mirror of https://gitee.com/openkylin/qemu.git
68 lines
2.7 KiB
Plaintext
68 lines
2.7 KiB
Plaintext
# AArch32 VFP instruction descriptions (unconditional insns)
|
|
#
|
|
# Copyright (c) 2019 Linaro, Ltd
|
|
#
|
|
# This library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2 of the License, or (at your option) any later version.
|
|
#
|
|
# This library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
|
|
#
|
|
# This file is processed by scripts/decodetree.py
|
|
#
|
|
# Encodings for the unconditional VFP instructions are here:
|
|
# generally anything matching A32
|
|
# 1111 1110 .... .... .... 101. ...0 ....
|
|
# and T32
|
|
# 1111 110. .... .... .... 101. .... ....
|
|
# 1111 1110 .... .... .... 101. .... ....
|
|
# (but those patterns might also cover some Neon instructions,
|
|
# which do not live in this file.)
|
|
|
|
# VFP registers have an odd encoding with a four-bit field
|
|
# and a one-bit field which are assembled in different orders
|
|
# depending on whether the register is double or single precision.
|
|
# Each individual instruction function must do the checks for
|
|
# "double register selected but CPU does not have double support"
|
|
# and "double register number has bit 4 set but CPU does not
|
|
# support D16-D31" (which should UNDEF).
|
|
%vm_dp 5:1 0:4
|
|
%vm_sp 0:4 5:1
|
|
%vn_dp 7:1 16:4
|
|
%vn_sp 16:4 7:1
|
|
%vd_dp 22:1 12:4
|
|
%vd_sp 12:4 22:1
|
|
|
|
@vfp_dnm_s ................................ vm=%vm_sp vn=%vn_sp vd=%vd_sp
|
|
@vfp_dnm_d ................................ vm=%vm_dp vn=%vn_dp vd=%vd_dp
|
|
|
|
VSEL 1111 1110 0. cc:2 .... .... 1010 .0.0 .... \
|
|
vm=%vm_sp vn=%vn_sp vd=%vd_sp dp=0
|
|
VSEL 1111 1110 0. cc:2 .... .... 1011 .0.0 .... \
|
|
vm=%vm_dp vn=%vn_dp vd=%vd_dp dp=1
|
|
|
|
VMAXNM_sp 1111 1110 1.00 .... .... 1010 .0.0 .... @vfp_dnm_s
|
|
VMINNM_sp 1111 1110 1.00 .... .... 1010 .1.0 .... @vfp_dnm_s
|
|
|
|
VMAXNM_dp 1111 1110 1.00 .... .... 1011 .0.0 .... @vfp_dnm_d
|
|
VMINNM_dp 1111 1110 1.00 .... .... 1011 .1.0 .... @vfp_dnm_d
|
|
|
|
VRINT 1111 1110 1.11 10 rm:2 .... 1010 01.0 .... \
|
|
vm=%vm_sp vd=%vd_sp dp=0
|
|
VRINT 1111 1110 1.11 10 rm:2 .... 1011 01.0 .... \
|
|
vm=%vm_dp vd=%vd_dp dp=1
|
|
|
|
# VCVT float to int with specified rounding mode; Vd is always single-precision
|
|
VCVT 1111 1110 1.11 11 rm:2 .... 1010 op:1 1.0 .... \
|
|
vm=%vm_sp vd=%vd_sp dp=0
|
|
VCVT 1111 1110 1.11 11 rm:2 .... 1011 op:1 1.0 .... \
|
|
vm=%vm_dp vd=%vd_sp dp=1
|