mirror of https://gitee.com/openkylin/qemu.git
607 lines
20 KiB
C
607 lines
20 KiB
C
static void glue(bswap_ehdr, SZ)(struct elfhdr *ehdr)
|
|
{
|
|
bswap16s(&ehdr->e_type); /* Object file type */
|
|
bswap16s(&ehdr->e_machine); /* Architecture */
|
|
bswap32s(&ehdr->e_version); /* Object file version */
|
|
bswapSZs(&ehdr->e_entry); /* Entry point virtual address */
|
|
bswapSZs(&ehdr->e_phoff); /* Program header table file offset */
|
|
bswapSZs(&ehdr->e_shoff); /* Section header table file offset */
|
|
bswap32s(&ehdr->e_flags); /* Processor-specific flags */
|
|
bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
|
|
bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
|
|
bswap16s(&ehdr->e_phnum); /* Program header table entry count */
|
|
bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
|
|
bswap16s(&ehdr->e_shnum); /* Section header table entry count */
|
|
bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
|
|
}
|
|
|
|
static void glue(bswap_phdr, SZ)(struct elf_phdr *phdr)
|
|
{
|
|
bswap32s(&phdr->p_type); /* Segment type */
|
|
bswapSZs(&phdr->p_offset); /* Segment file offset */
|
|
bswapSZs(&phdr->p_vaddr); /* Segment virtual address */
|
|
bswapSZs(&phdr->p_paddr); /* Segment physical address */
|
|
bswapSZs(&phdr->p_filesz); /* Segment size in file */
|
|
bswapSZs(&phdr->p_memsz); /* Segment size in memory */
|
|
bswap32s(&phdr->p_flags); /* Segment flags */
|
|
bswapSZs(&phdr->p_align); /* Segment alignment */
|
|
}
|
|
|
|
static void glue(bswap_shdr, SZ)(struct elf_shdr *shdr)
|
|
{
|
|
bswap32s(&shdr->sh_name);
|
|
bswap32s(&shdr->sh_type);
|
|
bswapSZs(&shdr->sh_flags);
|
|
bswapSZs(&shdr->sh_addr);
|
|
bswapSZs(&shdr->sh_offset);
|
|
bswapSZs(&shdr->sh_size);
|
|
bswap32s(&shdr->sh_link);
|
|
bswap32s(&shdr->sh_info);
|
|
bswapSZs(&shdr->sh_addralign);
|
|
bswapSZs(&shdr->sh_entsize);
|
|
}
|
|
|
|
static void glue(bswap_sym, SZ)(struct elf_sym *sym)
|
|
{
|
|
bswap32s(&sym->st_name);
|
|
bswapSZs(&sym->st_value);
|
|
bswapSZs(&sym->st_size);
|
|
bswap16s(&sym->st_shndx);
|
|
}
|
|
|
|
static void glue(bswap_rela, SZ)(struct elf_rela *rela)
|
|
{
|
|
bswapSZs(&rela->r_offset);
|
|
bswapSZs(&rela->r_info);
|
|
bswapSZs((elf_word *)&rela->r_addend);
|
|
}
|
|
|
|
static struct elf_shdr *glue(find_section, SZ)(struct elf_shdr *shdr_table,
|
|
int n, int type)
|
|
{
|
|
int i;
|
|
for(i=0;i<n;i++) {
|
|
if (shdr_table[i].sh_type == type)
|
|
return shdr_table + i;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static int glue(symfind, SZ)(const void *s0, const void *s1)
|
|
{
|
|
hwaddr addr = *(hwaddr *)s0;
|
|
struct elf_sym *sym = (struct elf_sym *)s1;
|
|
int result = 0;
|
|
if (addr < sym->st_value) {
|
|
result = -1;
|
|
} else if (addr >= sym->st_value + sym->st_size) {
|
|
result = 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const char *glue(lookup_symbol, SZ)(struct syminfo *s,
|
|
hwaddr orig_addr)
|
|
{
|
|
struct elf_sym *syms = glue(s->disas_symtab.elf, SZ);
|
|
struct elf_sym *sym;
|
|
|
|
sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms),
|
|
glue(symfind, SZ));
|
|
if (sym != NULL) {
|
|
return s->disas_strtab + sym->st_name;
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
static int glue(symcmp, SZ)(const void *s0, const void *s1)
|
|
{
|
|
struct elf_sym *sym0 = (struct elf_sym *)s0;
|
|
struct elf_sym *sym1 = (struct elf_sym *)s1;
|
|
return (sym0->st_value < sym1->st_value)
|
|
? -1
|
|
: ((sym0->st_value > sym1->st_value) ? 1 : 0);
|
|
}
|
|
|
|
static int glue(load_symbols, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
|
|
int clear_lsb, symbol_fn_t sym_cb)
|
|
{
|
|
struct elf_shdr *symtab, *strtab, *shdr_table = NULL;
|
|
struct elf_sym *syms = NULL;
|
|
struct syminfo *s;
|
|
int nsyms, i;
|
|
char *str = NULL;
|
|
|
|
shdr_table = load_at(fd, ehdr->e_shoff,
|
|
sizeof(struct elf_shdr) * ehdr->e_shnum);
|
|
if (!shdr_table)
|
|
return -1;
|
|
|
|
if (must_swab) {
|
|
for (i = 0; i < ehdr->e_shnum; i++) {
|
|
glue(bswap_shdr, SZ)(shdr_table + i);
|
|
}
|
|
}
|
|
|
|
symtab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_SYMTAB);
|
|
if (!symtab)
|
|
goto fail;
|
|
syms = load_at(fd, symtab->sh_offset, symtab->sh_size);
|
|
if (!syms)
|
|
goto fail;
|
|
|
|
nsyms = symtab->sh_size / sizeof(struct elf_sym);
|
|
|
|
/* String table */
|
|
if (symtab->sh_link >= ehdr->e_shnum) {
|
|
goto fail;
|
|
}
|
|
strtab = &shdr_table[symtab->sh_link];
|
|
|
|
str = load_at(fd, strtab->sh_offset, strtab->sh_size);
|
|
if (!str) {
|
|
goto fail;
|
|
}
|
|
|
|
i = 0;
|
|
while (i < nsyms) {
|
|
if (must_swab) {
|
|
glue(bswap_sym, SZ)(&syms[i]);
|
|
}
|
|
if (sym_cb) {
|
|
sym_cb(str + syms[i].st_name, syms[i].st_info,
|
|
syms[i].st_value, syms[i].st_size);
|
|
}
|
|
/* We are only interested in function symbols.
|
|
Throw everything else away. */
|
|
if (syms[i].st_shndx == SHN_UNDEF ||
|
|
syms[i].st_shndx >= SHN_LORESERVE ||
|
|
ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
|
|
nsyms--;
|
|
if (i < nsyms) {
|
|
syms[i] = syms[nsyms];
|
|
}
|
|
continue;
|
|
}
|
|
if (clear_lsb) {
|
|
/* The bottom address bit marks a Thumb or MIPS16 symbol. */
|
|
syms[i].st_value &= ~(glue(glue(Elf, SZ), _Addr))1;
|
|
}
|
|
i++;
|
|
}
|
|
syms = g_realloc(syms, nsyms * sizeof(*syms));
|
|
|
|
qsort(syms, nsyms, sizeof(*syms), glue(symcmp, SZ));
|
|
for (i = 0; i < nsyms - 1; i++) {
|
|
if (syms[i].st_size == 0) {
|
|
syms[i].st_size = syms[i + 1].st_value - syms[i].st_value;
|
|
}
|
|
}
|
|
|
|
/* Commit */
|
|
s = g_malloc0(sizeof(*s));
|
|
s->lookup_symbol = glue(lookup_symbol, SZ);
|
|
glue(s->disas_symtab.elf, SZ) = syms;
|
|
s->disas_num_syms = nsyms;
|
|
s->disas_strtab = str;
|
|
s->next = syminfos;
|
|
syminfos = s;
|
|
g_free(shdr_table);
|
|
return 0;
|
|
fail:
|
|
g_free(syms);
|
|
g_free(str);
|
|
g_free(shdr_table);
|
|
return -1;
|
|
}
|
|
|
|
static int glue(elf_reloc, SZ)(struct elfhdr *ehdr, int fd, int must_swab,
|
|
uint64_t (*translate_fn)(void *, uint64_t),
|
|
void *translate_opaque, uint8_t *data,
|
|
struct elf_phdr *ph, int elf_machine)
|
|
{
|
|
struct elf_shdr *reltab, *shdr_table = NULL;
|
|
struct elf_rela *rels = NULL;
|
|
int nrels, i, ret = -1;
|
|
elf_word wordval;
|
|
void *addr;
|
|
|
|
shdr_table = load_at(fd, ehdr->e_shoff,
|
|
sizeof(struct elf_shdr) * ehdr->e_shnum);
|
|
if (!shdr_table) {
|
|
return -1;
|
|
}
|
|
if (must_swab) {
|
|
for (i = 0; i < ehdr->e_shnum; i++) {
|
|
glue(bswap_shdr, SZ)(&shdr_table[i]);
|
|
}
|
|
}
|
|
|
|
reltab = glue(find_section, SZ)(shdr_table, ehdr->e_shnum, SHT_RELA);
|
|
if (!reltab) {
|
|
goto fail;
|
|
}
|
|
rels = load_at(fd, reltab->sh_offset, reltab->sh_size);
|
|
if (!rels) {
|
|
goto fail;
|
|
}
|
|
nrels = reltab->sh_size / sizeof(struct elf_rela);
|
|
|
|
for (i = 0; i < nrels; i++) {
|
|
if (must_swab) {
|
|
glue(bswap_rela, SZ)(&rels[i]);
|
|
}
|
|
if (rels[i].r_offset < ph->p_vaddr ||
|
|
rels[i].r_offset >= ph->p_vaddr + ph->p_filesz) {
|
|
continue;
|
|
}
|
|
addr = &data[rels[i].r_offset - ph->p_vaddr];
|
|
switch (elf_machine) {
|
|
case EM_S390:
|
|
switch (rels[i].r_info) {
|
|
case R_390_RELATIVE:
|
|
wordval = *(elf_word *)addr;
|
|
if (must_swab) {
|
|
bswapSZs(&wordval);
|
|
}
|
|
wordval = translate_fn(translate_opaque, wordval);
|
|
if (must_swab) {
|
|
bswapSZs(&wordval);
|
|
}
|
|
*(elf_word *)addr = wordval;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unsupported relocation type %i!\n",
|
|
(int)rels[i].r_info);
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
fail:
|
|
g_free(rels);
|
|
g_free(shdr_table);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Given 'nhdr', a pointer to a range of ELF Notes, search through them
|
|
* for a note matching type 'elf_note_type' and return a pointer to
|
|
* the matching ELF note.
|
|
*/
|
|
static struct elf_note *glue(get_elf_note_type, SZ)(struct elf_note *nhdr,
|
|
elf_word note_size,
|
|
elf_word phdr_align,
|
|
elf_word elf_note_type)
|
|
{
|
|
elf_word nhdr_size = sizeof(struct elf_note);
|
|
elf_word elf_note_entry_offset = 0;
|
|
elf_word note_type;
|
|
elf_word nhdr_namesz;
|
|
elf_word nhdr_descsz;
|
|
|
|
if (nhdr == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
note_type = nhdr->n_type;
|
|
while (note_type != elf_note_type) {
|
|
nhdr_namesz = nhdr->n_namesz;
|
|
nhdr_descsz = nhdr->n_descsz;
|
|
|
|
elf_note_entry_offset = nhdr_size +
|
|
QEMU_ALIGN_UP(nhdr_namesz, phdr_align) +
|
|
QEMU_ALIGN_UP(nhdr_descsz, phdr_align);
|
|
|
|
/*
|
|
* If the offset calculated in this iteration exceeds the
|
|
* supplied size, we are done and no matching note was found.
|
|
*/
|
|
if (elf_note_entry_offset > note_size) {
|
|
return NULL;
|
|
}
|
|
|
|
/* skip to the next ELF Note entry */
|
|
nhdr = (void *)nhdr + elf_note_entry_offset;
|
|
note_type = nhdr->n_type;
|
|
}
|
|
|
|
return nhdr;
|
|
}
|
|
|
|
static int glue(load_elf, SZ)(const char *name, int fd,
|
|
uint64_t (*elf_note_fn)(void *, void *, bool),
|
|
uint64_t (*translate_fn)(void *, uint64_t),
|
|
void *translate_opaque,
|
|
int must_swab, uint64_t *pentry,
|
|
uint64_t *lowaddr, uint64_t *highaddr,
|
|
int elf_machine, int clear_lsb, int data_swab,
|
|
AddressSpace *as, bool load_rom,
|
|
symbol_fn_t sym_cb)
|
|
{
|
|
struct elfhdr ehdr;
|
|
struct elf_phdr *phdr = NULL, *ph;
|
|
int size, i, total_size;
|
|
elf_word mem_size, file_size, data_offset;
|
|
uint64_t addr, low = (uint64_t)-1, high = 0;
|
|
GMappedFile *mapped_file = NULL;
|
|
uint8_t *data = NULL;
|
|
char label[128];
|
|
int ret = ELF_LOAD_FAILED;
|
|
|
|
if (read(fd, &ehdr, sizeof(ehdr)) != sizeof(ehdr))
|
|
goto fail;
|
|
if (must_swab) {
|
|
glue(bswap_ehdr, SZ)(&ehdr);
|
|
}
|
|
|
|
if (elf_machine <= EM_NONE) {
|
|
/* The caller didn't specify an ARCH, we can figure it out */
|
|
elf_machine = ehdr.e_machine;
|
|
}
|
|
|
|
switch (elf_machine) {
|
|
case EM_PPC64:
|
|
if (ehdr.e_machine != EM_PPC64) {
|
|
if (ehdr.e_machine != EM_PPC) {
|
|
ret = ELF_LOAD_WRONG_ARCH;
|
|
goto fail;
|
|
}
|
|
}
|
|
break;
|
|
case EM_X86_64:
|
|
if (ehdr.e_machine != EM_X86_64) {
|
|
if (ehdr.e_machine != EM_386) {
|
|
ret = ELF_LOAD_WRONG_ARCH;
|
|
goto fail;
|
|
}
|
|
}
|
|
break;
|
|
case EM_MICROBLAZE:
|
|
if (ehdr.e_machine != EM_MICROBLAZE) {
|
|
if (ehdr.e_machine != EM_MICROBLAZE_OLD) {
|
|
ret = ELF_LOAD_WRONG_ARCH;
|
|
goto fail;
|
|
}
|
|
}
|
|
break;
|
|
case EM_MOXIE:
|
|
if (ehdr.e_machine != EM_MOXIE) {
|
|
if (ehdr.e_machine != EM_MOXIE_OLD) {
|
|
ret = ELF_LOAD_WRONG_ARCH;
|
|
goto fail;
|
|
}
|
|
}
|
|
break;
|
|
case EM_MIPS:
|
|
case EM_NANOMIPS:
|
|
if ((ehdr.e_machine != EM_MIPS) &&
|
|
(ehdr.e_machine != EM_NANOMIPS)) {
|
|
ret = ELF_LOAD_WRONG_ARCH;
|
|
goto fail;
|
|
}
|
|
break;
|
|
default:
|
|
if (elf_machine != ehdr.e_machine) {
|
|
ret = ELF_LOAD_WRONG_ARCH;
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
if (pentry)
|
|
*pentry = (uint64_t)(elf_sword)ehdr.e_entry;
|
|
|
|
glue(load_symbols, SZ)(&ehdr, fd, must_swab, clear_lsb, sym_cb);
|
|
|
|
size = ehdr.e_phnum * sizeof(phdr[0]);
|
|
if (lseek(fd, ehdr.e_phoff, SEEK_SET) != ehdr.e_phoff) {
|
|
goto fail;
|
|
}
|
|
phdr = g_malloc0(size);
|
|
if (!phdr)
|
|
goto fail;
|
|
if (read(fd, phdr, size) != size)
|
|
goto fail;
|
|
if (must_swab) {
|
|
for(i = 0; i < ehdr.e_phnum; i++) {
|
|
ph = &phdr[i];
|
|
glue(bswap_phdr, SZ)(ph);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Since we want to be able to modify the mapped buffer, we set the
|
|
* 'writeble' parameter to 'true'. Modifications to the buffer are not
|
|
* written back to the file.
|
|
*/
|
|
mapped_file = g_mapped_file_new_from_fd(fd, true, NULL);
|
|
if (!mapped_file) {
|
|
goto fail;
|
|
}
|
|
|
|
total_size = 0;
|
|
for(i = 0; i < ehdr.e_phnum; i++) {
|
|
ph = &phdr[i];
|
|
if (ph->p_type == PT_LOAD) {
|
|
mem_size = ph->p_memsz; /* Size of the ROM */
|
|
file_size = ph->p_filesz; /* Size of the allocated data */
|
|
data_offset = ph->p_offset; /* Offset where the data is located */
|
|
|
|
if (file_size > 0) {
|
|
if (g_mapped_file_get_length(mapped_file) <
|
|
file_size + data_offset) {
|
|
goto fail;
|
|
}
|
|
|
|
data = (uint8_t *)g_mapped_file_get_contents(mapped_file);
|
|
data += data_offset;
|
|
}
|
|
|
|
/* The ELF spec is somewhat vague about the purpose of the
|
|
* physical address field. One common use in the embedded world
|
|
* is that physical address field specifies the load address
|
|
* and the virtual address field specifies the execution address.
|
|
* Segments are packed into ROM or flash, and the relocation
|
|
* and zero-initialization of data is done at runtime. This
|
|
* means that the memsz header represents the runtime size of the
|
|
* segment, but the filesz represents the loadtime size. If
|
|
* we try to honour the memsz value for an ELF file like this
|
|
* we will end up with overlapping segments (which the
|
|
* loader.c code will later reject).
|
|
* We support ELF files using this scheme by by checking whether
|
|
* paddr + memsz for this segment would overlap with any other
|
|
* segment. If so, then we assume it's using this scheme and
|
|
* truncate the loaded segment to the filesz size.
|
|
* If the segment considered as being memsz size doesn't overlap
|
|
* then we use memsz for the segment length, to handle ELF files
|
|
* which assume that the loader will do the zero-initialization.
|
|
*/
|
|
if (mem_size > file_size) {
|
|
/* If this segment's zero-init portion overlaps another
|
|
* segment's data or zero-init portion, then truncate this one.
|
|
* Invalid ELF files where the segments overlap even when
|
|
* only file_size bytes are loaded will be rejected by
|
|
* the ROM overlap check in loader.c, so we don't try to
|
|
* explicitly detect those here.
|
|
*/
|
|
int j;
|
|
elf_word zero_start = ph->p_paddr + file_size;
|
|
elf_word zero_end = ph->p_paddr + mem_size;
|
|
|
|
for (j = 0; j < ehdr.e_phnum; j++) {
|
|
struct elf_phdr *jph = &phdr[j];
|
|
|
|
if (i != j && jph->p_type == PT_LOAD) {
|
|
elf_word other_start = jph->p_paddr;
|
|
elf_word other_end = jph->p_paddr + jph->p_memsz;
|
|
|
|
if (!(other_start >= zero_end ||
|
|
zero_start >= other_end)) {
|
|
mem_size = file_size;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mem_size > INT_MAX - total_size) {
|
|
ret = ELF_LOAD_TOO_BIG;
|
|
goto fail;
|
|
}
|
|
|
|
/* address_offset is hack for kernel images that are
|
|
linked at the wrong physical address. */
|
|
if (translate_fn) {
|
|
addr = translate_fn(translate_opaque, ph->p_paddr);
|
|
glue(elf_reloc, SZ)(&ehdr, fd, must_swab, translate_fn,
|
|
translate_opaque, data, ph, elf_machine);
|
|
} else {
|
|
addr = ph->p_paddr;
|
|
}
|
|
|
|
if (data_swab) {
|
|
int j;
|
|
for (j = 0; j < file_size; j += (1 << data_swab)) {
|
|
uint8_t *dp = data + j;
|
|
switch (data_swab) {
|
|
case (1):
|
|
*(uint16_t *)dp = bswap16(*(uint16_t *)dp);
|
|
break;
|
|
case (2):
|
|
*(uint32_t *)dp = bswap32(*(uint32_t *)dp);
|
|
break;
|
|
case (3):
|
|
*(uint64_t *)dp = bswap64(*(uint64_t *)dp);
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
}
|
|
|
|
/* the entry pointer in the ELF header is a virtual
|
|
* address, if the text segments paddr and vaddr differ
|
|
* we need to adjust the entry */
|
|
if (pentry && !translate_fn &&
|
|
ph->p_vaddr != ph->p_paddr &&
|
|
ehdr.e_entry >= ph->p_vaddr &&
|
|
ehdr.e_entry < ph->p_vaddr + ph->p_filesz &&
|
|
ph->p_flags & PF_X) {
|
|
*pentry = ehdr.e_entry - ph->p_vaddr + ph->p_paddr;
|
|
}
|
|
|
|
/* Some ELF files really do have segments of zero size;
|
|
* just ignore them rather than trying to create empty
|
|
* ROM blobs, because the zero-length blob can falsely
|
|
* trigger the overlapping-ROM-blobs check.
|
|
*/
|
|
if (mem_size != 0) {
|
|
if (load_rom) {
|
|
snprintf(label, sizeof(label), "phdr #%d: %s", i, name);
|
|
|
|
/*
|
|
* rom_add_elf_program() takes its own reference to
|
|
* 'mapped_file'.
|
|
*/
|
|
rom_add_elf_program(label, mapped_file, data, file_size,
|
|
mem_size, addr, as);
|
|
} else {
|
|
address_space_write(as ? as : &address_space_memory,
|
|
addr, MEMTXATTRS_UNSPECIFIED,
|
|
data, file_size);
|
|
}
|
|
}
|
|
|
|
total_size += mem_size;
|
|
if (addr < low)
|
|
low = addr;
|
|
if ((addr + mem_size) > high)
|
|
high = addr + mem_size;
|
|
|
|
data = NULL;
|
|
|
|
} else if (ph->p_type == PT_NOTE && elf_note_fn) {
|
|
struct elf_note *nhdr = NULL;
|
|
|
|
file_size = ph->p_filesz; /* Size of the range of ELF notes */
|
|
data_offset = ph->p_offset; /* Offset where the notes are located */
|
|
|
|
if (file_size > 0) {
|
|
if (g_mapped_file_get_length(mapped_file) <
|
|
file_size + data_offset) {
|
|
goto fail;
|
|
}
|
|
|
|
data = (uint8_t *)g_mapped_file_get_contents(mapped_file);
|
|
data += data_offset;
|
|
}
|
|
|
|
/*
|
|
* Search the ELF notes to find one with a type matching the
|
|
* value passed in via 'translate_opaque'
|
|
*/
|
|
nhdr = (struct elf_note *)data;
|
|
assert(translate_opaque != NULL);
|
|
nhdr = glue(get_elf_note_type, SZ)(nhdr, file_size, ph->p_align,
|
|
*(uint64_t *)translate_opaque);
|
|
if (nhdr != NULL) {
|
|
bool is64 =
|
|
sizeof(struct elf_note) == sizeof(struct elf64_note);
|
|
elf_note_fn((void *)nhdr, (void *)&ph->p_align, is64);
|
|
}
|
|
data = NULL;
|
|
}
|
|
}
|
|
|
|
if (lowaddr)
|
|
*lowaddr = (uint64_t)(elf_sword)low;
|
|
if (highaddr)
|
|
*highaddr = (uint64_t)(elf_sword)high;
|
|
ret = total_size;
|
|
fail:
|
|
g_mapped_file_unref(mapped_file);
|
|
g_free(phdr);
|
|
return ret;
|
|
}
|