qemu/hw/misc/aspeed_scu.c

474 lines
14 KiB
C

/*
* ASPEED System Control Unit
*
* Andrew Jeffery <andrew@aj.id.au>
*
* Copyright 2016 IBM Corp.
*
* This code is licensed under the GPL version 2 or later. See
* the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "hw/misc/aspeed_scu.h"
#include "hw/qdev-properties.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "qemu/bitops.h"
#include "qemu/log.h"
#include "crypto/random.h"
#include "trace.h"
#define TO_REG(offset) ((offset) >> 2)
#define PROT_KEY TO_REG(0x00)
#define SYS_RST_CTRL TO_REG(0x04)
#define CLK_SEL TO_REG(0x08)
#define CLK_STOP_CTRL TO_REG(0x0C)
#define FREQ_CNTR_CTRL TO_REG(0x10)
#define FREQ_CNTR_EVAL TO_REG(0x14)
#define IRQ_CTRL TO_REG(0x18)
#define D2PLL_PARAM TO_REG(0x1C)
#define MPLL_PARAM TO_REG(0x20)
#define HPLL_PARAM TO_REG(0x24)
#define FREQ_CNTR_RANGE TO_REG(0x28)
#define MISC_CTRL1 TO_REG(0x2C)
#define PCI_CTRL1 TO_REG(0x30)
#define PCI_CTRL2 TO_REG(0x34)
#define PCI_CTRL3 TO_REG(0x38)
#define SYS_RST_STATUS TO_REG(0x3C)
#define SOC_SCRATCH1 TO_REG(0x40)
#define SOC_SCRATCH2 TO_REG(0x44)
#define MAC_CLK_DELAY TO_REG(0x48)
#define MISC_CTRL2 TO_REG(0x4C)
#define VGA_SCRATCH1 TO_REG(0x50)
#define VGA_SCRATCH2 TO_REG(0x54)
#define VGA_SCRATCH3 TO_REG(0x58)
#define VGA_SCRATCH4 TO_REG(0x5C)
#define VGA_SCRATCH5 TO_REG(0x60)
#define VGA_SCRATCH6 TO_REG(0x64)
#define VGA_SCRATCH7 TO_REG(0x68)
#define VGA_SCRATCH8 TO_REG(0x6C)
#define HW_STRAP1 TO_REG(0x70)
#define RNG_CTRL TO_REG(0x74)
#define RNG_DATA TO_REG(0x78)
#define SILICON_REV TO_REG(0x7C)
#define PINMUX_CTRL1 TO_REG(0x80)
#define PINMUX_CTRL2 TO_REG(0x84)
#define PINMUX_CTRL3 TO_REG(0x88)
#define PINMUX_CTRL4 TO_REG(0x8C)
#define PINMUX_CTRL5 TO_REG(0x90)
#define PINMUX_CTRL6 TO_REG(0x94)
#define WDT_RST_CTRL TO_REG(0x9C)
#define PINMUX_CTRL7 TO_REG(0xA0)
#define PINMUX_CTRL8 TO_REG(0xA4)
#define PINMUX_CTRL9 TO_REG(0xA8)
#define WAKEUP_EN TO_REG(0xC0)
#define WAKEUP_CTRL TO_REG(0xC4)
#define HW_STRAP2 TO_REG(0xD0)
#define FREE_CNTR4 TO_REG(0xE0)
#define FREE_CNTR4_EXT TO_REG(0xE4)
#define CPU2_CTRL TO_REG(0x100)
#define CPU2_BASE_SEG1 TO_REG(0x104)
#define CPU2_BASE_SEG2 TO_REG(0x108)
#define CPU2_BASE_SEG3 TO_REG(0x10C)
#define CPU2_BASE_SEG4 TO_REG(0x110)
#define CPU2_BASE_SEG5 TO_REG(0x114)
#define CPU2_CACHE_CTRL TO_REG(0x118)
#define UART_HPLL_CLK TO_REG(0x160)
#define PCIE_CTRL TO_REG(0x180)
#define BMC_MMIO_CTRL TO_REG(0x184)
#define RELOC_DECODE_BASE1 TO_REG(0x188)
#define RELOC_DECODE_BASE2 TO_REG(0x18C)
#define MAILBOX_DECODE_BASE TO_REG(0x190)
#define SRAM_DECODE_BASE1 TO_REG(0x194)
#define SRAM_DECODE_BASE2 TO_REG(0x198)
#define BMC_REV TO_REG(0x19C)
#define BMC_DEV_ID TO_REG(0x1A4)
#define SCU_IO_REGION_SIZE 0x1000
static const uint32_t ast2400_a0_resets[ASPEED_SCU_NR_REGS] = {
[SYS_RST_CTRL] = 0xFFCFFEDCU,
[CLK_SEL] = 0xF3F40000U,
[CLK_STOP_CTRL] = 0x19FC3E8BU,
[D2PLL_PARAM] = 0x00026108U,
[MPLL_PARAM] = 0x00030291U,
[HPLL_PARAM] = 0x00000291U,
[MISC_CTRL1] = 0x00000010U,
[PCI_CTRL1] = 0x20001A03U,
[PCI_CTRL2] = 0x20001A03U,
[PCI_CTRL3] = 0x04000030U,
[SYS_RST_STATUS] = 0x00000001U,
[SOC_SCRATCH1] = 0x000000C0U, /* SoC completed DRAM init */
[MISC_CTRL2] = 0x00000023U,
[RNG_CTRL] = 0x0000000EU,
[PINMUX_CTRL2] = 0x0000F000U,
[PINMUX_CTRL3] = 0x01000000U,
[PINMUX_CTRL4] = 0x000000FFU,
[PINMUX_CTRL5] = 0x0000A000U,
[WDT_RST_CTRL] = 0x003FFFF3U,
[PINMUX_CTRL8] = 0xFFFF0000U,
[PINMUX_CTRL9] = 0x000FFFFFU,
[FREE_CNTR4] = 0x000000FFU,
[FREE_CNTR4_EXT] = 0x000000FFU,
[CPU2_BASE_SEG1] = 0x80000000U,
[CPU2_BASE_SEG4] = 0x1E600000U,
[CPU2_BASE_SEG5] = 0xC0000000U,
[UART_HPLL_CLK] = 0x00001903U,
[PCIE_CTRL] = 0x0000007BU,
[BMC_DEV_ID] = 0x00002402U
};
/* SCU70 bit 23: 0 24Mhz. bit 11:9: 0b001 AXI:ABH ratio 2:1 */
/* AST2500 revision A1 */
static const uint32_t ast2500_a1_resets[ASPEED_SCU_NR_REGS] = {
[SYS_RST_CTRL] = 0xFFCFFEDCU,
[CLK_SEL] = 0xF3F40000U,
[CLK_STOP_CTRL] = 0x19FC3E8BU,
[D2PLL_PARAM] = 0x00026108U,
[MPLL_PARAM] = 0x00030291U,
[HPLL_PARAM] = 0x93000400U,
[MISC_CTRL1] = 0x00000010U,
[PCI_CTRL1] = 0x20001A03U,
[PCI_CTRL2] = 0x20001A03U,
[PCI_CTRL3] = 0x04000030U,
[SYS_RST_STATUS] = 0x00000001U,
[SOC_SCRATCH1] = 0x000000C0U, /* SoC completed DRAM init */
[MISC_CTRL2] = 0x00000023U,
[RNG_CTRL] = 0x0000000EU,
[PINMUX_CTRL2] = 0x0000F000U,
[PINMUX_CTRL3] = 0x03000000U,
[PINMUX_CTRL4] = 0x00000000U,
[PINMUX_CTRL5] = 0x0000A000U,
[WDT_RST_CTRL] = 0x023FFFF3U,
[PINMUX_CTRL8] = 0xFFFF0000U,
[PINMUX_CTRL9] = 0x000FFFFFU,
[FREE_CNTR4] = 0x000000FFU,
[FREE_CNTR4_EXT] = 0x000000FFU,
[CPU2_BASE_SEG1] = 0x80000000U,
[CPU2_BASE_SEG4] = 0x1E600000U,
[CPU2_BASE_SEG5] = 0xC0000000U,
[UART_HPLL_CLK] = 0x00001903U,
[PCIE_CTRL] = 0x0000007BU,
[BMC_DEV_ID] = 0x00002402U
};
static uint32_t aspeed_scu_get_random(void)
{
Error *err = NULL;
uint32_t num;
if (qcrypto_random_bytes((uint8_t *)&num, sizeof(num), &err)) {
error_report_err(err);
exit(1);
}
return num;
}
static void aspeed_scu_set_apb_freq(AspeedSCUState *s)
{
uint32_t apb_divider;
switch (s->silicon_rev) {
case AST2400_A0_SILICON_REV:
case AST2400_A1_SILICON_REV:
apb_divider = 2;
break;
case AST2500_A0_SILICON_REV:
case AST2500_A1_SILICON_REV:
apb_divider = 4;
break;
default:
g_assert_not_reached();
}
s->apb_freq = s->hpll / (SCU_CLK_GET_PCLK_DIV(s->regs[CLK_SEL]) + 1)
/ apb_divider;
}
static uint64_t aspeed_scu_read(void *opaque, hwaddr offset, unsigned size)
{
AspeedSCUState *s = ASPEED_SCU(opaque);
int reg = TO_REG(offset);
if (reg >= ARRAY_SIZE(s->regs)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Out-of-bounds read at offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
return 0;
}
switch (reg) {
case RNG_DATA:
/* On hardware, RNG_DATA works regardless of
* the state of the enable bit in RNG_CTRL
*/
s->regs[RNG_DATA] = aspeed_scu_get_random();
break;
case WAKEUP_EN:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Read of write-only offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
break;
}
return s->regs[reg];
}
static void aspeed_scu_write(void *opaque, hwaddr offset, uint64_t data,
unsigned size)
{
AspeedSCUState *s = ASPEED_SCU(opaque);
int reg = TO_REG(offset);
if (reg >= ARRAY_SIZE(s->regs)) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Out-of-bounds write at offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
return;
}
if (reg > PROT_KEY && reg < CPU2_BASE_SEG1 &&
!s->regs[PROT_KEY]) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: SCU is locked!\n", __func__);
return;
}
trace_aspeed_scu_write(offset, size, data);
switch (reg) {
case PROT_KEY:
s->regs[reg] = (data == ASPEED_SCU_PROT_KEY) ? 1 : 0;
return;
case CLK_SEL:
s->regs[reg] = data;
aspeed_scu_set_apb_freq(s);
break;
case HW_STRAP1:
if (ASPEED_IS_AST2500(s->regs[SILICON_REV])) {
s->regs[HW_STRAP1] |= data;
return;
}
/* Jump to assignment below */
break;
case SILICON_REV:
if (ASPEED_IS_AST2500(s->regs[SILICON_REV])) {
s->regs[HW_STRAP1] &= ~data;
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write to read-only offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
}
/* Avoid assignment below, we've handled everything */
return;
case FREQ_CNTR_EVAL:
case VGA_SCRATCH1 ... VGA_SCRATCH8:
case RNG_DATA:
case FREE_CNTR4:
case FREE_CNTR4_EXT:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Write to read-only offset 0x%" HWADDR_PRIx "\n",
__func__, offset);
return;
}
s->regs[reg] = data;
}
static const MemoryRegionOps aspeed_scu_ops = {
.read = aspeed_scu_read,
.write = aspeed_scu_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.valid.unaligned = false,
};
static uint32_t aspeed_scu_get_clkin(AspeedSCUState *s)
{
if (s->hw_strap1 & SCU_HW_STRAP_CLK_25M_IN) {
return 25000000;
} else if (s->hw_strap1 & SCU_HW_STRAP_CLK_48M_IN) {
return 48000000;
} else {
return 24000000;
}
}
/*
* Strapped frequencies for the AST2400 in MHz. They depend on the
* clkin frequency.
*/
static const uint32_t hpll_ast2400_freqs[][4] = {
{ 384, 360, 336, 408 }, /* 24MHz or 48MHz */
{ 400, 375, 350, 425 }, /* 25MHz */
};
static uint32_t aspeed_scu_calc_hpll_ast2400(AspeedSCUState *s)
{
uint32_t hpll_reg = s->regs[HPLL_PARAM];
uint8_t freq_select;
bool clk_25m_in;
if (hpll_reg & SCU_AST2400_H_PLL_OFF) {
return 0;
}
if (hpll_reg & SCU_AST2400_H_PLL_PROGRAMMED) {
uint32_t multiplier = 1;
if (!(hpll_reg & SCU_AST2400_H_PLL_BYPASS_EN)) {
uint32_t n = (hpll_reg >> 5) & 0x3f;
uint32_t od = (hpll_reg >> 4) & 0x1;
uint32_t d = hpll_reg & 0xf;
multiplier = (2 - od) * ((n + 2) / (d + 1));
}
return s->clkin * multiplier;
}
/* HW strapping */
clk_25m_in = !!(s->hw_strap1 & SCU_HW_STRAP_CLK_25M_IN);
freq_select = SCU_AST2400_HW_STRAP_GET_H_PLL_CLK(s->hw_strap1);
return hpll_ast2400_freqs[clk_25m_in][freq_select] * 1000000;
}
static uint32_t aspeed_scu_calc_hpll_ast2500(AspeedSCUState *s)
{
uint32_t hpll_reg = s->regs[HPLL_PARAM];
uint32_t multiplier = 1;
if (hpll_reg & SCU_H_PLL_OFF) {
return 0;
}
if (!(hpll_reg & SCU_H_PLL_BYPASS_EN)) {
uint32_t p = (hpll_reg >> 13) & 0x3f;
uint32_t m = (hpll_reg >> 5) & 0xff;
uint32_t n = hpll_reg & 0x1f;
multiplier = ((m + 1) / (n + 1)) / (p + 1);
}
return s->clkin * multiplier;
}
static void aspeed_scu_reset(DeviceState *dev)
{
AspeedSCUState *s = ASPEED_SCU(dev);
const uint32_t *reset;
uint32_t (*calc_hpll)(AspeedSCUState *s);
switch (s->silicon_rev) {
case AST2400_A0_SILICON_REV:
case AST2400_A1_SILICON_REV:
reset = ast2400_a0_resets;
calc_hpll = aspeed_scu_calc_hpll_ast2400;
break;
case AST2500_A0_SILICON_REV:
case AST2500_A1_SILICON_REV:
reset = ast2500_a1_resets;
calc_hpll = aspeed_scu_calc_hpll_ast2500;
break;
default:
g_assert_not_reached();
}
memcpy(s->regs, reset, sizeof(s->regs));
s->regs[SILICON_REV] = s->silicon_rev;
s->regs[HW_STRAP1] = s->hw_strap1;
s->regs[HW_STRAP2] = s->hw_strap2;
s->regs[PROT_KEY] = s->hw_prot_key;
/*
* All registers are set. Now compute the frequencies of the main clocks
*/
s->clkin = aspeed_scu_get_clkin(s);
s->hpll = calc_hpll(s);
aspeed_scu_set_apb_freq(s);
}
static uint32_t aspeed_silicon_revs[] = {
AST2400_A0_SILICON_REV,
AST2400_A1_SILICON_REV,
AST2500_A0_SILICON_REV,
AST2500_A1_SILICON_REV,
};
bool is_supported_silicon_rev(uint32_t silicon_rev)
{
int i;
for (i = 0; i < ARRAY_SIZE(aspeed_silicon_revs); i++) {
if (silicon_rev == aspeed_silicon_revs[i]) {
return true;
}
}
return false;
}
static void aspeed_scu_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedSCUState *s = ASPEED_SCU(dev);
if (!is_supported_silicon_rev(s->silicon_rev)) {
error_setg(errp, "Unknown silicon revision: 0x%" PRIx32,
s->silicon_rev);
return;
}
memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_scu_ops, s,
TYPE_ASPEED_SCU, SCU_IO_REGION_SIZE);
sysbus_init_mmio(sbd, &s->iomem);
}
static const VMStateDescription vmstate_aspeed_scu = {
.name = "aspeed.scu",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, AspeedSCUState, ASPEED_SCU_NR_REGS),
VMSTATE_END_OF_LIST()
}
};
static Property aspeed_scu_properties[] = {
DEFINE_PROP_UINT32("silicon-rev", AspeedSCUState, silicon_rev, 0),
DEFINE_PROP_UINT32("hw-strap1", AspeedSCUState, hw_strap1, 0),
DEFINE_PROP_UINT32("hw-strap2", AspeedSCUState, hw_strap2, 0),
DEFINE_PROP_UINT32("hw-prot-key", AspeedSCUState, hw_prot_key, 0),
DEFINE_PROP_END_OF_LIST(),
};
static void aspeed_scu_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = aspeed_scu_realize;
dc->reset = aspeed_scu_reset;
dc->desc = "ASPEED System Control Unit";
dc->vmsd = &vmstate_aspeed_scu;
dc->props = aspeed_scu_properties;
}
static const TypeInfo aspeed_scu_info = {
.name = TYPE_ASPEED_SCU,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(AspeedSCUState),
.class_init = aspeed_scu_class_init,
};
static void aspeed_scu_register_types(void)
{
type_register_static(&aspeed_scu_info);
}
type_init(aspeed_scu_register_types);