
|
if (src1 > 0) { \
|
|
dest--; \
|
|
} \
|
|
} \
|
|
}} while (0)
|
|
NEON_VOP_ENV(qshl_s8, neon_s8, 4)
|
|
NEON_VOP_ENV(qshl_s16, neon_s16, 2)
|
|
NEON_VOP_ENV(qshl_s32, neon_s32, 1)
|
|
#undef NEON_FN
|
|
|
|
uint64_t HELPER(neon_qshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
|
|
{
|
|
int8_t shift = (uint8_t)shiftop;
|
|
int64_t val = valop;
|
|
if (shift >= 64) {
|
|
if (val) {
|
|
SET_QC();
|
|
val = (val >> 63) ^ ~SIGNBIT64;
|
|
}
|
|
} else if (shift <= -64) {
|
|
val >>= 63;
|
|
} else if (shift < 0) {
|
|
val >>= -shift;
|
|
} else {
|
|
int64_t tmp = val;
|
|
val <<= shift;
|
|
if ((val >> shift) != tmp) {
|
|
SET_QC();
|
|
val = (tmp >> 63) ^ ~SIGNBIT64;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) do { \
|
|
if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
|
|
SET_QC(); \
|
|
dest = 0; \
|
|
} else { \
|
|
int8_t tmp; \
|
|
tmp = (int8_t)src2; \
|
|
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
|
|
if (src1) { \
|
|
SET_QC(); \
|
|
dest = ~0; \
|
|
} else { \
|
|
dest = 0; \
|
|
} \
|
|
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = 0; \
|
|
} else if (tmp < 0) { \
|
|
dest = src1 >> -tmp; \
|
|
} else { \
|
|
dest = src1 << tmp; \
|
|
if ((dest >> tmp) != src1) { \
|
|
SET_QC(); \
|
|
dest = ~0; \
|
|
} \
|
|
} \
|
|
}} while (0)
|
|
NEON_VOP_ENV(qshlu_s8, neon_u8, 4)
|
|
NEON_VOP_ENV(qshlu_s16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
uint32_t HELPER(neon_qshlu_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
|
|
{
|
|
if ((int32_t)valop < 0) {
|
|
SET_QC();
|
|
return 0;
|
|
}
|
|
return helper_neon_qshl_u32(env, valop, shiftop);
|
|
}
|
|
|
|
uint64_t HELPER(neon_qshlu_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
|
|
{
|
|
if ((int64_t)valop < 0) {
|
|
SET_QC();
|
|
return 0;
|
|
}
|
|
return helper_neon_qshl_u64(env, valop, shiftop);
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) do { \
|
|
int8_t tmp; \
|
|
tmp = (int8_t)src2; \
|
|
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
|
|
if (src1) { \
|
|
SET_QC(); \
|
|
dest = ~0; \
|
|
} else { \
|
|
dest = 0; \
|
|
} \
|
|
} else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = 0; \
|
|
} else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = src1 >> (sizeof(src1) * 8 - 1); \
|
|
} else if (tmp < 0) { \
|
|
dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
|
|
} else { \
|
|
dest = src1 << tmp; \
|
|
if ((dest >> tmp) != src1) { \
|
|
SET_QC(); \
|
|
dest = ~0; \
|
|
} \
|
|
}} while (0)
|
|
NEON_VOP_ENV(qrshl_u8, neon_u8, 4)
|
|
NEON_VOP_ENV(qrshl_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
/* The addition of the rounding constant may overflow, so we use an
|
|
* intermediate 64 bit accumulator. */
|
|
uint32_t HELPER(neon_qrshl_u32)(CPUARMState *env, uint32_t val, uint32_t shiftop)
|
|
{
|
|
uint32_t dest;
|
|
int8_t shift = (int8_t)shiftop;
|
|
if (shift >= 32) {
|
|
if (val) {
|
|
SET_QC();
|
|
dest = ~0;
|
|
} else {
|
|
dest = 0;
|
|
}
|
|
} else if (shift < -32) {
|
|
dest = 0;
|
|
} else if (shift == -32) {
|
|
dest = val >> 31;
|
|
} else if (shift < 0) {
|
|
uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
|
|
dest = big_dest >> -shift;
|
|
} else {
|
|
dest = val << shift;
|
|
if ((dest >> shift) != val) {
|
|
SET_QC();
|
|
dest = ~0;
|
|
}
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
/* Handling addition overflow with 64 bit input values is more
|
|
* tricky than with 32 bit values. */
|
|
uint64_t HELPER(neon_qrshl_u64)(CPUARMState *env, uint64_t val, uint64_t shiftop)
|
|
{
|
|
int8_t shift = (int8_t)shiftop;
|
|
if (shift >= 64) {
|
|
if (val) {
|
|
SET_QC();
|
|
val = ~0;
|
|
}
|
|
} else if (shift < -64) {
|
|
val = 0;
|
|
} else if (shift == -64) {
|
|
val >>= 63;
|
|
} else if (shift < 0) {
|
|
val >>= (-shift - 1);
|
|
if (val == UINT64_MAX) {
|
|
/* In this case, it means that the rounding constant is 1,
|
|
* and the addition would overflow. Return the actual
|
|
* result directly. */
|
|
val = 0x8000000000000000ULL;
|
|
} else {
|
|
val++;
|
|
val >>= 1;
|
|
}
|
|
} else { \
|
|
uint64_t tmp = val;
|
|
val <<= shift;
|
|
if ((val >> shift) != tmp) {
|
|
SET_QC();
|
|
val = ~0;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) do { \
|
|
int8_t tmp; \
|
|
tmp = (int8_t)src2; \
|
|
if (tmp >= (ssize_t)sizeof(src1) * 8) { \
|
|
if (src1) { \
|
|
SET_QC(); \
|
|
dest = (typeof(dest))(1 << (sizeof(src1) * 8 - 1)); \
|
|
if (src1 > 0) { \
|
|
dest--; \
|
|
} \
|
|
} else { \
|
|
dest = 0; \
|
|
} \
|
|
} else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
|
|
dest = 0; \
|
|
} else if (tmp < 0) { \
|
|
dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
|
|
} else { \
|
|
dest = src1 << tmp; \
|
|
if ((dest >> tmp) != src1) { \
|
|
SET_QC(); \
|
|
dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
|
|
if (src1 > 0) { \
|
|
dest--; \
|
|
} \
|
|
} \
|
|
}} while (0)
|
|
NEON_VOP_ENV(qrshl_s8, neon_s8, 4)
|
|
NEON_VOP_ENV(qrshl_s16, neon_s16, 2)
|
|
#undef NEON_FN
|
|
|
|
/* The addition of the rounding constant may overflow, so we use an
|
|
* intermediate 64 bit accumulator. */
|
|
uint32_t HELPER(neon_qrshl_s32)(CPUARMState *env, uint32_t valop, uint32_t shiftop)
|
|
{
|
|
int32_t dest;
|
|
int32_t val = (int32_t)valop;
|
|
int8_t shift = (int8_t)shiftop;
|
|
if (shift >= 32) {
|
|
if (val) {
|
|
SET_QC();
|
|
dest = (val >> 31) ^ ~SIGNBIT;
|
|
} else {
|
|
dest = 0;
|
|
}
|
|
} else if (shift <= -32) {
|
|
dest = 0;
|
|
} else if (shift < 0) {
|
|
int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
|
|
dest = big_dest >> -shift;
|
|
} else {
|
|
dest = val << shift;
|
|
if ((dest >> shift) != val) {
|
|
SET_QC();
|
|
dest = (val >> 31) ^ ~SIGNBIT;
|
|
}
|
|
}
|
|
return dest;
|
|
}
|
|
|
|
/* Handling addition overflow with 64 bit input values is more
|
|
* tricky than with 32 bit values. */
|
|
uint64_t HELPER(neon_qrshl_s64)(CPUARMState *env, uint64_t valop, uint64_t shiftop)
|
|
{
|
|
int8_t shift = (uint8_t)shiftop;
|
|
int64_t val = valop;
|
|
|
|
if (shift >= 64) {
|
|
if (val) {
|
|
SET_QC();
|
|
val = (val >> 63) ^ ~SIGNBIT64;
|
|
}
|
|
} else if (shift <= -64) {
|
|
val = 0;
|
|
} else if (shift < 0) {
|
|
val >>= (-shift - 1);
|
|
if (val == INT64_MAX) {
|
|
/* In this case, it means that the rounding constant is 1,
|
|
* and the addition would overflow. Return the actual
|
|
* result directly. */
|
|
val = 0x4000000000000000ULL;
|
|
} else {
|
|
val++;
|
|
val >>= 1;
|
|
}
|
|
} else {
|
|
int64_t tmp = val;
|
|
val <<= shift;
|
|
if ((val >> shift) != tmp) {
|
|
SET_QC();
|
|
val = (tmp >> 63) ^ ~SIGNBIT64;
|
|
}
|
|
}
|
|
return val;
|
|
}
|
|
|
|
uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t mask;
|
|
mask = (a ^ b) & 0x80808080u;
|
|
a &= ~0x80808080u;
|
|
b &= ~0x80808080u;
|
|
return (a + b) ^ mask;
|
|
}
|
|
|
|
uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
|
|
{
|
|
uint32_t mask;
|
|
mask = (a ^ b) & 0x80008000u;
|
|
a &= ~0x80008000u;
|
|
b &= ~0x80008000u;
|
|
return (a + b) ^ mask;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = src1 + src2
|
|
NEON_POP(padd_u8, neon_u8, 4)
|
|
NEON_POP(padd_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = src1 - src2
|
|
NEON_VOP(sub_u8, neon_u8, 4)
|
|
NEON_VOP(sub_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = src1 * src2
|
|
NEON_VOP(mul_u8, neon_u8, 4)
|
|
NEON_VOP(mul_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
/* Polynomial multiplication is like integer multiplication except the
|
|
partial products are XORed, not added. */
|
|
uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
|
|
{
|
|
uint32_t mask;
|
|
uint32_t result;
|
|
result = 0;
|
|
while (op1) {
|
|
mask = 0;
|
|
if (op1 & 1)
|
|
mask |= 0xff;
|
|
if (op1 & (1 << 8))
|
|
mask |= (0xff << 8);
|
|
if (op1 & (1 << 16))
|
|
mask |= (0xff << 16);
|
|
if (op1 & (1 << 24))
|
|
mask |= (0xff << 24);
|
|
result ^= op2 & mask;
|
|
op1 = (op1 >> 1) & 0x7f7f7f7f;
|
|
op2 = (op2 << 1) & 0xfefefefe;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
|
|
{
|
|
uint64_t result = 0;
|
|
uint64_t mask;
|
|
uint64_t op2ex = op2;
|
|
op2ex = (op2ex & 0xff) |
|
|
((op2ex & 0xff00) << 8) |
|
|
((op2ex & 0xff0000) << 16) |
|
|
((op2ex & 0xff000000) << 24);
|
|
while (op1) {
|
|
mask = 0;
|
|
if (op1 & 1) {
|
|
mask |= 0xffff;
|
|
}
|
|
if (op1 & (1 << 8)) {
|
|
mask |= (0xffffU << 16);
|
|
}
|
|
if (op1 & (1 << 16)) {
|
|
mask |= (0xffffULL << 32);
|
|
}
|
|
if (op1 & (1 << 24)) {
|
|
mask |= (0xffffULL << 48);
|
|
}
|
|
result ^= op2ex & mask;
|
|
op1 = (op1 >> 1) & 0x7f7f7f7f;
|
|
op2ex <<= 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
|
|
NEON_VOP(tst_u8, neon_u8, 4)
|
|
NEON_VOP(tst_u16, neon_u16, 2)
|
|
NEON_VOP(tst_u32, neon_u32, 1)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
|
|
NEON_VOP(ceq_u8, neon_u8, 4)
|
|
NEON_VOP(ceq_u16, neon_u16, 2)
|
|
NEON_VOP(ceq_u32, neon_u32, 1)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
|
|
NEON_VOP1(abs_s8, neon_s8, 4)
|
|
NEON_VOP1(abs_s16, neon_s16, 2)
|
|
#undef NEON_FN
|
|
|
|
/* Count Leading Sign/Zero Bits. */
|
|
static inline int do_clz8(uint8_t x)
|
|
{
|
|
int n;
|
|
for (n = 8; x; n--)
|
|
x >>= 1;
|
|
return n;
|
|
}
|
|
|
|
static inline int do_clz16(uint16_t x)
|
|
{
|
|
int n;
|
|
for (n = 16; x; n--)
|
|
x >>= 1;
|
|
return n;
|
|
}
|
|
|
|
#define NEON_FN(dest, src, dummy) dest = do_clz8(src)
|
|
NEON_VOP1(clz_u8, neon_u8, 4)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src, dummy) dest = do_clz16(src)
|
|
NEON_VOP1(clz_u16, neon_u16, 2)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
|
|
NEON_VOP1(cls_s8, neon_s8, 4)
|
|
#undef NEON_FN
|
|
|
|
#define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
|
|
NEON_VOP1(cls_s16, neon_s16, 2)
|
|
#undef NEON_FN
|
|
|
|
uint32_t HELPER(neon_cls_s32)(uint32_t x)
|
|
{
|
|
int count;
|
|
if ((int32_t)x < 0)
|
|
x = ~x;
|
|
for (count = 32; x; count--)
|
|
x = x >> 1;
|
|
return count - 1;
|
|
}
|
|
|
|
/* Bit count. */
|
|
uint32_t HELPER(neon_cnt_u8)(uint32_t x)
|
|
{
|
|
x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
|
|
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
|
|
x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
|
|
return x;
|
|
}
|
|
|
|
/* Reverse bits in each 8 bit word */
|
|
uint32_t HELPER(neon_rbit_u8)(uint32_t x)
|
|
{
|
|
x = ((x & 0xf0f0f0f0) >> 4)
|
|
| ((x & 0x0f0f0f0f) << 4);
|
|
x = ((x & 0x88888888) >> 3)
|
|
| ((x & 0x44444444) >> 1)
|
|
| ((x & 0x22222222) << 1)
|
|
| ((x & 0x11111111) << 3);
|
|
return x;
|
|
}
|
|
|
|
#define NEON_QDMULH16(dest, src1, src2, round) do { \
|
|
uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
|
|
if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
|
|
SET_QC(); \
|
|
tmp = (tmp >> 31) ^ ~SIGNBIT; \
|
|
} else { \
|
|
tmp <<= 1; \
|
|
} \
|
|
if (round) { \
|
|
int32_t old = tmp; \
|
|
tmp += 1 << 15; \
|
|
if ((int32_t)tmp < old) { \
|
|
SET_QC(); \
|
|
tmp = SIGNBIT - 1; \
|
|
} \
|
|
} \
|
|
dest = tmp >> 16; \
|
|
} while(0)
|
|
#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
|
|
NEON_VOP_ENV(qdmulh_s16, neon_s16, 2)
|
|
#undef NEON_FN
|
|
#define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
|
|
NEON_VOP_ENV(qrdmulh_s16, neon_s16, 2)
|
|
#undef NEON_FN
|
|
#undef NEON_QDMULH16
|
|
|
|
#define NEON_QDMULH32(dest, src1, src2, round) do { \
|
|
uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
|
|
if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
|
|
SET_QC(); \
|
|
tmp = (tmp >> 63) ^ ~SIGNBIT64; \
|
|
} else { \
|
|
tmp <<= 1; \
|
|
} \
|
|
if (round) { \
|
|
int64_t old = tmp; \
|
|
tmp += (int64_t)1 << 31; \
|
|
if ((int64_t)tmp < old) { \
|
|
SET_QC(); \
|
|
tmp = SIGNBIT64 - 1; \
|
|
} \
|
|
} \
|
|
dest = tmp >> 32; \
|
|
} while(0)
|
|
#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
|
|
NEON_VOP_ENV(qdmulh_s32, neon_s32, 1)
|
|
#undef NEON_FN
|
|
#define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
|
|
NEON_VOP_ENV(qrdmulh_s32, neon_s32, 1)
|
|
#undef NEON_FN
|
|
#undef NEON_QDMULH32
|
|
|
|
uint32_t HELPER(neon_narrow_u8)(uint64_t x)
|
|
{
|
|
return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
|
|
| ((x >> 24) & 0xff000000u);
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_u16)(uint64_t x)
|
|
{
|
|
return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
|
|
{
|
|
return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
|
|
| ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
|
|
{
|
|
return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
|
|
{
|
|
x &= 0xff80ff80ff80ff80ull;
|
|
x += 0x0080008000800080ull;
|
|
return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
|
|
| ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
|
|
{
|
|
x &= 0xffff8000ffff8000ull;
|
|
x += 0x0000800000008000ull;
|
|
return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
|
|
}
|
|
|
|
uint32_t HELPER(neon_unarrow_sat8)(CPUARMState *env, uint64_t x)
|
|
{
|
|
uint16_t s;
|
|
uint8_t d;
|
|
uint32_t res = 0;
|
|
#define SAT8(n) \
|
|
s = x >> n; \
|
|
if (s & 0x8000) { \
|
|
SET_QC(); \
|
|
} else { \
|
|
if (s > 0xff) { \
|
|
d = 0xff; \
|
|
SET_QC(); \
|
|
} else { \
|
|
d = s; \
|
|
} \
|
|
res |= (uint32_t)d << (n / 2); \
|
|
}
|
|
|
|
SAT8(0);
|
|
SAT8(16);
|
|
SAT8(32);
|
|
SAT8(48);
|
|
#undef SAT8
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_sat_u8)(CPUARMState *env, uint64_t x)
|
|
{
|
|
uint16_t s;
|
|
uint8_t d;
|
|
uint32_t res = 0;
|
|
#define SAT8(n) \
|
|
s = x >> n; \
|
|
if (s > 0xff) { \
|
|
d = 0xff; \
|
|
SET_QC(); \
|
|
} else { \
|
|
d = s; \
|
|
} \
|
|
res |= (uint32_t)d << (n / 2);
|
|
|
|
SAT8(0);
|
|
SAT8(16);
|
|
SAT8(32);
|
|
SAT8(48);
|
|
#undef SAT8
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_sat_s8)(CPUARMState *env, uint64_t x)
|
|
{
|
|
int16_t s;
|
|
uint8_t d;
|
|
uint32_t res = 0;
|
|
#define SAT8(n) \
|
|
s = x >> n; \
|
|
if (s != (int8_t)s) { \
|
|
d = (s >> 15) ^ 0x7f; \
|
|
SET_QC(); \
|
|
} else { \
|
|
d = s; \
|
|
} \
|
|
res |= (uint32_t)d << (n / 2);
|
|
|
|
SAT8(0);
|
|
SAT8(16);
|
|
SAT8(32);
|
|
SAT8(48);
|
|
#undef SAT8
|
|
return res;
|
|
}
|
|
|
|
uint32_t HELPER(neon_unarrow_sat16)(CPUARMState *env, uint64_t x)
|
|
{
|
|
uint32_t high;
|
|
uint32_t low;
|
|
low = x;
|
|
if (low & 0x80000000) {
|
|
low = 0;
|
|
SET_QC();
|
|
} else if (low > 0xffff) {
|
|
low = 0xffff;
|
|
SET_QC();
|
|
}
|
|
high = x >> 32;
|
|
if (high & 0x80000000) {
|
|
high = 0;
|
|
SET_QC();
|
|
} else if (high > 0xffff) {
|
|
high = 0xffff;
|
|
SET_QC();
|
|
}
|
|
return low | (high << 16);
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_sat_u16)(CPUARMState *env, uint64_t x)
|
|
{
|
|
uint32_t high;
|
|
uint32_t low;
|
|
low = x;
|
|
if (low > 0xffff) {
|
|
low = 0xffff;
|
|
SET_QC();
|
|
}
|
|
high = x >> 32;
|
|
if (high > 0xffff) {
|
|
high = 0xffff;
|
|
SET_QC();
|
|
}
|
|
return low | (high << 16);
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_sat_s16)(CPUARMState *env, uint64_t x)
|
|
{
|
|
int32_t low;
|
|
int32_t high;
|
|
low = x;
|
|
if (low != (int16_t)low) {
|
|
low = (low >> 31) ^ 0x7fff;
|
|
SET_QC();
|
|
}
|
|
high = x >> 32;
|
|
if (high != (int16_t)high) {
|
|
high = (high >> 31) ^ 0x7fff;
|
|
SET_QC();
|
|
}
|
|
return (uint16_t)low | (high << 16);
|
|
}
|
|
|
|
uint32_t HELPER(neon_unarrow_sat32)(CPUARMState *env, uint64_t x)
|
|
{
|
|
if (x & 0x8000000000000000ull) {
|
|
SET_QC();
|
|
return 0;
|
|
}
|
|
if (x > 0xffffffffu) {
|
|
SET_QC();
|
|
return 0xffffffffu;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_sat_u32)(CPUARMState *env, uint64_t x)
|
|
{
|
|
if (x > 0xffffffffu) {
|
|
SET_QC();
|
|
return 0xffffffffu;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint32_t HELPER(neon_narrow_sat_s32)(CPUARMState *env, uint64_t x)
|
|
{
|
|
if ((int64_t)x != (int32_t)x) {
|
|
SET_QC();
|
|
return ((int64_t)x >> 63) ^ 0x7fffffff;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint64_t HELPER(neon_widen_u8)(uint32_t x)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t ret;
|
|
ret = (uint8_t)x;
|
|
tmp = (uint8_t)(x >> 8);
|
|
ret |= tmp << 16;
|
|
tmp = (uint8_t)(x >> 16);
|
|
ret |= tmp << 32;
|
|
tmp = (uint8_t)(x >> 24);
|
|
ret |= tmp << 48;
|
|
return ret;
|
|
}
|
|
|
|
uint64_t HELPER(neon_widen_s8)(uint32_t x)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t ret;
|
|
ret = (uint16_t)(int8_t)x;
|
|
tmp = (uint16_t)(int8_t)(x >> 8);
|
|
ret |= tmp << 16;
|
|
tmp = (uint16_t)(int8_t)(x >> 16);
|
|
ret |= tmp << 32;
|
|
tmp = (uint16_t)(int8_t)(x >> 24);
|
|
ret |= tmp << 48;
|
|
return ret;
|
|
}
|
|
|
|
uint64_t HELPER(neon_widen_u16)(uint32_t x)
|
|
{
|
|
uint64_t high = (uint16_t)(x >> 16);
|
|
return ((uint16_t)x) | (high << 32);
|
|
}
|
|
|
|
uint64_t HELPER(neon_widen_s16)(uint32_t x)
|
|
{
|
|
uint64_t high = (int16_t)(x >> 16);
|
|
return ((uint32_t)(int16_t)x) | (high << 32);
|
|
}
|
|
|
|
uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t mask;
|
|
mask = (a ^ b) & 0x8000800080008000ull;
|
|
a &= ~0x8000800080008000ull;
|
|
b &= ~0x8000800080008000ull;
|
|
return (a + b) ^ mask;
|
|
}
|
|
|
|
uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t mask;
|
|
mask = (a ^ b) & 0x8000000080000000ull;
|
|
a &= ~0x8000000080000000ull;
|
|
b &= ~0x8000000080000000ull;
|
|
return (a + b) ^ mask;
|
|
}
|
|
|
|
uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t tmp2;
|
|
|
|
tmp = a & 0x0000ffff0000ffffull;
|
|
tmp += (a >> 16) & 0x0000ffff0000ffffull;
|
|
tmp2 = b & 0xffff0000ffff0000ull;
|
|
tmp2 += (b << 16) & 0xffff0000ffff0000ull;
|
|
return ( tmp & 0xffff)
|
|
| ((tmp >> 16) & 0xffff0000ull)
|
|
| ((tmp2 << 16) & 0xffff00000000ull)
|
|
| ( tmp2 & 0xffff000000000000ull);
|
|
}
|
|
|
|
uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
|
|
{
|
|
uint32_t low = a + (a >> 32);
|
|
uint32_t high = b + (b >> 32);
|
|
return low + ((uint64_t)high << 32);
|
|
}
|
|
|
|
uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t mask;
|
|
mask = (a ^ ~b) & 0x8000800080008000ull;
|
|
a |= 0x8000800080008000ull;
|
|
b &= ~0x8000800080008000ull;
|
|
return (a - b) ^ mask;
|
|
}
|
|
|
|
uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t mask;
|
|
mask = (a ^ ~b) & 0x8000000080000000ull;
|
|
a |= 0x8000000080000000ull;
|
|
b &= ~0x8000000080000000ull;
|
|
return (a - b) ^ mask;
|
|
}
|
|
|
|
uint64_t HELPER(neon_addl_saturate_s32)(CPUARMState *env, uint64_t a, uint64_t b)
|
|
{
|
|
uint32_t x, y;
|
|
uint32_t low, high;
|
|
|
|
x = a;
|
|
y = b;
|
|
low = x + y;
|
|
if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
|
|
SET_QC();
|
|
low = ((int32_t)x >> 31) ^ ~SIGNBIT;
|
|
}
|
|
x = a >> 32;
|
|
y = b >> 32;
|
|
high = x + y;
|
|
if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
|
|
SET_QC();
|
|
high = ((int32_t)x >> 31) ^ ~SIGNBIT;
|
|
}
|
|
return low | ((uint64_t)high << 32);
|
|
}
|
|
|
|
uint64_t HELPER(neon_addl_saturate_s64)(CPUARMState *env, uint64_t a, uint64_t b)
|
|
{
|
|
uint64_t result;
|
|
|
|
result = a + b;
|
|
if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
|
|
SET_QC();
|
|
result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/* We have to do the arithmetic in a larger type than
|
|
* the input type, because for example with a signed 32 bit
|
|
* op the absolute difference can overflow a signed 32 bit value.
|
|
*/
|
|
#define DO_ABD(dest, x, y, intype, arithtype) do { \
|
|
arithtype tmp_x = (intype)(x); \
|
|
arithtype tmp_y = (intype)(y); \
|
|
dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
|
|
} while(0)
|
|
|
|
uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t result;
|
|
DO_ABD(result, a, b, uint8_t, uint32_t);
|
|
DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
|
|
result |= tmp << 16;
|
|
DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
|
|
result |= tmp << 32;
|
|
DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
|
|
result |= tmp << 48;
|
|
return result;
|
|
}
|
|
|
|
uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t result;
|
|
DO_ABD(result, a, b, int8_t, int32_t);
|
|
DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
|
|
result |= tmp << 16;
|
|
DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
|
|
result |= tmp << 32;
|
|
DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
|
|
result |= tmp << 48;
|
|
return result;
|
|
}
|
|
|
|
uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t result;
|
|
DO_ABD(result, a, b, uint16_t, uint32_t);
|
|
DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
|
|
return result | (tmp << 32);
|
|
}
|
|
|
|
uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t result;
|
|
DO_ABD(result, a, b, int16_t, int32_t);
|
|
DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
|
|
return result | (tmp << 32);
|
|
}
|
|
|
|
uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t result;
|
|
DO_ABD(result, a, b, uint32_t, uint64_t);
|
|
return result;
|
|
}
|
|
|
|
uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t result;
|
|
DO_ABD(result, a, b, int32_t, int64_t);
|
|
return result;
|
|
}
|
|
#undef DO_ABD
|
|
|
|
/* Widening multiply. Named type is the source type. */
|
|
#define DO_MULL(dest, x, y, type1, type2) do { \
|
|
type1 tmp_x = x; \
|
|
type1 tmp_y = y; \
|
|
dest = (type2)((type2)tmp_x * (type2)tmp_y); \
|
|
} while(0)
|
|
|
|
uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t result;
|
|
|
|
DO_MULL(result, a, b, uint8_t, uint16_t);
|
|
DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
|
|
result |= tmp << 16;
|
|
DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
|
|
result |= tmp << 32;
|
|
DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
|
|
result |= tmp << 48;
|
|
return result;
|
|
}
|
|
|
|
uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t result;
|
|
|
|
DO_MULL(result, a, b, int8_t, uint16_t);
|
|
DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
|
|
result |= tmp << 16;
|
|
DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
|
|
result |= tmp << 32;
|
|
DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
|
|
result |= tmp << 48;
|
|
return result;
|
|
}
|
|
|
|
uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t result;
|
|
|
|
DO_MULL(result, a, b, uint16_t, uint32_t);
|
|
DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
|
|
return result | (tmp << 32);
|
|
}
|
|
|
|
uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
|
|
{
|
|
uint64_t tmp;
|
|
uint64_t result;
|
|
|
|
DO_MULL(result, a, b, int16_t, uint32_t);
|
|
DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
|
|
return result | (tmp << 32);
|
|
}
|
|
|
|
uint64_t HELPER(neon_negl_u16)(uint64_t x)
|
|
{
|
|
uint16_t tmp;
|
|
uint64_t result;
|
|
result = (uint16_t)-x;
|
|
tmp = -(x >> 16);
|
|
result |= (uint64_t)tmp << 16;
|
|
tmp = -(x >> 32);
|
|
result |= (uint64_t)tmp << 32;
|
|
tmp = -(x >> 48);
|
|
result |= (uint64_t)tmp << 48;
|
|
return result;
|
|
}
|
|
|
|
uint64_t HELPER(neon_negl_u32)(uint64_t x)
|
|
{
|
|
uint32_t low = -x;
|
|
uint32_t high = -(x >> 32);
|
|
return low | ((uint64_t)high << 32);
|
|
}
|
|
|
|
/* Saturating sign manipulation. */
|
|
/* ??? Make these use NEON_VOP1 */
|
|
#define DO_QABS8(x) do { \
|
|
if (x == (int8_t)0x80) { \
|
|
x = 0x7f; \
|
|
SET_QC(); \
|
|
} else if (x < 0) { \
|
|
x = -x; \
|
|
}} while (0)
|
|
uint32_t HELPER(neon_qabs_s8)(CPUARMState *env, uint32_t x)
|
|
{
|
|
neon_s8 vec;
|
|
NEON_UNPACK(neon_s8, vec, x);
|
|
DO_QABS8(vec.v1);
|
|
DO_QABS8(vec.v2);
|
|
DO_QABS8(vec.v3);
|
|
DO_QABS8(vec.v4);
|
|
NEON_PACK(neon_s8, x, vec);
|
|
return x;
|
|
}
|
|
#undef DO_QABS8
|
|
|
|
#define DO_QNEG8(x) do { \
|
|
if (x == (int8_t)0x80) { \
|
|
x = 0x7f; \
|
|
SET_QC(); \
|
|
} else { \
|
|
x = -x; \
|
|
}} while (0)
|
|
uint32_t HELPER(neon_qneg_s8)(CPUARMState *env, uint32_t x)
|
|
{
|
|
neon_s8 vec;
|
|
NEON_UNPACK(neon_s8, vec, x);
|
|
DO_QNEG8(vec.v1);
|
|
DO_QNEG8(vec.v2);
|
|
DO_QNEG8(vec.v3);
|
|
DO_QNEG8(vec.v4);
|
|
NEON_PACK(neon_s8, x, vec);
|
|
return x;
|
|
}
|
|
#undef DO_QNEG8
|
|
|
|
#define DO_QABS16(x) do { \
|
|
if (x == (int16_t)0x8000) { \
|
|
x = 0x7fff; \
|
|
SET_QC(); \
|
|
} else if (x < 0) { \
|
|
x = -x; \
|
|
}} while (0)
|
|
uint32_t HELPER(neon_qabs_s16)(CPUARMState *env, uint32_t x)
|
|
{
|
|
neon_s16 vec;
|
|
NEON_UNPACK(neon_s16, vec, x);
|
|
DO_QABS16(vec.v1);
|
|
DO_QABS16(vec.v2);
|
|
NEON_PACK(neon_s16, x, vec);
|
|
return x;
|
|
}
|
|
#undef DO_QABS16
|
|
|
|
#define DO_QNEG16(x) do { \
|
|
if (x == (int16_t)0x8000) { \
|
|
x = 0x7fff; \
|
|
SET_QC(); \
|
|
} else { \
|
|
x = -x; \
|
|
}} while (0)
|
|
uint32_t HELPER(neon_qneg_s16)(CPUARMState *env, uint32_t x)
|
|
{
|
|
neon_s16 vec;
|
|
NEON_UNPACK(neon_s16, vec, x);
|
|
DO_QNEG16(vec.v1);
|
|
DO_QNEG16(vec.v2);
|
|
NEON_PACK(neon_s16, x, vec);
|
|
return x;
|
|
}
|
|
#undef DO_QNEG16
|
|
|
|
uint32_t HELPER(neon_qabs_s32)(CPUARMState *env, uint32_t x)
|
|
{
|
|
if (x == SIGNBIT) {
|
|
SET_QC();
|
|
x = ~SIGNBIT;
|
|
} else if ((int32_t)x < 0) {
|
|
x = -x;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint32_t HELPER(neon_qneg_s32)(CPUARMState *env, uint32_t x)
|
|
{
|
|
if (x == SIGNBIT) {
|
|
SET_QC();
|
|
x = ~SIGNBIT;
|
|
} else {
|
|
x = -x;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint64_t HELPER(neon_qabs_s64)(CPUARMState *env, uint64_t x)
|
|
{
|
|
if (x == SIGNBIT64) {
|
|
SET_QC();
|
|
x = ~SIGNBIT64;
|
|
} else if ((int64_t)x < 0) {
|
|
x = -x;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
uint64_t HELPER(neon_qneg_s64)(CPUARMState *env, uint64_t x)
|
|
{
|
|
if (x == SIGNBIT64) {
|
|
SET_QC();
|
|
x = ~SIGNBIT64;
|
|
} else {
|
|
x = -x;
|
|
}
|
|
return x;
|
|
}
|
|
|
|
/* NEON Float helpers. */
|
|
uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
float32 f0 = make_float32(a);
|
|
float32 f1 = make_float32(b);
|
|
return float32_val(float32_abs(float32_sub(f0, f1, fpst)));
|
|
}
|
|
|
|
/* Floating point comparisons produce an integer result.
|
|
* Note that EQ doesn't signal InvalidOp for QNaNs but GE and GT do.
|
|
* Softfloat routines return 0/1, which we convert to the 0/-1 Neon requires.
|
|
*/
|
|
uint32_t HELPER(neon_ceq_f32)(uint32_t a, uint32_t b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return -float32_eq_quiet(make_float32(a), make_float32(b), fpst);
|
|
}
|
|
|
|
uint32_t HELPER(neon_cge_f32)(uint32_t a, uint32_t b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return -float32_le(make_float32(b), make_float32(a), fpst);
|
|
}
|
|
|
|
uint32_t HELPER(neon_cgt_f32)(uint32_t a, uint32_t b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
return -float32_lt(make_float32(b), make_float32(a), fpst);
|
|
}
|
|
|
|
uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
float32 f0 = float32_abs(make_float32(a));
|
|
float32 f1 = float32_abs(make_float32(b));
|
|
return -float32_le(f1, f0, fpst);
|
|
}
|
|
|
|
uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
float32 f0 = float32_abs(make_float32(a));
|
|
float32 f1 = float32_abs(make_float32(b));
|
|
return -float32_lt(f1, f0, fpst);
|
|
}
|
|
|
|
uint64_t HELPER(neon_acge_f64)(uint64_t a, uint64_t b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
float64 f0 = float64_abs(make_float64(a));
|
|
float64 f1 = float64_abs(make_float64(b));
|
|
return -float64_le(f1, f0, fpst);
|
|
}
|
|
|
|
uint64_t HELPER(neon_acgt_f64)(uint64_t a, uint64_t b, void *fpstp)
|
|
{
|
|
float_status *fpst = fpstp;
|
|
float64 f0 = float64_abs(make_float64(a));
|
|
float64 f1 = float64_abs(make_float64(b));
|
|
return -float64_lt(f1, f0, fpst);
|
|
}
|
|
|
|
#define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
|
|
|
|
void HELPER(neon_qunzip8)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd0 = rd[0], zd1 = rd[1];
|
|
uint64_t zm0 = rm[0], zm1 = rm[1];
|
|
|
|
uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
|
|
| (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
|
|
| (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
|
|
| (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
|
|
uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
|
|
| (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
|
|
| (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
|
|
| (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
|
|
uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
|
|
| (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
|
|
| (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
|
|
| (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
|
|
uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
|
|
| (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
|
|
| (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
|
|
| (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
|
|
|
|
rm[0] = m0;
|
|
rm[1] = m1;
|
|
rd[0] = d0;
|
|
rd[1] = d1;
|
|
}
|
|
|
|
void HELPER(neon_qunzip16)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd0 = rd[0], zd1 = rd[1];
|
|
uint64_t zm0 = rm[0], zm1 = rm[1];
|
|
|
|
uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
|
|
| (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
|
|
uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
|
|
| (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
|
|
uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
|
|
| (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
|
|
uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
|
|
| (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
|
|
|
|
rm[0] = m0;
|
|
rm[1] = m1;
|
|
rd[0] = d0;
|
|
rd[1] = d1;
|
|
}
|
|
|
|
void HELPER(neon_qunzip32)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd0 = rd[0], zd1 = rd[1];
|
|
uint64_t zm0 = rm[0], zm1 = rm[1];
|
|
|
|
uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
|
|
uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
|
|
uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
|
|
uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
|
|
|
|
rm[0] = m0;
|
|
rm[1] = m1;
|
|
rd[0] = d0;
|
|
rd[1] = d1;
|
|
}
|
|
|
|
void HELPER(neon_unzip8)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd = rd[0], zm = rm[0];
|
|
|
|
uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
|
|
| (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
|
|
| (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
|
|
| (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
|
|
uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
|
|
| (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
|
|
| (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
|
|
| (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
|
|
|
|
rm[0] = m0;
|
|
rd[0] = d0;
|
|
}
|
|
|
|
void HELPER(neon_unzip16)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd = rd[0], zm = rm[0];
|
|
|
|
uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
|
|
| (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
|
|
uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
|
|
| (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
|
|
|
|
rm[0] = m0;
|
|
rd[0] = d0;
|
|
}
|
|
|
|
void HELPER(neon_qzip8)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd0 = rd[0], zd1 = rd[1];
|
|
uint64_t zm0 = rm[0], zm1 = rm[1];
|
|
|
|
uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
|
|
| (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
|
|
| (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
|
|
| (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
|
|
uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
|
|
| (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
|
|
| (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
|
|
| (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
|
|
uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
|
|
| (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
|
|
| (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
|
|
| (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
|
|
uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
|
|
| (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
|
|
| (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
|
|
| (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
|
|
|
|
rm[0] = m0;
|
|
rm[1] = m1;
|
|
rd[0] = d0;
|
|
rd[1] = d1;
|
|
}
|
|
|
|
void HELPER(neon_qzip16)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd0 = rd[0], zd1 = rd[1];
|
|
uint64_t zm0 = rm[0], zm1 = rm[1];
|
|
|
|
uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
|
|
| (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
|
|
uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
|
|
| (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
|
|
uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
|
|
| (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
|
|
uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
|
|
| (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
|
|
|
|
rm[0] = m0;
|
|
rm[1] = m1;
|
|
rd[0] = d0;
|
|
rd[1] = d1;
|
|
}
|
|
|
|
void HELPER(neon_qzip32)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd0 = rd[0], zd1 = rd[1];
|
|
uint64_t zm0 = rm[0], zm1 = rm[1];
|
|
|
|
uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
|
|
uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
|
|
uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
|
|
uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
|
|
|
|
rm[0] = m0;
|
|
rm[1] = m1;
|
|
rd[0] = d0;
|
|
rd[1] = d1;
|
|
}
|
|
|
|
void HELPER(neon_zip8)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd = rd[0], zm = rm[0];
|
|
|
|
uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
|
|
| (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
|
|
| (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
|
|
| (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
|
|
uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
|
|
| (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
|
|
| (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
|
|
| (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
|
|
|
|
rm[0] = m0;
|
|
rd[0] = d0;
|
|
}
|
|
|
|
void HELPER(neon_zip16)(void *vd, void *vm)
|
|
{
|
|
uint64_t *rd = vd, *rm = vm;
|
|
uint64_t zd = rd[0], zm = rm[0];
|
|
|
|
uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
|
|
| (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
|
|
uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
|
|
| (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
|
|
|
|
rm[0] = m0;
|
|
rd[0] = d0;
|
|
}
|
|
|
|
/* Helper function for 64 bit polynomial multiply case:
|
|
* perform PolynomialMult(op1, op2) and return either the top or
|
|
* bottom half of the 128 bit result.
|
|
*/
|
|
uint64_t HELPER(neon_pmull_64_lo)(uint64_t op1, uint64_t op2)
|
|
{
|
|
int bitnum;
|
|
uint64_t res = 0;
|
|
|
|
for (bitnum = 0; bitnum < 64; bitnum++) {
|
|
if (op1 & (1ULL << bitnum)) {
|
|
res ^= op2 << bitnum;
|
|
}
|
|
}
|
|
return res;
|
|
}
|
|
uint64_t HELPER(neon_pmull_64_hi)(uint64_t op1, uint64_t op2)
|
|
{
|
|
int bitnum;
|
|
uint64_t res = 0;
|
|
|
|
/* bit 0 of op1 can't influence the high 64 bits at all */
|
|
for (bitnum = 1; bitnum < 64; bitnum++) {
|
|
if (op1 & (1ULL << bitnum)) {
|
|
res ^= op2 >> (64 - bitnum);
|
|
}
|
|
}
|
|
return res;
|
|
}
|