qemu/hw/intc/spapr_xive.c

1487 lines
45 KiB
C

/*
* QEMU PowerPC sPAPR XIVE interrupt controller model
*
* Copyright (c) 2017-2018, IBM Corporation.
*
* This code is licensed under the GPL version 2 or later. See the
* COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "target/ppc/cpu.h"
#include "sysemu/cpus.h"
#include "monitor/monitor.h"
#include "hw/ppc/fdt.h"
#include "hw/ppc/spapr.h"
#include "hw/ppc/spapr_xive.h"
#include "hw/ppc/xive.h"
#include "hw/ppc/xive_regs.h"
/*
* XIVE Virtualization Controller BAR and Thread Managment BAR that we
* use for the ESB pages and the TIMA pages
*/
#define SPAPR_XIVE_VC_BASE 0x0006010000000000ull
#define SPAPR_XIVE_TM_BASE 0x0006030203180000ull
/*
* The allocation of VP blocks is a complex operation in OPAL and the
* VP identifiers have a relation with the number of HW chips, the
* size of the VP blocks, VP grouping, etc. The QEMU sPAPR XIVE
* controller model does not have the same constraints and can use a
* simple mapping scheme of the CPU vcpu_id
*
* These identifiers are never returned to the OS.
*/
#define SPAPR_XIVE_NVT_BASE 0x400
/*
* The sPAPR machine has a unique XIVE IC device. Assign a fixed value
* to the controller block id value. It can nevertheless be changed
* for testing purpose.
*/
#define SPAPR_XIVE_BLOCK_ID 0x0
/*
* sPAPR NVT and END indexing helpers
*/
static uint32_t spapr_xive_nvt_to_target(uint8_t nvt_blk, uint32_t nvt_idx)
{
return nvt_idx - SPAPR_XIVE_NVT_BASE;
}
static void spapr_xive_cpu_to_nvt(PowerPCCPU *cpu,
uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
{
assert(cpu);
if (out_nvt_blk) {
*out_nvt_blk = SPAPR_XIVE_BLOCK_ID;
}
if (out_nvt_blk) {
*out_nvt_idx = SPAPR_XIVE_NVT_BASE + cpu->vcpu_id;
}
}
static int spapr_xive_target_to_nvt(uint32_t target,
uint8_t *out_nvt_blk, uint32_t *out_nvt_idx)
{
PowerPCCPU *cpu = spapr_find_cpu(target);
if (!cpu) {
return -1;
}
spapr_xive_cpu_to_nvt(cpu, out_nvt_blk, out_nvt_idx);
return 0;
}
/*
* sPAPR END indexing uses a simple mapping of the CPU vcpu_id, 8
* priorities per CPU
*/
static void spapr_xive_cpu_to_end(PowerPCCPU *cpu, uint8_t prio,
uint8_t *out_end_blk, uint32_t *out_end_idx)
{
assert(cpu);
if (out_end_blk) {
*out_end_blk = SPAPR_XIVE_BLOCK_ID;
}
if (out_end_idx) {
*out_end_idx = (cpu->vcpu_id << 3) + prio;
}
}
static int spapr_xive_target_to_end(uint32_t target, uint8_t prio,
uint8_t *out_end_blk, uint32_t *out_end_idx)
{
PowerPCCPU *cpu = spapr_find_cpu(target);
if (!cpu) {
return -1;
}
spapr_xive_cpu_to_end(cpu, prio, out_end_blk, out_end_idx);
return 0;
}
/*
* On sPAPR machines, use a simplified output for the XIVE END
* structure dumping only the information related to the OS EQ.
*/
static void spapr_xive_end_pic_print_info(sPAPRXive *xive, XiveEND *end,
Monitor *mon)
{
uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1);
uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1);
uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0);
uint32_t qentries = 1 << (qsize + 10);
uint32_t nvt = xive_get_field32(END_W6_NVT_INDEX, end->w6);
uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
monitor_printf(mon, "%3d/%d % 6d/%5d ^%d",
spapr_xive_nvt_to_target(0, nvt),
priority, qindex, qentries, qgen);
xive_end_queue_pic_print_info(end, 6, mon);
monitor_printf(mon, "]");
}
void spapr_xive_pic_print_info(sPAPRXive *xive, Monitor *mon)
{
XiveSource *xsrc = &xive->source;
int i;
monitor_printf(mon, " LSIN PQ EISN CPU/PRIO EQ\n");
for (i = 0; i < xive->nr_irqs; i++) {
uint8_t pq = xive_source_esb_get(xsrc, i);
XiveEAS *eas = &xive->eat[i];
if (!xive_eas_is_valid(eas)) {
continue;
}
monitor_printf(mon, " %08x %s %c%c%c %s %08x ", i,
xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI",
pq & XIVE_ESB_VAL_P ? 'P' : '-',
pq & XIVE_ESB_VAL_Q ? 'Q' : '-',
xsrc->status[i] & XIVE_STATUS_ASSERTED ? 'A' : ' ',
xive_eas_is_masked(eas) ? "M" : " ",
(int) xive_get_field64(EAS_END_DATA, eas->w));
if (!xive_eas_is_masked(eas)) {
uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w);
XiveEND *end;
assert(end_idx < xive->nr_ends);
end = &xive->endt[end_idx];
if (xive_end_is_valid(end)) {
spapr_xive_end_pic_print_info(xive, end, mon);
}
}
monitor_printf(mon, "\n");
}
}
static void spapr_xive_map_mmio(sPAPRXive *xive)
{
sysbus_mmio_map(SYS_BUS_DEVICE(xive), 0, xive->vc_base);
sysbus_mmio_map(SYS_BUS_DEVICE(xive), 1, xive->end_base);
sysbus_mmio_map(SYS_BUS_DEVICE(xive), 2, xive->tm_base);
}
/*
* When a Virtual Processor is scheduled to run on a HW thread, the
* hypervisor pushes its identifier in the OS CAM line. Emulate the
* same behavior under QEMU.
*/
void spapr_xive_set_tctx_os_cam(XiveTCTX *tctx)
{
uint8_t nvt_blk;
uint32_t nvt_idx;
uint32_t nvt_cam;
spapr_xive_cpu_to_nvt(POWERPC_CPU(tctx->cs), &nvt_blk, &nvt_idx);
nvt_cam = cpu_to_be32(TM_QW1W2_VO | xive_nvt_cam_line(nvt_blk, nvt_idx));
memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &nvt_cam, 4);
}
static void spapr_xive_end_reset(XiveEND *end)
{
memset(end, 0, sizeof(*end));
/* switch off the escalation and notification ESBs */
end->w1 = cpu_to_be32(END_W1_ESe_Q | END_W1_ESn_Q);
}
static void spapr_xive_reset(void *dev)
{
sPAPRXive *xive = SPAPR_XIVE(dev);
int i;
/*
* The XiveSource has its own reset handler, which mask off all
* IRQs (!P|Q)
*/
/* Mask all valid EASs in the IRQ number space. */
for (i = 0; i < xive->nr_irqs; i++) {
XiveEAS *eas = &xive->eat[i];
if (xive_eas_is_valid(eas)) {
eas->w = cpu_to_be64(EAS_VALID | EAS_MASKED);
} else {
eas->w = 0;
}
}
/* Clear all ENDs */
for (i = 0; i < xive->nr_ends; i++) {
spapr_xive_end_reset(&xive->endt[i]);
}
}
static void spapr_xive_instance_init(Object *obj)
{
sPAPRXive *xive = SPAPR_XIVE(obj);
object_initialize(&xive->source, sizeof(xive->source), TYPE_XIVE_SOURCE);
object_property_add_child(obj, "source", OBJECT(&xive->source), NULL);
object_initialize(&xive->end_source, sizeof(xive->end_source),
TYPE_XIVE_END_SOURCE);
object_property_add_child(obj, "end_source", OBJECT(&xive->end_source),
NULL);
}
static void spapr_xive_realize(DeviceState *dev, Error **errp)
{
sPAPRXive *xive = SPAPR_XIVE(dev);
XiveSource *xsrc = &xive->source;
XiveENDSource *end_xsrc = &xive->end_source;
Error *local_err = NULL;
if (!xive->nr_irqs) {
error_setg(errp, "Number of interrupt needs to be greater 0");
return;
}
if (!xive->nr_ends) {
error_setg(errp, "Number of interrupt needs to be greater 0");
return;
}
/*
* Initialize the internal sources, for IPIs and virtual devices.
*/
object_property_set_int(OBJECT(xsrc), xive->nr_irqs, "nr-irqs",
&error_fatal);
object_property_add_const_link(OBJECT(xsrc), "xive", OBJECT(xive),
&error_fatal);
object_property_set_bool(OBJECT(xsrc), true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/*
* Initialize the END ESB source
*/
object_property_set_int(OBJECT(end_xsrc), xive->nr_irqs, "nr-ends",
&error_fatal);
object_property_add_const_link(OBJECT(end_xsrc), "xive", OBJECT(xive),
&error_fatal);
object_property_set_bool(OBJECT(end_xsrc), true, "realized", &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
/* Set the mapping address of the END ESB pages after the source ESBs */
xive->end_base = xive->vc_base + (1ull << xsrc->esb_shift) * xsrc->nr_irqs;
/*
* Allocate the routing tables
*/
xive->eat = g_new0(XiveEAS, xive->nr_irqs);
xive->endt = g_new0(XiveEND, xive->nr_ends);
/* TIMA initialization */
memory_region_init_io(&xive->tm_mmio, OBJECT(xive), &xive_tm_ops, xive,
"xive.tima", 4ull << TM_SHIFT);
/* Define all XIVE MMIO regions on SysBus */
sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xsrc->esb_mmio);
sysbus_init_mmio(SYS_BUS_DEVICE(xive), &end_xsrc->esb_mmio);
sysbus_init_mmio(SYS_BUS_DEVICE(xive), &xive->tm_mmio);
/* Map all regions */
spapr_xive_map_mmio(xive);
qemu_register_reset(spapr_xive_reset, dev);
}
static int spapr_xive_get_eas(XiveRouter *xrtr, uint8_t eas_blk,
uint32_t eas_idx, XiveEAS *eas)
{
sPAPRXive *xive = SPAPR_XIVE(xrtr);
if (eas_idx >= xive->nr_irqs) {
return -1;
}
*eas = xive->eat[eas_idx];
return 0;
}
static int spapr_xive_get_end(XiveRouter *xrtr,
uint8_t end_blk, uint32_t end_idx, XiveEND *end)
{
sPAPRXive *xive = SPAPR_XIVE(xrtr);
if (end_idx >= xive->nr_ends) {
return -1;
}
memcpy(end, &xive->endt[end_idx], sizeof(XiveEND));
return 0;
}
static int spapr_xive_write_end(XiveRouter *xrtr, uint8_t end_blk,
uint32_t end_idx, XiveEND *end,
uint8_t word_number)
{
sPAPRXive *xive = SPAPR_XIVE(xrtr);
if (end_idx >= xive->nr_ends) {
return -1;
}
memcpy(&xive->endt[end_idx], end, sizeof(XiveEND));
return 0;
}
static int spapr_xive_get_nvt(XiveRouter *xrtr,
uint8_t nvt_blk, uint32_t nvt_idx, XiveNVT *nvt)
{
uint32_t vcpu_id = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
if (!cpu) {
/* TODO: should we assert() if we can find a NVT ? */
return -1;
}
/*
* sPAPR does not maintain a NVT table. Return that the NVT is
* valid if we have found a matching CPU
*/
nvt->w0 = cpu_to_be32(NVT_W0_VALID);
return 0;
}
static int spapr_xive_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk,
uint32_t nvt_idx, XiveNVT *nvt,
uint8_t word_number)
{
/*
* We don't need to write back to the NVTs because the sPAPR
* machine should never hit a non-scheduled NVT. It should never
* get called.
*/
g_assert_not_reached();
}
static const VMStateDescription vmstate_spapr_xive_end = {
.name = TYPE_SPAPR_XIVE "/end",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField []) {
VMSTATE_UINT32(w0, XiveEND),
VMSTATE_UINT32(w1, XiveEND),
VMSTATE_UINT32(w2, XiveEND),
VMSTATE_UINT32(w3, XiveEND),
VMSTATE_UINT32(w4, XiveEND),
VMSTATE_UINT32(w5, XiveEND),
VMSTATE_UINT32(w6, XiveEND),
VMSTATE_UINT32(w7, XiveEND),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr_xive_eas = {
.name = TYPE_SPAPR_XIVE "/eas",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField []) {
VMSTATE_UINT64(w, XiveEAS),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_spapr_xive = {
.name = TYPE_SPAPR_XIVE,
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_EQUAL(nr_irqs, sPAPRXive, NULL),
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(eat, sPAPRXive, nr_irqs,
vmstate_spapr_xive_eas, XiveEAS),
VMSTATE_STRUCT_VARRAY_POINTER_UINT32(endt, sPAPRXive, nr_ends,
vmstate_spapr_xive_end, XiveEND),
VMSTATE_END_OF_LIST()
},
};
static Property spapr_xive_properties[] = {
DEFINE_PROP_UINT32("nr-irqs", sPAPRXive, nr_irqs, 0),
DEFINE_PROP_UINT32("nr-ends", sPAPRXive, nr_ends, 0),
DEFINE_PROP_UINT64("vc-base", sPAPRXive, vc_base, SPAPR_XIVE_VC_BASE),
DEFINE_PROP_UINT64("tm-base", sPAPRXive, tm_base, SPAPR_XIVE_TM_BASE),
DEFINE_PROP_END_OF_LIST(),
};
static void spapr_xive_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass);
dc->desc = "sPAPR XIVE Interrupt Controller";
dc->props = spapr_xive_properties;
dc->realize = spapr_xive_realize;
dc->vmsd = &vmstate_spapr_xive;
xrc->get_eas = spapr_xive_get_eas;
xrc->get_end = spapr_xive_get_end;
xrc->write_end = spapr_xive_write_end;
xrc->get_nvt = spapr_xive_get_nvt;
xrc->write_nvt = spapr_xive_write_nvt;
}
static const TypeInfo spapr_xive_info = {
.name = TYPE_SPAPR_XIVE,
.parent = TYPE_XIVE_ROUTER,
.instance_init = spapr_xive_instance_init,
.instance_size = sizeof(sPAPRXive),
.class_init = spapr_xive_class_init,
};
static void spapr_xive_register_types(void)
{
type_register_static(&spapr_xive_info);
}
type_init(spapr_xive_register_types)
bool spapr_xive_irq_claim(sPAPRXive *xive, uint32_t lisn, bool lsi)
{
XiveSource *xsrc = &xive->source;
if (lisn >= xive->nr_irqs) {
return false;
}
xive->eat[lisn].w |= cpu_to_be64(EAS_VALID);
xive_source_irq_set(xsrc, lisn, lsi);
return true;
}
bool spapr_xive_irq_free(sPAPRXive *xive, uint32_t lisn)
{
XiveSource *xsrc = &xive->source;
if (lisn >= xive->nr_irqs) {
return false;
}
xive->eat[lisn].w &= cpu_to_be64(~EAS_VALID);
xive_source_irq_set(xsrc, lisn, false);
return true;
}
qemu_irq spapr_xive_qirq(sPAPRXive *xive, uint32_t lisn)
{
XiveSource *xsrc = &xive->source;
if (lisn >= xive->nr_irqs) {
return NULL;
}
/* The sPAPR machine/device should have claimed the IRQ before */
assert(xive_eas_is_valid(&xive->eat[lisn]));
return xive_source_qirq(xsrc, lisn);
}
/*
* XIVE hcalls
*
* The terminology used by the XIVE hcalls is the following :
*
* TARGET vCPU number
* EQ Event Queue assigned by OS to receive event data
* ESB page for source interrupt management
* LISN Logical Interrupt Source Number identifying a source in the
* machine
* EISN Effective Interrupt Source Number used by guest OS to
* identify source in the guest
*
* The EAS, END, NVT structures are not exposed.
*/
/*
* Linux hosts under OPAL reserve priority 7 for their own escalation
* interrupts (DD2.X POWER9). So we only allow the guest to use
* priorities [0..6].
*/
static bool spapr_xive_priority_is_reserved(uint8_t priority)
{
switch (priority) {
case 0 ... 6:
return false;
case 7: /* OPAL escalation queue */
default:
return true;
}
}
/*
* The H_INT_GET_SOURCE_INFO hcall() is used to obtain the logical
* real address of the MMIO page through which the Event State Buffer
* entry associated with the value of the "lisn" parameter is managed.
*
* Parameters:
* Input
* - R4: "flags"
* Bits 0-63 reserved
* - R5: "lisn" is per "interrupts", "interrupt-map", or
* "ibm,xive-lisn-ranges" properties, or as returned by the
* ibm,query-interrupt-source-number RTAS call, or as returned
* by the H_ALLOCATE_VAS_WINDOW hcall
*
* Output
* - R4: "flags"
* Bits 0-59: Reserved
* Bit 60: H_INT_ESB must be used for Event State Buffer
* management
* Bit 61: 1 == LSI 0 == MSI
* Bit 62: the full function page supports trigger
* Bit 63: Store EOI Supported
* - R5: Logical Real address of full function Event State Buffer
* management page, -1 if H_INT_ESB hcall flag is set to 1.
* - R6: Logical Real Address of trigger only Event State Buffer
* management page or -1.
* - R7: Power of 2 page size for the ESB management pages returned in
* R5 and R6.
*/
#define SPAPR_XIVE_SRC_H_INT_ESB PPC_BIT(60) /* ESB manage with H_INT_ESB */
#define SPAPR_XIVE_SRC_LSI PPC_BIT(61) /* Virtual LSI type */
#define SPAPR_XIVE_SRC_TRIGGER PPC_BIT(62) /* Trigger and management
on same page */
#define SPAPR_XIVE_SRC_STORE_EOI PPC_BIT(63) /* Store EOI support */
static target_ulong h_int_get_source_info(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
sPAPRXive *xive = spapr->xive;
XiveSource *xsrc = &xive->source;
target_ulong flags = args[0];
target_ulong lisn = args[1];
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
if (flags) {
return H_PARAMETER;
}
if (lisn >= xive->nr_irqs) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
if (!xive_eas_is_valid(&xive->eat[lisn])) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
/*
* All sources are emulated under the main XIVE object and share
* the same characteristics.
*/
args[0] = 0;
if (!xive_source_esb_has_2page(xsrc)) {
args[0] |= SPAPR_XIVE_SRC_TRIGGER;
}
if (xsrc->esb_flags & XIVE_SRC_STORE_EOI) {
args[0] |= SPAPR_XIVE_SRC_STORE_EOI;
}
/*
* Force the use of the H_INT_ESB hcall in case of an LSI
* interrupt. This is necessary under KVM to re-trigger the
* interrupt if the level is still asserted
*/
if (xive_source_irq_is_lsi(xsrc, lisn)) {
args[0] |= SPAPR_XIVE_SRC_H_INT_ESB | SPAPR_XIVE_SRC_LSI;
}
if (!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
args[1] = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn);
} else {
args[1] = -1;
}
if (xive_source_esb_has_2page(xsrc) &&
!(args[0] & SPAPR_XIVE_SRC_H_INT_ESB)) {
args[2] = xive->vc_base + xive_source_esb_page(xsrc, lisn);
} else {
args[2] = -1;
}
if (xive_source_esb_has_2page(xsrc)) {
args[3] = xsrc->esb_shift - 1;
} else {
args[3] = xsrc->esb_shift;
}
return H_SUCCESS;
}
/*
* The H_INT_SET_SOURCE_CONFIG hcall() is used to assign a Logical
* Interrupt Source to a target. The Logical Interrupt Source is
* designated with the "lisn" parameter and the target is designated
* with the "target" and "priority" parameters. Upon return from the
* hcall(), no additional interrupts will be directed to the old EQ.
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-61: Reserved
* Bit 62: set the "eisn" in the EAS
* Bit 63: masks the interrupt source in the hardware interrupt
* control structure. An interrupt masked by this mechanism will
* be dropped, but it's source state bits will still be
* set. There is no race-free way of unmasking and restoring the
* source. Thus this should only be used in interrupts that are
* also masked at the source, and only in cases where the
* interrupt is not meant to be used for a large amount of time
* because no valid target exists for it for example
* - R5: "lisn" is per "interrupts", "interrupt-map", or
* "ibm,xive-lisn-ranges" properties, or as returned by the
* ibm,query-interrupt-source-number RTAS call, or as returned by
* the H_ALLOCATE_VAS_WINDOW hcall
* - R6: "target" is per "ibm,ppc-interrupt-server#s" or
* "ibm,ppc-interrupt-gserver#s"
* - R7: "priority" is a valid priority not in
* "ibm,plat-res-int-priorities"
* - R8: "eisn" is the guest EISN associated with the "lisn"
*
* Output:
* - None
*/
#define SPAPR_XIVE_SRC_SET_EISN PPC_BIT(62)
#define SPAPR_XIVE_SRC_MASK PPC_BIT(63)
static target_ulong h_int_set_source_config(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
sPAPRXive *xive = spapr->xive;
XiveEAS eas, new_eas;
target_ulong flags = args[0];
target_ulong lisn = args[1];
target_ulong target = args[2];
target_ulong priority = args[3];
target_ulong eisn = args[4];
uint8_t end_blk;
uint32_t end_idx;
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
if (flags & ~(SPAPR_XIVE_SRC_SET_EISN | SPAPR_XIVE_SRC_MASK)) {
return H_PARAMETER;
}
if (lisn >= xive->nr_irqs) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
eas = xive->eat[lisn];
if (!xive_eas_is_valid(&eas)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
/* priority 0xff is used to reset the EAS */
if (priority == 0xff) {
new_eas.w = cpu_to_be64(EAS_VALID | EAS_MASKED);
goto out;
}
if (flags & SPAPR_XIVE_SRC_MASK) {
new_eas.w = eas.w | cpu_to_be64(EAS_MASKED);
} else {
new_eas.w = eas.w & cpu_to_be64(~EAS_MASKED);
}
if (spapr_xive_priority_is_reserved(priority)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
" is reserved\n", priority);
return H_P4;
}
/*
* Validate that "target" is part of the list of threads allocated
* to the partition. For that, find the END corresponding to the
* target.
*/
if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
return H_P3;
}
new_eas.w = xive_set_field64(EAS_END_BLOCK, new_eas.w, end_blk);
new_eas.w = xive_set_field64(EAS_END_INDEX, new_eas.w, end_idx);
if (flags & SPAPR_XIVE_SRC_SET_EISN) {
new_eas.w = xive_set_field64(EAS_END_DATA, new_eas.w, eisn);
}
out:
xive->eat[lisn] = new_eas;
return H_SUCCESS;
}
/*
* The H_INT_GET_SOURCE_CONFIG hcall() is used to determine to which
* target/priority pair is assigned to the specified Logical Interrupt
* Source.
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-63 Reserved
* - R5: "lisn" is per "interrupts", "interrupt-map", or
* "ibm,xive-lisn-ranges" properties, or as returned by the
* ibm,query-interrupt-source-number RTAS call, or as
* returned by the H_ALLOCATE_VAS_WINDOW hcall
*
* Output:
* - R4: Target to which the specified Logical Interrupt Source is
* assigned
* - R5: Priority to which the specified Logical Interrupt Source is
* assigned
* - R6: EISN for the specified Logical Interrupt Source (this will be
* equivalent to the LISN if not changed by H_INT_SET_SOURCE_CONFIG)
*/
static target_ulong h_int_get_source_config(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
sPAPRXive *xive = spapr->xive;
target_ulong flags = args[0];
target_ulong lisn = args[1];
XiveEAS eas;
XiveEND *end;
uint8_t nvt_blk;
uint32_t end_idx, nvt_idx;
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
if (flags) {
return H_PARAMETER;
}
if (lisn >= xive->nr_irqs) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
eas = xive->eat[lisn];
if (!xive_eas_is_valid(&eas)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
/* EAS_END_BLOCK is unused on sPAPR */
end_idx = xive_get_field64(EAS_END_INDEX, eas.w);
assert(end_idx < xive->nr_ends);
end = &xive->endt[end_idx];
nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6);
nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6);
args[0] = spapr_xive_nvt_to_target(nvt_blk, nvt_idx);
if (xive_eas_is_masked(&eas)) {
args[1] = 0xff;
} else {
args[1] = xive_get_field32(END_W7_F0_PRIORITY, end->w7);
}
args[2] = xive_get_field64(EAS_END_DATA, eas.w);
return H_SUCCESS;
}
/*
* The H_INT_GET_QUEUE_INFO hcall() is used to get the logical real
* address of the notification management page associated with the
* specified target and priority.
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-63 Reserved
* - R5: "target" is per "ibm,ppc-interrupt-server#s" or
* "ibm,ppc-interrupt-gserver#s"
* - R6: "priority" is a valid priority not in
* "ibm,plat-res-int-priorities"
*
* Output:
* - R4: Logical real address of notification page
* - R5: Power of 2 page size of the notification page
*/
static target_ulong h_int_get_queue_info(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
sPAPRXive *xive = spapr->xive;
XiveENDSource *end_xsrc = &xive->end_source;
target_ulong flags = args[0];
target_ulong target = args[1];
target_ulong priority = args[2];
XiveEND *end;
uint8_t end_blk;
uint32_t end_idx;
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
if (flags) {
return H_PARAMETER;
}
/*
* H_STATE should be returned if a H_INT_RESET is in progress.
* This is not needed when running the emulation under QEMU
*/
if (spapr_xive_priority_is_reserved(priority)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
" is reserved\n", priority);
return H_P3;
}
/*
* Validate that "target" is part of the list of threads allocated
* to the partition. For that, find the END corresponding to the
* target.
*/
if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
return H_P2;
}
assert(end_idx < xive->nr_ends);
end = &xive->endt[end_idx];
args[0] = xive->end_base + (1ull << (end_xsrc->esb_shift + 1)) * end_idx;
if (xive_end_is_enqueue(end)) {
args[1] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
} else {
args[1] = 0;
}
return H_SUCCESS;
}
/*
* The H_INT_SET_QUEUE_CONFIG hcall() is used to set or reset a EQ for
* a given "target" and "priority". It is also used to set the
* notification config associated with the EQ. An EQ size of 0 is
* used to reset the EQ config for a given target and priority. If
* resetting the EQ config, the END associated with the given "target"
* and "priority" will be changed to disable queueing.
*
* Upon return from the hcall(), no additional interrupts will be
* directed to the old EQ (if one was set). The old EQ (if one was
* set) should be investigated for interrupts that occurred prior to
* or during the hcall().
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-62: Reserved
* Bit 63: Unconditional Notify (n) per the XIVE spec
* - R5: "target" is per "ibm,ppc-interrupt-server#s" or
* "ibm,ppc-interrupt-gserver#s"
* - R6: "priority" is a valid priority not in
* "ibm,plat-res-int-priorities"
* - R7: "eventQueue": The logical real address of the start of the EQ
* - R8: "eventQueueSize": The power of 2 EQ size per "ibm,xive-eq-sizes"
*
* Output:
* - None
*/
#define SPAPR_XIVE_END_ALWAYS_NOTIFY PPC_BIT(63)
static target_ulong h_int_set_queue_config(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
sPAPRXive *xive = spapr->xive;
target_ulong flags = args[0];
target_ulong target = args[1];
target_ulong priority = args[2];
target_ulong qpage = args[3];
target_ulong qsize = args[4];
XiveEND end;
uint8_t end_blk, nvt_blk;
uint32_t end_idx, nvt_idx;
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
if (flags & ~SPAPR_XIVE_END_ALWAYS_NOTIFY) {
return H_PARAMETER;
}
/*
* H_STATE should be returned if a H_INT_RESET is in progress.
* This is not needed when running the emulation under QEMU
*/
if (spapr_xive_priority_is_reserved(priority)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
" is reserved\n", priority);
return H_P3;
}
/*
* Validate that "target" is part of the list of threads allocated
* to the partition. For that, find the END corresponding to the
* target.
*/
if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
return H_P2;
}
assert(end_idx < xive->nr_ends);
memcpy(&end, &xive->endt[end_idx], sizeof(XiveEND));
switch (qsize) {
case 12:
case 16:
case 21:
case 24:
end.w2 = cpu_to_be32((qpage >> 32) & 0x0fffffff);
end.w3 = cpu_to_be32(qpage & 0xffffffff);
end.w0 |= cpu_to_be32(END_W0_ENQUEUE);
end.w0 = xive_set_field32(END_W0_QSIZE, end.w0, qsize - 12);
break;
case 0:
/* reset queue and disable queueing */
spapr_xive_end_reset(&end);
goto out;
default:
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EQ size %"PRIx64"\n",
qsize);
return H_P5;
}
if (qsize) {
hwaddr plen = 1 << qsize;
void *eq;
/*
* Validate the guest EQ. We should also check that the queue
* has been zeroed by the OS.
*/
eq = address_space_map(CPU(cpu)->as, qpage, &plen, true,
MEMTXATTRS_UNSPECIFIED);
if (plen != 1 << qsize) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to map EQ @0x%"
HWADDR_PRIx "\n", qpage);
return H_P4;
}
address_space_unmap(CPU(cpu)->as, eq, plen, true, plen);
}
/* "target" should have been validated above */
if (spapr_xive_target_to_nvt(target, &nvt_blk, &nvt_idx)) {
g_assert_not_reached();
}
/*
* Ensure the priority and target are correctly set (they will not
* be right after allocation)
*/
end.w6 = xive_set_field32(END_W6_NVT_BLOCK, 0ul, nvt_blk) |
xive_set_field32(END_W6_NVT_INDEX, 0ul, nvt_idx);
end.w7 = xive_set_field32(END_W7_F0_PRIORITY, 0ul, priority);
if (flags & SPAPR_XIVE_END_ALWAYS_NOTIFY) {
end.w0 |= cpu_to_be32(END_W0_UCOND_NOTIFY);
} else {
end.w0 &= cpu_to_be32((uint32_t)~END_W0_UCOND_NOTIFY);
}
/*
* The generation bit for the END starts at 1 and The END page
* offset counter starts at 0.
*/
end.w1 = cpu_to_be32(END_W1_GENERATION) |
xive_set_field32(END_W1_PAGE_OFF, 0ul, 0ul);
end.w0 |= cpu_to_be32(END_W0_VALID);
/*
* TODO: issue syncs required to ensure all in-flight interrupts
* are complete on the old END
*/
out:
/* Update END */
memcpy(&xive->endt[end_idx], &end, sizeof(XiveEND));
return H_SUCCESS;
}
/*
* The H_INT_GET_QUEUE_CONFIG hcall() is used to get a EQ for a given
* target and priority.
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-62: Reserved
* Bit 63: Debug: Return debug data
* - R5: "target" is per "ibm,ppc-interrupt-server#s" or
* "ibm,ppc-interrupt-gserver#s"
* - R6: "priority" is a valid priority not in
* "ibm,plat-res-int-priorities"
*
* Output:
* - R4: "flags":
* Bits 0-61: Reserved
* Bit 62: The value of Event Queue Generation Number (g) per
* the XIVE spec if "Debug" = 1
* Bit 63: The value of Unconditional Notify (n) per the XIVE spec
* - R5: The logical real address of the start of the EQ
* - R6: The power of 2 EQ size per "ibm,xive-eq-sizes"
* - R7: The value of Event Queue Offset Counter per XIVE spec
* if "Debug" = 1, else 0
*
*/
#define SPAPR_XIVE_END_DEBUG PPC_BIT(63)
static target_ulong h_int_get_queue_config(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
sPAPRXive *xive = spapr->xive;
target_ulong flags = args[0];
target_ulong target = args[1];
target_ulong priority = args[2];
XiveEND *end;
uint8_t end_blk;
uint32_t end_idx;
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
if (flags & ~SPAPR_XIVE_END_DEBUG) {
return H_PARAMETER;
}
/*
* H_STATE should be returned if a H_INT_RESET is in progress.
* This is not needed when running the emulation under QEMU
*/
if (spapr_xive_priority_is_reserved(priority)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: priority " TARGET_FMT_ld
" is reserved\n", priority);
return H_P3;
}
/*
* Validate that "target" is part of the list of threads allocated
* to the partition. For that, find the END corresponding to the
* target.
*/
if (spapr_xive_target_to_end(target, priority, &end_blk, &end_idx)) {
return H_P2;
}
assert(end_idx < xive->nr_ends);
end = &xive->endt[end_idx];
args[0] = 0;
if (xive_end_is_notify(end)) {
args[0] |= SPAPR_XIVE_END_ALWAYS_NOTIFY;
}
if (xive_end_is_enqueue(end)) {
args[1] = (uint64_t) be32_to_cpu(end->w2 & 0x0fffffff) << 32
| be32_to_cpu(end->w3);
args[2] = xive_get_field32(END_W0_QSIZE, end->w0) + 12;
} else {
args[1] = 0;
args[2] = 0;
}
/* TODO: do we need any locking on the END ? */
if (flags & SPAPR_XIVE_END_DEBUG) {
/* Load the event queue generation number into the return flags */
args[0] |= (uint64_t)xive_get_field32(END_W1_GENERATION, end->w1) << 62;
/* Load R7 with the event queue offset counter */
args[3] = xive_get_field32(END_W1_PAGE_OFF, end->w1);
} else {
args[3] = 0;
}
return H_SUCCESS;
}
/*
* The H_INT_SET_OS_REPORTING_LINE hcall() is used to set the
* reporting cache line pair for the calling thread. The reporting
* cache lines will contain the OS interrupt context when the OS
* issues a CI store byte to @TIMA+0xC10 to acknowledge the OS
* interrupt. The reporting cache lines can be reset by inputting -1
* in "reportingLine". Issuing the CI store byte without reporting
* cache lines registered will result in the data not being accessible
* to the OS.
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-63: Reserved
* - R5: "reportingLine": The logical real address of the reporting cache
* line pair
*
* Output:
* - None
*/
static target_ulong h_int_set_os_reporting_line(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
/*
* H_STATE should be returned if a H_INT_RESET is in progress.
* This is not needed when running the emulation under QEMU
*/
/* TODO: H_INT_SET_OS_REPORTING_LINE */
return H_FUNCTION;
}
/*
* The H_INT_GET_OS_REPORTING_LINE hcall() is used to get the logical
* real address of the reporting cache line pair set for the input
* "target". If no reporting cache line pair has been set, -1 is
* returned.
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-63: Reserved
* - R5: "target" is per "ibm,ppc-interrupt-server#s" or
* "ibm,ppc-interrupt-gserver#s"
* - R6: "reportingLine": The logical real address of the reporting
* cache line pair
*
* Output:
* - R4: The logical real address of the reporting line if set, else -1
*/
static target_ulong h_int_get_os_reporting_line(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
/*
* H_STATE should be returned if a H_INT_RESET is in progress.
* This is not needed when running the emulation under QEMU
*/
/* TODO: H_INT_GET_OS_REPORTING_LINE */
return H_FUNCTION;
}
/*
* The H_INT_ESB hcall() is used to issue a load or store to the ESB
* page for the input "lisn". This hcall is only supported for LISNs
* that have the ESB hcall flag set to 1 when returned from hcall()
* H_INT_GET_SOURCE_INFO.
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-62: Reserved
* bit 63: Store: Store=1, store operation, else load operation
* - R5: "lisn" is per "interrupts", "interrupt-map", or
* "ibm,xive-lisn-ranges" properties, or as returned by the
* ibm,query-interrupt-source-number RTAS call, or as
* returned by the H_ALLOCATE_VAS_WINDOW hcall
* - R6: "esbOffset" is the offset into the ESB page for the load or
* store operation
* - R7: "storeData" is the data to write for a store operation
*
* Output:
* - R4: The value of the load if load operation, else -1
*/
#define SPAPR_XIVE_ESB_STORE PPC_BIT(63)
static target_ulong h_int_esb(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
sPAPRXive *xive = spapr->xive;
XiveEAS eas;
target_ulong flags = args[0];
target_ulong lisn = args[1];
target_ulong offset = args[2];
target_ulong data = args[3];
hwaddr mmio_addr;
XiveSource *xsrc = &xive->source;
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
if (flags & ~SPAPR_XIVE_ESB_STORE) {
return H_PARAMETER;
}
if (lisn >= xive->nr_irqs) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
eas = xive->eat[lisn];
if (!xive_eas_is_valid(&eas)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
if (offset > (1ull << xsrc->esb_shift)) {
return H_P3;
}
mmio_addr = xive->vc_base + xive_source_esb_mgmt(xsrc, lisn) + offset;
if (dma_memory_rw(&address_space_memory, mmio_addr, &data, 8,
(flags & SPAPR_XIVE_ESB_STORE))) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to access ESB @0x%"
HWADDR_PRIx "\n", mmio_addr);
return H_HARDWARE;
}
args[0] = (flags & SPAPR_XIVE_ESB_STORE) ? -1 : data;
return H_SUCCESS;
}
/*
* The H_INT_SYNC hcall() is used to issue hardware syncs that will
* ensure any in flight events for the input lisn are in the event
* queue.
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-63: Reserved
* - R5: "lisn" is per "interrupts", "interrupt-map", or
* "ibm,xive-lisn-ranges" properties, or as returned by the
* ibm,query-interrupt-source-number RTAS call, or as
* returned by the H_ALLOCATE_VAS_WINDOW hcall
*
* Output:
* - None
*/
static target_ulong h_int_sync(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
sPAPRXive *xive = spapr->xive;
XiveEAS eas;
target_ulong flags = args[0];
target_ulong lisn = args[1];
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
if (flags) {
return H_PARAMETER;
}
if (lisn >= xive->nr_irqs) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
eas = xive->eat[lisn];
if (!xive_eas_is_valid(&eas)) {
qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid LISN " TARGET_FMT_lx "\n",
lisn);
return H_P2;
}
/*
* H_STATE should be returned if a H_INT_RESET is in progress.
* This is not needed when running the emulation under QEMU
*/
/* This is not real hardware. Nothing to be done */
return H_SUCCESS;
}
/*
* The H_INT_RESET hcall() is used to reset all of the partition's
* interrupt exploitation structures to their initial state. This
* means losing all previously set interrupt state set via
* H_INT_SET_SOURCE_CONFIG and H_INT_SET_QUEUE_CONFIG.
*
* Parameters:
* Input:
* - R4: "flags"
* Bits 0-63: Reserved
*
* Output:
* - None
*/
static target_ulong h_int_reset(PowerPCCPU *cpu,
sPAPRMachineState *spapr,
target_ulong opcode,
target_ulong *args)
{
sPAPRXive *xive = spapr->xive;
target_ulong flags = args[0];
if (!spapr_ovec_test(spapr->ov5_cas, OV5_XIVE_EXPLOIT)) {
return H_FUNCTION;
}
if (flags) {
return H_PARAMETER;
}
device_reset(DEVICE(xive));
return H_SUCCESS;
}
void spapr_xive_hcall_init(sPAPRMachineState *spapr)
{
spapr_register_hypercall(H_INT_GET_SOURCE_INFO, h_int_get_source_info);
spapr_register_hypercall(H_INT_SET_SOURCE_CONFIG, h_int_set_source_config);
spapr_register_hypercall(H_INT_GET_SOURCE_CONFIG, h_int_get_source_config);
spapr_register_hypercall(H_INT_GET_QUEUE_INFO, h_int_get_queue_info);
spapr_register_hypercall(H_INT_SET_QUEUE_CONFIG, h_int_set_queue_config);
spapr_register_hypercall(H_INT_GET_QUEUE_CONFIG, h_int_get_queue_config);
spapr_register_hypercall(H_INT_SET_OS_REPORTING_LINE,
h_int_set_os_reporting_line);
spapr_register_hypercall(H_INT_GET_OS_REPORTING_LINE,
h_int_get_os_reporting_line);
spapr_register_hypercall(H_INT_ESB, h_int_esb);
spapr_register_hypercall(H_INT_SYNC, h_int_sync);
spapr_register_hypercall(H_INT_RESET, h_int_reset);
}
void spapr_dt_xive(sPAPRMachineState *spapr, uint32_t nr_servers, void *fdt,
uint32_t phandle)
{
sPAPRXive *xive = spapr->xive;
int node;
uint64_t timas[2 * 2];
/* Interrupt number ranges for the IPIs */
uint32_t lisn_ranges[] = {
cpu_to_be32(0),
cpu_to_be32(nr_servers),
};
/*
* EQ size - the sizes of pages supported by the system 4K, 64K,
* 2M, 16M. We only advertise 64K for the moment.
*/
uint32_t eq_sizes[] = {
cpu_to_be32(16), /* 64K */
};
/*
* The following array is in sync with the reserved priorities
* defined by the 'spapr_xive_priority_is_reserved' routine.
*/
uint32_t plat_res_int_priorities[] = {
cpu_to_be32(7), /* start */
cpu_to_be32(0xf8), /* count */
};
gchar *nodename;
/* Thread Interrupt Management Area : User (ring 3) and OS (ring 2) */
timas[0] = cpu_to_be64(xive->tm_base +
XIVE_TM_USER_PAGE * (1ull << TM_SHIFT));
timas[1] = cpu_to_be64(1ull << TM_SHIFT);
timas[2] = cpu_to_be64(xive->tm_base +
XIVE_TM_OS_PAGE * (1ull << TM_SHIFT));
timas[3] = cpu_to_be64(1ull << TM_SHIFT);
nodename = g_strdup_printf("interrupt-controller@%" PRIx64,
xive->tm_base + XIVE_TM_USER_PAGE * (1 << TM_SHIFT));
_FDT(node = fdt_add_subnode(fdt, 0, nodename));
g_free(nodename);
_FDT(fdt_setprop_string(fdt, node, "device_type", "power-ivpe"));
_FDT(fdt_setprop(fdt, node, "reg", timas, sizeof(timas)));
_FDT(fdt_setprop_string(fdt, node, "compatible", "ibm,power-ivpe"));
_FDT(fdt_setprop(fdt, node, "ibm,xive-eq-sizes", eq_sizes,
sizeof(eq_sizes)));
_FDT(fdt_setprop(fdt, node, "ibm,xive-lisn-ranges", lisn_ranges,
sizeof(lisn_ranges)));
/* For Linux to link the LSIs to the interrupt controller. */
_FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
_FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
/* For SLOF */
_FDT(fdt_setprop_cell(fdt, node, "linux,phandle", phandle));
_FDT(fdt_setprop_cell(fdt, node, "phandle", phandle));
/*
* The "ibm,plat-res-int-priorities" property defines the priority
* ranges reserved by the hypervisor
*/
_FDT(fdt_setprop(fdt, 0, "ibm,plat-res-int-priorities",
plat_res_int_priorities, sizeof(plat_res_int_priorities)));
}