qemu/hw/net/e1000e_core.c

3510 lines
100 KiB
C

/*
* Core code for QEMU e1000e emulation
*
* Software developer's manuals:
* http://www.intel.com/content/dam/doc/datasheet/82574l-gbe-controller-datasheet.pdf
*
* Copyright (c) 2015 Ravello Systems LTD (http://ravellosystems.com)
* Developed by Daynix Computing LTD (http://www.daynix.com)
*
* Authors:
* Dmitry Fleytman <dmitry@daynix.com>
* Leonid Bloch <leonid@daynix.com>
* Yan Vugenfirer <yan@daynix.com>
*
* Based on work done by:
* Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
* Copyright (c) 2008 Qumranet
* Based on work done by:
* Copyright (c) 2007 Dan Aloni
* Copyright (c) 2004 Antony T Curtis
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "net/net.h"
#include "net/tap.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "sysemu/runstate.h"
#include "net_tx_pkt.h"
#include "net_rx_pkt.h"
#include "e1000x_common.h"
#include "e1000e_core.h"
#include "trace.h"
#define E1000E_MIN_XITR (500) /* No more then 7813 interrupts per
second according to spec 10.2.4.2 */
#define E1000E_MAX_TX_FRAGS (64)
static inline void
e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val);
static inline void
e1000e_process_ts_option(E1000ECore *core, struct e1000_tx_desc *dp)
{
if (le32_to_cpu(dp->upper.data) & E1000_TXD_EXTCMD_TSTAMP) {
trace_e1000e_wrn_no_ts_support();
}
}
static inline void
e1000e_process_snap_option(E1000ECore *core, uint32_t cmd_and_length)
{
if (cmd_and_length & E1000_TXD_CMD_SNAP) {
trace_e1000e_wrn_no_snap_support();
}
}
static inline void
e1000e_raise_legacy_irq(E1000ECore *core)
{
trace_e1000e_irq_legacy_notify(true);
e1000x_inc_reg_if_not_full(core->mac, IAC);
pci_set_irq(core->owner, 1);
}
static inline void
e1000e_lower_legacy_irq(E1000ECore *core)
{
trace_e1000e_irq_legacy_notify(false);
pci_set_irq(core->owner, 0);
}
static inline void
e1000e_intrmgr_rearm_timer(E1000IntrDelayTimer *timer)
{
int64_t delay_ns = (int64_t) timer->core->mac[timer->delay_reg] *
timer->delay_resolution_ns;
trace_e1000e_irq_rearm_timer(timer->delay_reg << 2, delay_ns);
timer_mod(timer->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + delay_ns);
timer->running = true;
}
static void
e1000e_intmgr_timer_resume(E1000IntrDelayTimer *timer)
{
if (timer->running) {
e1000e_intrmgr_rearm_timer(timer);
}
}
static void
e1000e_intmgr_timer_pause(E1000IntrDelayTimer *timer)
{
if (timer->running) {
timer_del(timer->timer);
}
}
static inline void
e1000e_intrmgr_stop_timer(E1000IntrDelayTimer *timer)
{
if (timer->running) {
timer_del(timer->timer);
timer->running = false;
}
}
static inline void
e1000e_intrmgr_fire_delayed_interrupts(E1000ECore *core)
{
trace_e1000e_irq_fire_delayed_interrupts();
e1000e_set_interrupt_cause(core, 0);
}
static void
e1000e_intrmgr_on_timer(void *opaque)
{
E1000IntrDelayTimer *timer = opaque;
trace_e1000e_irq_throttling_timer(timer->delay_reg << 2);
timer->running = false;
e1000e_intrmgr_fire_delayed_interrupts(timer->core);
}
static void
e1000e_intrmgr_on_throttling_timer(void *opaque)
{
E1000IntrDelayTimer *timer = opaque;
assert(!msix_enabled(timer->core->owner));
timer->running = false;
if (!timer->core->itr_intr_pending) {
trace_e1000e_irq_throttling_no_pending_interrupts();
return;
}
if (msi_enabled(timer->core->owner)) {
trace_e1000e_irq_msi_notify_postponed();
e1000e_set_interrupt_cause(timer->core, 0);
} else {
trace_e1000e_irq_legacy_notify_postponed();
e1000e_set_interrupt_cause(timer->core, 0);
}
}
static void
e1000e_intrmgr_on_msix_throttling_timer(void *opaque)
{
E1000IntrDelayTimer *timer = opaque;
int idx = timer - &timer->core->eitr[0];
assert(msix_enabled(timer->core->owner));
timer->running = false;
if (!timer->core->eitr_intr_pending[idx]) {
trace_e1000e_irq_throttling_no_pending_vec(idx);
return;
}
trace_e1000e_irq_msix_notify_postponed_vec(idx);
msix_notify(timer->core->owner, idx);
}
static void
e1000e_intrmgr_initialize_all_timers(E1000ECore *core, bool create)
{
int i;
core->radv.delay_reg = RADV;
core->rdtr.delay_reg = RDTR;
core->raid.delay_reg = RAID;
core->tadv.delay_reg = TADV;
core->tidv.delay_reg = TIDV;
core->radv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
core->rdtr.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
core->raid.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
core->tadv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
core->tidv.delay_resolution_ns = E1000_INTR_DELAY_NS_RES;
core->radv.core = core;
core->rdtr.core = core;
core->raid.core = core;
core->tadv.core = core;
core->tidv.core = core;
core->itr.core = core;
core->itr.delay_reg = ITR;
core->itr.delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
core->eitr[i].core = core;
core->eitr[i].delay_reg = EITR + i;
core->eitr[i].delay_resolution_ns = E1000_INTR_THROTTLING_NS_RES;
}
if (!create) {
return;
}
core->radv.timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->radv);
core->rdtr.timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->rdtr);
core->raid.timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->raid);
core->tadv.timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tadv);
core->tidv.timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL, e1000e_intrmgr_on_timer, &core->tidv);
core->itr.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
e1000e_intrmgr_on_throttling_timer,
&core->itr);
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
core->eitr[i].timer =
timer_new_ns(QEMU_CLOCK_VIRTUAL,
e1000e_intrmgr_on_msix_throttling_timer,
&core->eitr[i]);
}
}
static inline void
e1000e_intrmgr_stop_delay_timers(E1000ECore *core)
{
e1000e_intrmgr_stop_timer(&core->radv);
e1000e_intrmgr_stop_timer(&core->rdtr);
e1000e_intrmgr_stop_timer(&core->raid);
e1000e_intrmgr_stop_timer(&core->tidv);
e1000e_intrmgr_stop_timer(&core->tadv);
}
static bool
e1000e_intrmgr_delay_rx_causes(E1000ECore *core, uint32_t *causes)
{
uint32_t delayable_causes;
uint32_t rdtr = core->mac[RDTR];
uint32_t radv = core->mac[RADV];
uint32_t raid = core->mac[RAID];
if (msix_enabled(core->owner)) {
return false;
}
delayable_causes = E1000_ICR_RXQ0 |
E1000_ICR_RXQ1 |
E1000_ICR_RXT0;
if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS)) {
delayable_causes |= E1000_ICR_ACK;
}
/* Clean up all causes that may be delayed */
core->delayed_causes |= *causes & delayable_causes;
*causes &= ~delayable_causes;
/* Check if delayed RX interrupts disabled by client
or if there are causes that cannot be delayed */
if ((rdtr == 0) || (*causes != 0)) {
return false;
}
/* Check if delayed RX ACK interrupts disabled by client
and there is an ACK packet received */
if ((raid == 0) && (core->delayed_causes & E1000_ICR_ACK)) {
return false;
}
/* All causes delayed */
e1000e_intrmgr_rearm_timer(&core->rdtr);
if (!core->radv.running && (radv != 0)) {
e1000e_intrmgr_rearm_timer(&core->radv);
}
if (!core->raid.running && (core->delayed_causes & E1000_ICR_ACK)) {
e1000e_intrmgr_rearm_timer(&core->raid);
}
return true;
}
static bool
e1000e_intrmgr_delay_tx_causes(E1000ECore *core, uint32_t *causes)
{
static const uint32_t delayable_causes = E1000_ICR_TXQ0 |
E1000_ICR_TXQ1 |
E1000_ICR_TXQE |
E1000_ICR_TXDW;
if (msix_enabled(core->owner)) {
return false;
}
/* Clean up all causes that may be delayed */
core->delayed_causes |= *causes & delayable_causes;
*causes &= ~delayable_causes;
/* If there are causes that cannot be delayed */
if (*causes != 0) {
return false;
}
/* All causes delayed */
e1000e_intrmgr_rearm_timer(&core->tidv);
if (!core->tadv.running && (core->mac[TADV] != 0)) {
e1000e_intrmgr_rearm_timer(&core->tadv);
}
return true;
}
static uint32_t
e1000e_intmgr_collect_delayed_causes(E1000ECore *core)
{
uint32_t res;
if (msix_enabled(core->owner)) {
assert(core->delayed_causes == 0);
return 0;
}
res = core->delayed_causes;
core->delayed_causes = 0;
e1000e_intrmgr_stop_delay_timers(core);
return res;
}
static void
e1000e_intrmgr_fire_all_timers(E1000ECore *core)
{
int i;
uint32_t val = e1000e_intmgr_collect_delayed_causes(core);
trace_e1000e_irq_adding_delayed_causes(val, core->mac[ICR]);
core->mac[ICR] |= val;
if (core->itr.running) {
timer_del(core->itr.timer);
e1000e_intrmgr_on_throttling_timer(&core->itr);
}
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
if (core->eitr[i].running) {
timer_del(core->eitr[i].timer);
e1000e_intrmgr_on_msix_throttling_timer(&core->eitr[i]);
}
}
}
static void
e1000e_intrmgr_resume(E1000ECore *core)
{
int i;
e1000e_intmgr_timer_resume(&core->radv);
e1000e_intmgr_timer_resume(&core->rdtr);
e1000e_intmgr_timer_resume(&core->raid);
e1000e_intmgr_timer_resume(&core->tidv);
e1000e_intmgr_timer_resume(&core->tadv);
e1000e_intmgr_timer_resume(&core->itr);
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
e1000e_intmgr_timer_resume(&core->eitr[i]);
}
}
static void
e1000e_intrmgr_pause(E1000ECore *core)
{
int i;
e1000e_intmgr_timer_pause(&core->radv);
e1000e_intmgr_timer_pause(&core->rdtr);
e1000e_intmgr_timer_pause(&core->raid);
e1000e_intmgr_timer_pause(&core->tidv);
e1000e_intmgr_timer_pause(&core->tadv);
e1000e_intmgr_timer_pause(&core->itr);
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
e1000e_intmgr_timer_pause(&core->eitr[i]);
}
}
static void
e1000e_intrmgr_reset(E1000ECore *core)
{
int i;
core->delayed_causes = 0;
e1000e_intrmgr_stop_delay_timers(core);
e1000e_intrmgr_stop_timer(&core->itr);
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
e1000e_intrmgr_stop_timer(&core->eitr[i]);
}
}
static void
e1000e_intrmgr_pci_unint(E1000ECore *core)
{
int i;
timer_free(core->radv.timer);
timer_free(core->rdtr.timer);
timer_free(core->raid.timer);
timer_free(core->tadv.timer);
timer_free(core->tidv.timer);
timer_free(core->itr.timer);
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
timer_free(core->eitr[i].timer);
}
}
static void
e1000e_intrmgr_pci_realize(E1000ECore *core)
{
e1000e_intrmgr_initialize_all_timers(core, true);
}
static inline bool
e1000e_rx_csum_enabled(E1000ECore *core)
{
return (core->mac[RXCSUM] & E1000_RXCSUM_PCSD) ? false : true;
}
static inline bool
e1000e_rx_use_legacy_descriptor(E1000ECore *core)
{
return (core->mac[RFCTL] & E1000_RFCTL_EXTEN) ? false : true;
}
static inline bool
e1000e_rx_use_ps_descriptor(E1000ECore *core)
{
return !e1000e_rx_use_legacy_descriptor(core) &&
(core->mac[RCTL] & E1000_RCTL_DTYP_PS);
}
static inline bool
e1000e_rss_enabled(E1000ECore *core)
{
return E1000_MRQC_ENABLED(core->mac[MRQC]) &&
!e1000e_rx_csum_enabled(core) &&
!e1000e_rx_use_legacy_descriptor(core);
}
typedef struct E1000E_RSSInfo_st {
bool enabled;
uint32_t hash;
uint32_t queue;
uint32_t type;
} E1000E_RSSInfo;
static uint32_t
e1000e_rss_get_hash_type(E1000ECore *core, struct NetRxPkt *pkt)
{
bool isip4, isip6, isudp, istcp;
assert(e1000e_rss_enabled(core));
net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
if (isip4) {
bool fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
trace_e1000e_rx_rss_ip4(fragment, istcp, core->mac[MRQC],
E1000_MRQC_EN_TCPIPV4(core->mac[MRQC]),
E1000_MRQC_EN_IPV4(core->mac[MRQC]));
if (!fragment && istcp && E1000_MRQC_EN_TCPIPV4(core->mac[MRQC])) {
return E1000_MRQ_RSS_TYPE_IPV4TCP;
}
if (E1000_MRQC_EN_IPV4(core->mac[MRQC])) {
return E1000_MRQ_RSS_TYPE_IPV4;
}
} else if (isip6) {
eth_ip6_hdr_info *ip6info = net_rx_pkt_get_ip6_info(pkt);
bool ex_dis = core->mac[RFCTL] & E1000_RFCTL_IPV6_EX_DIS;
bool new_ex_dis = core->mac[RFCTL] & E1000_RFCTL_NEW_IPV6_EXT_DIS;
/*
* Following two traces must not be combined because resulting
* event will have 11 arguments totally and some trace backends
* (at least "ust") have limitation of maximum 10 arguments per
* event. Events with more arguments fail to compile for
* backends like these.
*/
trace_e1000e_rx_rss_ip6_rfctl(core->mac[RFCTL]);
trace_e1000e_rx_rss_ip6(ex_dis, new_ex_dis, istcp,
ip6info->has_ext_hdrs,
ip6info->rss_ex_dst_valid,
ip6info->rss_ex_src_valid,
core->mac[MRQC],
E1000_MRQC_EN_TCPIPV6(core->mac[MRQC]),
E1000_MRQC_EN_IPV6EX(core->mac[MRQC]),
E1000_MRQC_EN_IPV6(core->mac[MRQC]));
if ((!ex_dis || !ip6info->has_ext_hdrs) &&
(!new_ex_dis || !(ip6info->rss_ex_dst_valid ||
ip6info->rss_ex_src_valid))) {
if (istcp && !ip6info->fragment &&
E1000_MRQC_EN_TCPIPV6(core->mac[MRQC])) {
return E1000_MRQ_RSS_TYPE_IPV6TCP;
}
if (E1000_MRQC_EN_IPV6EX(core->mac[MRQC])) {
return E1000_MRQ_RSS_TYPE_IPV6EX;
}
}
if (E1000_MRQC_EN_IPV6(core->mac[MRQC])) {
return E1000_MRQ_RSS_TYPE_IPV6;
}
}
return E1000_MRQ_RSS_TYPE_NONE;
}
static uint32_t
e1000e_rss_calc_hash(E1000ECore *core,
struct NetRxPkt *pkt,
E1000E_RSSInfo *info)
{
NetRxPktRssType type;
assert(e1000e_rss_enabled(core));
switch (info->type) {
case E1000_MRQ_RSS_TYPE_IPV4:
type = NetPktRssIpV4;
break;
case E1000_MRQ_RSS_TYPE_IPV4TCP:
type = NetPktRssIpV4Tcp;
break;
case E1000_MRQ_RSS_TYPE_IPV6TCP:
type = NetPktRssIpV6TcpEx;
break;
case E1000_MRQ_RSS_TYPE_IPV6:
type = NetPktRssIpV6;
break;
case E1000_MRQ_RSS_TYPE_IPV6EX:
type = NetPktRssIpV6Ex;
break;
default:
assert(false);
return 0;
}
return net_rx_pkt_calc_rss_hash(pkt, type, (uint8_t *) &core->mac[RSSRK]);
}
static void
e1000e_rss_parse_packet(E1000ECore *core,
struct NetRxPkt *pkt,
E1000E_RSSInfo *info)
{
trace_e1000e_rx_rss_started();
if (!e1000e_rss_enabled(core)) {
info->enabled = false;
info->hash = 0;
info->queue = 0;
info->type = 0;
trace_e1000e_rx_rss_disabled();
return;
}
info->enabled = true;
info->type = e1000e_rss_get_hash_type(core, pkt);
trace_e1000e_rx_rss_type(info->type);
if (info->type == E1000_MRQ_RSS_TYPE_NONE) {
info->hash = 0;
info->queue = 0;
return;
}
info->hash = e1000e_rss_calc_hash(core, pkt, info);
info->queue = E1000_RSS_QUEUE(&core->mac[RETA], info->hash);
}
static void
e1000e_setup_tx_offloads(E1000ECore *core, struct e1000e_tx *tx)
{
if (tx->props.tse && tx->cptse) {
net_tx_pkt_build_vheader(tx->tx_pkt, true, true, tx->props.mss);
net_tx_pkt_update_ip_checksums(tx->tx_pkt);
e1000x_inc_reg_if_not_full(core->mac, TSCTC);
return;
}
if (tx->sum_needed & E1000_TXD_POPTS_TXSM) {
net_tx_pkt_build_vheader(tx->tx_pkt, false, true, 0);
}
if (tx->sum_needed & E1000_TXD_POPTS_IXSM) {
net_tx_pkt_update_ip_hdr_checksum(tx->tx_pkt);
}
}
static bool
e1000e_tx_pkt_send(E1000ECore *core, struct e1000e_tx *tx, int queue_index)
{
int target_queue = MIN(core->max_queue_num, queue_index);
NetClientState *queue = qemu_get_subqueue(core->owner_nic, target_queue);
e1000e_setup_tx_offloads(core, tx);
net_tx_pkt_dump(tx->tx_pkt);
if ((core->phy[0][PHY_CTRL] & MII_CR_LOOPBACK) ||
((core->mac[RCTL] & E1000_RCTL_LBM_MAC) == E1000_RCTL_LBM_MAC)) {
return net_tx_pkt_send_loopback(tx->tx_pkt, queue);
} else {
return net_tx_pkt_send(tx->tx_pkt, queue);
}
}
static void
e1000e_on_tx_done_update_stats(E1000ECore *core, struct NetTxPkt *tx_pkt)
{
static const int PTCregs[6] = { PTC64, PTC127, PTC255, PTC511,
PTC1023, PTC1522 };
size_t tot_len = net_tx_pkt_get_total_len(tx_pkt);
e1000x_increase_size_stats(core->mac, PTCregs, tot_len);
e1000x_inc_reg_if_not_full(core->mac, TPT);
e1000x_grow_8reg_if_not_full(core->mac, TOTL, tot_len);
switch (net_tx_pkt_get_packet_type(tx_pkt)) {
case ETH_PKT_BCAST:
e1000x_inc_reg_if_not_full(core->mac, BPTC);
break;
case ETH_PKT_MCAST:
e1000x_inc_reg_if_not_full(core->mac, MPTC);
break;
case ETH_PKT_UCAST:
break;
default:
g_assert_not_reached();
}
core->mac[GPTC] = core->mac[TPT];
core->mac[GOTCL] = core->mac[TOTL];
core->mac[GOTCH] = core->mac[TOTH];
}
static void
e1000e_process_tx_desc(E1000ECore *core,
struct e1000e_tx *tx,
struct e1000_tx_desc *dp,
int queue_index)
{
uint32_t txd_lower = le32_to_cpu(dp->lower.data);
uint32_t dtype = txd_lower & (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D);
unsigned int split_size = txd_lower & 0xffff;
uint64_t addr;
struct e1000_context_desc *xp = (struct e1000_context_desc *)dp;
bool eop = txd_lower & E1000_TXD_CMD_EOP;
if (dtype == E1000_TXD_CMD_DEXT) { /* context descriptor */
e1000x_read_tx_ctx_descr(xp, &tx->props);
e1000e_process_snap_option(core, le32_to_cpu(xp->cmd_and_length));
return;
} else if (dtype == (E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D)) {
/* data descriptor */
tx->sum_needed = le32_to_cpu(dp->upper.data) >> 8;
tx->cptse = (txd_lower & E1000_TXD_CMD_TSE) ? 1 : 0;
e1000e_process_ts_option(core, dp);
} else {
/* legacy descriptor */
e1000e_process_ts_option(core, dp);
tx->cptse = 0;
}
addr = le64_to_cpu(dp->buffer_addr);
if (!tx->skip_cp) {
if (!net_tx_pkt_add_raw_fragment(tx->tx_pkt, addr, split_size)) {
tx->skip_cp = true;
}
}
if (eop) {
if (!tx->skip_cp && net_tx_pkt_parse(tx->tx_pkt)) {
if (e1000x_vlan_enabled(core->mac) &&
e1000x_is_vlan_txd(txd_lower)) {
net_tx_pkt_setup_vlan_header_ex(tx->tx_pkt,
le16_to_cpu(dp->upper.fields.special), core->vet);
}
if (e1000e_tx_pkt_send(core, tx, queue_index)) {
e1000e_on_tx_done_update_stats(core, tx->tx_pkt);
}
}
tx->skip_cp = false;
net_tx_pkt_reset(tx->tx_pkt);
tx->sum_needed = 0;
tx->cptse = 0;
}
}
static inline uint32_t
e1000e_tx_wb_interrupt_cause(E1000ECore *core, int queue_idx)
{
if (!msix_enabled(core->owner)) {
return E1000_ICR_TXDW;
}
return (queue_idx == 0) ? E1000_ICR_TXQ0 : E1000_ICR_TXQ1;
}
static inline uint32_t
e1000e_rx_wb_interrupt_cause(E1000ECore *core, int queue_idx,
bool min_threshold_hit)
{
if (!msix_enabled(core->owner)) {
return E1000_ICS_RXT0 | (min_threshold_hit ? E1000_ICS_RXDMT0 : 0);
}
return (queue_idx == 0) ? E1000_ICR_RXQ0 : E1000_ICR_RXQ1;
}
static uint32_t
e1000e_txdesc_writeback(E1000ECore *core, dma_addr_t base,
struct e1000_tx_desc *dp, bool *ide, int queue_idx)
{
uint32_t txd_upper, txd_lower = le32_to_cpu(dp->lower.data);
if (!(txd_lower & E1000_TXD_CMD_RS) &&
!(core->mac[IVAR] & E1000_IVAR_TX_INT_EVERY_WB)) {
return 0;
}
*ide = (txd_lower & E1000_TXD_CMD_IDE) ? true : false;
txd_upper = le32_to_cpu(dp->upper.data) | E1000_TXD_STAT_DD;
dp->upper.data = cpu_to_le32(txd_upper);
pci_dma_write(core->owner, base + ((char *)&dp->upper - (char *)dp),
&dp->upper, sizeof(dp->upper));
return e1000e_tx_wb_interrupt_cause(core, queue_idx);
}
typedef struct E1000E_RingInfo_st {
int dbah;
int dbal;
int dlen;
int dh;
int dt;
int idx;
} E1000E_RingInfo;
static inline bool
e1000e_ring_empty(E1000ECore *core, const E1000E_RingInfo *r)
{
return core->mac[r->dh] == core->mac[r->dt] ||
core->mac[r->dt] >= core->mac[r->dlen] / E1000_RING_DESC_LEN;
}
static inline uint64_t
e1000e_ring_base(E1000ECore *core, const E1000E_RingInfo *r)
{
uint64_t bah = core->mac[r->dbah];
uint64_t bal = core->mac[r->dbal];
return (bah << 32) + bal;
}
static inline uint64_t
e1000e_ring_head_descr(E1000ECore *core, const E1000E_RingInfo *r)
{
return e1000e_ring_base(core, r) + E1000_RING_DESC_LEN * core->mac[r->dh];
}
static inline void
e1000e_ring_advance(E1000ECore *core, const E1000E_RingInfo *r, uint32_t count)
{
core->mac[r->dh] += count;
if (core->mac[r->dh] * E1000_RING_DESC_LEN >= core->mac[r->dlen]) {
core->mac[r->dh] = 0;
}
}
static inline uint32_t
e1000e_ring_free_descr_num(E1000ECore *core, const E1000E_RingInfo *r)
{
trace_e1000e_ring_free_space(r->idx, core->mac[r->dlen],
core->mac[r->dh], core->mac[r->dt]);
if (core->mac[r->dh] <= core->mac[r->dt]) {
return core->mac[r->dt] - core->mac[r->dh];
}
if (core->mac[r->dh] > core->mac[r->dt]) {
return core->mac[r->dlen] / E1000_RING_DESC_LEN +
core->mac[r->dt] - core->mac[r->dh];
}
g_assert_not_reached();
return 0;
}
static inline bool
e1000e_ring_enabled(E1000ECore *core, const E1000E_RingInfo *r)
{
return core->mac[r->dlen] > 0;
}
static inline uint32_t
e1000e_ring_len(E1000ECore *core, const E1000E_RingInfo *r)
{
return core->mac[r->dlen];
}
typedef struct E1000E_TxRing_st {
const E1000E_RingInfo *i;
struct e1000e_tx *tx;
} E1000E_TxRing;
static inline int
e1000e_mq_queue_idx(int base_reg_idx, int reg_idx)
{
return (reg_idx - base_reg_idx) / (0x100 >> 2);
}
static inline void
e1000e_tx_ring_init(E1000ECore *core, E1000E_TxRing *txr, int idx)
{
static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
{ TDBAH, TDBAL, TDLEN, TDH, TDT, 0 },
{ TDBAH1, TDBAL1, TDLEN1, TDH1, TDT1, 1 }
};
assert(idx < ARRAY_SIZE(i));
txr->i = &i[idx];
txr->tx = &core->tx[idx];
}
typedef struct E1000E_RxRing_st {
const E1000E_RingInfo *i;
} E1000E_RxRing;
static inline void
e1000e_rx_ring_init(E1000ECore *core, E1000E_RxRing *rxr, int idx)
{
static const E1000E_RingInfo i[E1000E_NUM_QUEUES] = {
{ RDBAH0, RDBAL0, RDLEN0, RDH0, RDT0, 0 },
{ RDBAH1, RDBAL1, RDLEN1, RDH1, RDT1, 1 }
};
assert(idx < ARRAY_SIZE(i));
rxr->i = &i[idx];
}
static void
e1000e_start_xmit(E1000ECore *core, const E1000E_TxRing *txr)
{
dma_addr_t base;
struct e1000_tx_desc desc;
bool ide = false;
const E1000E_RingInfo *txi = txr->i;
uint32_t cause = E1000_ICS_TXQE;
if (!(core->mac[TCTL] & E1000_TCTL_EN)) {
trace_e1000e_tx_disabled();
return;
}
while (!e1000e_ring_empty(core, txi)) {
base = e1000e_ring_head_descr(core, txi);
pci_dma_read(core->owner, base, &desc, sizeof(desc));
trace_e1000e_tx_descr((void *)(intptr_t)desc.buffer_addr,
desc.lower.data, desc.upper.data);
e1000e_process_tx_desc(core, txr->tx, &desc, txi->idx);
cause |= e1000e_txdesc_writeback(core, base, &desc, &ide, txi->idx);
e1000e_ring_advance(core, txi, 1);
}
if (!ide || !e1000e_intrmgr_delay_tx_causes(core, &cause)) {
e1000e_set_interrupt_cause(core, cause);
}
}
static bool
e1000e_has_rxbufs(E1000ECore *core, const E1000E_RingInfo *r,
size_t total_size)
{
uint32_t bufs = e1000e_ring_free_descr_num(core, r);
trace_e1000e_rx_has_buffers(r->idx, bufs, total_size,
core->rx_desc_buf_size);
return total_size <= bufs / (core->rx_desc_len / E1000_MIN_RX_DESC_LEN) *
core->rx_desc_buf_size;
}
void
e1000e_start_recv(E1000ECore *core)
{
int i;
trace_e1000e_rx_start_recv();
for (i = 0; i <= core->max_queue_num; i++) {
qemu_flush_queued_packets(qemu_get_subqueue(core->owner_nic, i));
}
}
bool
e1000e_can_receive(E1000ECore *core)
{
int i;
if (!e1000x_rx_ready(core->owner, core->mac)) {
return false;
}
for (i = 0; i < E1000E_NUM_QUEUES; i++) {
E1000E_RxRing rxr;
e1000e_rx_ring_init(core, &rxr, i);
if (e1000e_ring_enabled(core, rxr.i) &&
e1000e_has_rxbufs(core, rxr.i, 1)) {
trace_e1000e_rx_can_recv();
return true;
}
}
trace_e1000e_rx_can_recv_rings_full();
return false;
}
ssize_t
e1000e_receive(E1000ECore *core, const uint8_t *buf, size_t size)
{
const struct iovec iov = {
.iov_base = (uint8_t *)buf,
.iov_len = size
};
return e1000e_receive_iov(core, &iov, 1);
}
static inline bool
e1000e_rx_l3_cso_enabled(E1000ECore *core)
{
return !!(core->mac[RXCSUM] & E1000_RXCSUM_IPOFLD);
}
static inline bool
e1000e_rx_l4_cso_enabled(E1000ECore *core)
{
return !!(core->mac[RXCSUM] & E1000_RXCSUM_TUOFLD);
}
static bool
e1000e_receive_filter(E1000ECore *core, const uint8_t *buf, int size)
{
uint32_t rctl = core->mac[RCTL];
if (e1000x_is_vlan_packet(buf, core->vet) &&
e1000x_vlan_rx_filter_enabled(core->mac)) {
uint16_t vid = lduw_be_p(buf + 14);
uint32_t vfta = ldl_le_p((uint32_t *)(core->mac + VFTA) +
((vid >> 5) & 0x7f));
if ((vfta & (1 << (vid & 0x1f))) == 0) {
trace_e1000e_rx_flt_vlan_mismatch(vid);
return false;
} else {
trace_e1000e_rx_flt_vlan_match(vid);
}
}
switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
case ETH_PKT_UCAST:
if (rctl & E1000_RCTL_UPE) {
return true; /* promiscuous ucast */
}
break;
case ETH_PKT_BCAST:
if (rctl & E1000_RCTL_BAM) {
return true; /* broadcast enabled */
}
break;
case ETH_PKT_MCAST:
if (rctl & E1000_RCTL_MPE) {
return true; /* promiscuous mcast */
}
break;
default:
g_assert_not_reached();
}
return e1000x_rx_group_filter(core->mac, buf);
}
static inline void
e1000e_read_lgcy_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
{
struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
*buff_addr = le64_to_cpu(d->buffer_addr);
}
static inline void
e1000e_read_ext_rx_descr(E1000ECore *core, uint8_t *desc, hwaddr *buff_addr)
{
union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
*buff_addr = le64_to_cpu(d->read.buffer_addr);
}
static inline void
e1000e_read_ps_rx_descr(E1000ECore *core, uint8_t *desc,
hwaddr (*buff_addr)[MAX_PS_BUFFERS])
{
int i;
union e1000_rx_desc_packet_split *d =
(union e1000_rx_desc_packet_split *) desc;
for (i = 0; i < MAX_PS_BUFFERS; i++) {
(*buff_addr)[i] = le64_to_cpu(d->read.buffer_addr[i]);
}
trace_e1000e_rx_desc_ps_read((*buff_addr)[0], (*buff_addr)[1],
(*buff_addr)[2], (*buff_addr)[3]);
}
static inline void
e1000e_read_rx_descr(E1000ECore *core, uint8_t *desc,
hwaddr (*buff_addr)[MAX_PS_BUFFERS])
{
if (e1000e_rx_use_legacy_descriptor(core)) {
e1000e_read_lgcy_rx_descr(core, desc, &(*buff_addr)[0]);
(*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
} else {
if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
e1000e_read_ps_rx_descr(core, desc, buff_addr);
} else {
e1000e_read_ext_rx_descr(core, desc, &(*buff_addr)[0]);
(*buff_addr)[1] = (*buff_addr)[2] = (*buff_addr)[3] = 0;
}
}
}
static void
e1000e_verify_csum_in_sw(E1000ECore *core,
struct NetRxPkt *pkt,
uint32_t *status_flags,
bool istcp, bool isudp)
{
bool csum_valid;
uint32_t csum_error;
if (e1000e_rx_l3_cso_enabled(core)) {
if (!net_rx_pkt_validate_l3_csum(pkt, &csum_valid)) {
trace_e1000e_rx_metadata_l3_csum_validation_failed();
} else {
csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_IPE;
*status_flags |= E1000_RXD_STAT_IPCS | csum_error;
}
} else {
trace_e1000e_rx_metadata_l3_cso_disabled();
}
if (!e1000e_rx_l4_cso_enabled(core)) {
trace_e1000e_rx_metadata_l4_cso_disabled();
return;
}
if (!net_rx_pkt_validate_l4_csum(pkt, &csum_valid)) {
trace_e1000e_rx_metadata_l4_csum_validation_failed();
return;
}
csum_error = csum_valid ? 0 : E1000_RXDEXT_STATERR_TCPE;
if (istcp) {
*status_flags |= E1000_RXD_STAT_TCPCS |
csum_error;
} else if (isudp) {
*status_flags |= E1000_RXD_STAT_TCPCS |
E1000_RXD_STAT_UDPCS |
csum_error;
}
}
static inline bool
e1000e_is_tcp_ack(E1000ECore *core, struct NetRxPkt *rx_pkt)
{
if (!net_rx_pkt_is_tcp_ack(rx_pkt)) {
return false;
}
if (core->mac[RFCTL] & E1000_RFCTL_ACK_DATA_DIS) {
return !net_rx_pkt_has_tcp_data(rx_pkt);
}
return true;
}
static void
e1000e_build_rx_metadata(E1000ECore *core,
struct NetRxPkt *pkt,
bool is_eop,
const E1000E_RSSInfo *rss_info,
uint32_t *rss, uint32_t *mrq,
uint32_t *status_flags,
uint16_t *ip_id,
uint16_t *vlan_tag)
{
struct virtio_net_hdr *vhdr;
bool isip4, isip6, istcp, isudp;
uint32_t pkt_type;
*status_flags = E1000_RXD_STAT_DD;
/* No additional metadata needed for non-EOP descriptors */
if (!is_eop) {
goto func_exit;
}
*status_flags |= E1000_RXD_STAT_EOP;
net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
trace_e1000e_rx_metadata_protocols(isip4, isip6, isudp, istcp);
/* VLAN state */
if (net_rx_pkt_is_vlan_stripped(pkt)) {
*status_flags |= E1000_RXD_STAT_VP;
*vlan_tag = cpu_to_le16(net_rx_pkt_get_vlan_tag(pkt));
trace_e1000e_rx_metadata_vlan(*vlan_tag);
}
/* Packet parsing results */
if ((core->mac[RXCSUM] & E1000_RXCSUM_PCSD) != 0) {
if (rss_info->enabled) {
*rss = cpu_to_le32(rss_info->hash);
*mrq = cpu_to_le32(rss_info->type | (rss_info->queue << 8));
trace_e1000e_rx_metadata_rss(*rss, *mrq);
}
} else if (isip4) {
*status_flags |= E1000_RXD_STAT_IPIDV;
*ip_id = cpu_to_le16(net_rx_pkt_get_ip_id(pkt));
trace_e1000e_rx_metadata_ip_id(*ip_id);
}
if (istcp && e1000e_is_tcp_ack(core, pkt)) {
*status_flags |= E1000_RXD_STAT_ACK;
trace_e1000e_rx_metadata_ack();
}
if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_DIS)) {
trace_e1000e_rx_metadata_ipv6_filtering_disabled();
pkt_type = E1000_RXD_PKT_MAC;
} else if (istcp || isudp) {
pkt_type = isip4 ? E1000_RXD_PKT_IP4_XDP : E1000_RXD_PKT_IP6_XDP;
} else if (isip4 || isip6) {
pkt_type = isip4 ? E1000_RXD_PKT_IP4 : E1000_RXD_PKT_IP6;
} else {
pkt_type = E1000_RXD_PKT_MAC;
}
*status_flags |= E1000_RXD_PKT_TYPE(pkt_type);
trace_e1000e_rx_metadata_pkt_type(pkt_type);
/* RX CSO information */
if (isip6 && (core->mac[RFCTL] & E1000_RFCTL_IPV6_XSUM_DIS)) {
trace_e1000e_rx_metadata_ipv6_sum_disabled();
goto func_exit;
}
if (!net_rx_pkt_has_virt_hdr(pkt)) {
trace_e1000e_rx_metadata_no_virthdr();
e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
goto func_exit;
}
vhdr = net_rx_pkt_get_vhdr(pkt);
if (!(vhdr->flags & VIRTIO_NET_HDR_F_DATA_VALID) &&
!(vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM)) {
trace_e1000e_rx_metadata_virthdr_no_csum_info();
e1000e_verify_csum_in_sw(core, pkt, status_flags, istcp, isudp);
goto func_exit;
}
if (e1000e_rx_l3_cso_enabled(core)) {
*status_flags |= isip4 ? E1000_RXD_STAT_IPCS : 0;
} else {
trace_e1000e_rx_metadata_l3_cso_disabled();
}
if (e1000e_rx_l4_cso_enabled(core)) {
if (istcp) {
*status_flags |= E1000_RXD_STAT_TCPCS;
} else if (isudp) {
*status_flags |= E1000_RXD_STAT_TCPCS | E1000_RXD_STAT_UDPCS;
}
} else {
trace_e1000e_rx_metadata_l4_cso_disabled();
}
trace_e1000e_rx_metadata_status_flags(*status_flags);
func_exit:
*status_flags = cpu_to_le32(*status_flags);
}
static inline void
e1000e_write_lgcy_rx_descr(E1000ECore *core, uint8_t *desc,
struct NetRxPkt *pkt,
const E1000E_RSSInfo *rss_info,
uint16_t length)
{
uint32_t status_flags, rss, mrq;
uint16_t ip_id;
struct e1000_rx_desc *d = (struct e1000_rx_desc *) desc;
assert(!rss_info->enabled);
d->length = cpu_to_le16(length);
d->csum = 0;
e1000e_build_rx_metadata(core, pkt, pkt != NULL,
rss_info,
&rss, &mrq,
&status_flags, &ip_id,
&d->special);
d->errors = (uint8_t) (le32_to_cpu(status_flags) >> 24);
d->status = (uint8_t) le32_to_cpu(status_flags);
d->special = 0;
}
static inline void
e1000e_write_ext_rx_descr(E1000ECore *core, uint8_t *desc,
struct NetRxPkt *pkt,
const E1000E_RSSInfo *rss_info,
uint16_t length)
{
union e1000_rx_desc_extended *d = (union e1000_rx_desc_extended *) desc;
memset(&d->wb, 0, sizeof(d->wb));
d->wb.upper.length = cpu_to_le16(length);
e1000e_build_rx_metadata(core, pkt, pkt != NULL,
rss_info,
&d->wb.lower.hi_dword.rss,
&d->wb.lower.mrq,
&d->wb.upper.status_error,
&d->wb.lower.hi_dword.csum_ip.ip_id,
&d->wb.upper.vlan);
}
static inline void
e1000e_write_ps_rx_descr(E1000ECore *core, uint8_t *desc,
struct NetRxPkt *pkt,
const E1000E_RSSInfo *rss_info,
size_t ps_hdr_len,
uint16_t(*written)[MAX_PS_BUFFERS])
{
int i;
union e1000_rx_desc_packet_split *d =
(union e1000_rx_desc_packet_split *) desc;
memset(&d->wb, 0, sizeof(d->wb));
d->wb.middle.length0 = cpu_to_le16((*written)[0]);
for (i = 0; i < PS_PAGE_BUFFERS; i++) {
d->wb.upper.length[i] = cpu_to_le16((*written)[i + 1]);
}
e1000e_build_rx_metadata(core, pkt, pkt != NULL,
rss_info,
&d->wb.lower.hi_dword.rss,
&d->wb.lower.mrq,
&d->wb.middle.status_error,
&d->wb.lower.hi_dword.csum_ip.ip_id,
&d->wb.middle.vlan);
d->wb.upper.header_status =
cpu_to_le16(ps_hdr_len | (ps_hdr_len ? E1000_RXDPS_HDRSTAT_HDRSP : 0));
trace_e1000e_rx_desc_ps_write((*written)[0], (*written)[1],
(*written)[2], (*written)[3]);
}
static inline void
e1000e_write_rx_descr(E1000ECore *core, uint8_t *desc,
struct NetRxPkt *pkt, const E1000E_RSSInfo *rss_info,
size_t ps_hdr_len, uint16_t(*written)[MAX_PS_BUFFERS])
{
if (e1000e_rx_use_legacy_descriptor(core)) {
assert(ps_hdr_len == 0);
e1000e_write_lgcy_rx_descr(core, desc, pkt, rss_info, (*written)[0]);
} else {
if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
e1000e_write_ps_rx_descr(core, desc, pkt, rss_info,
ps_hdr_len, written);
} else {
assert(ps_hdr_len == 0);
e1000e_write_ext_rx_descr(core, desc, pkt, rss_info,
(*written)[0]);
}
}
}
typedef struct e1000e_ba_state_st {
uint16_t written[MAX_PS_BUFFERS];
uint8_t cur_idx;
} e1000e_ba_state;
static inline void
e1000e_write_hdr_to_rx_buffers(E1000ECore *core,
hwaddr (*ba)[MAX_PS_BUFFERS],
e1000e_ba_state *bastate,
const char *data,
dma_addr_t data_len)
{
assert(data_len <= core->rxbuf_sizes[0] - bastate->written[0]);
pci_dma_write(core->owner, (*ba)[0] + bastate->written[0], data, data_len);
bastate->written[0] += data_len;
bastate->cur_idx = 1;
}
static void
e1000e_write_to_rx_buffers(E1000ECore *core,
hwaddr (*ba)[MAX_PS_BUFFERS],
e1000e_ba_state *bastate,
const char *data,
dma_addr_t data_len)
{
while (data_len > 0) {
uint32_t cur_buf_len = core->rxbuf_sizes[bastate->cur_idx];
uint32_t cur_buf_bytes_left = cur_buf_len -
bastate->written[bastate->cur_idx];
uint32_t bytes_to_write = MIN(data_len, cur_buf_bytes_left);
trace_e1000e_rx_desc_buff_write(bastate->cur_idx,
(*ba)[bastate->cur_idx],
bastate->written[bastate->cur_idx],
data,
bytes_to_write);
pci_dma_write(core->owner,
(*ba)[bastate->cur_idx] + bastate->written[bastate->cur_idx],
data, bytes_to_write);
bastate->written[bastate->cur_idx] += bytes_to_write;
data += bytes_to_write;
data_len -= bytes_to_write;
if (bastate->written[bastate->cur_idx] == cur_buf_len) {
bastate->cur_idx++;
}
assert(bastate->cur_idx < MAX_PS_BUFFERS);
}
}
static void
e1000e_update_rx_stats(E1000ECore *core,
size_t data_size,
size_t data_fcs_size)
{
e1000x_update_rx_total_stats(core->mac, data_size, data_fcs_size);
switch (net_rx_pkt_get_packet_type(core->rx_pkt)) {
case ETH_PKT_BCAST:
e1000x_inc_reg_if_not_full(core->mac, BPRC);
break;
case ETH_PKT_MCAST:
e1000x_inc_reg_if_not_full(core->mac, MPRC);
break;
default:
break;
}
}
static inline bool
e1000e_rx_descr_threshold_hit(E1000ECore *core, const E1000E_RingInfo *rxi)
{
return e1000e_ring_free_descr_num(core, rxi) ==
e1000e_ring_len(core, rxi) >> core->rxbuf_min_shift;
}
static bool
e1000e_do_ps(E1000ECore *core, struct NetRxPkt *pkt, size_t *hdr_len)
{
bool isip4, isip6, isudp, istcp;
bool fragment;
if (!e1000e_rx_use_ps_descriptor(core)) {
return false;
}
net_rx_pkt_get_protocols(pkt, &isip4, &isip6, &isudp, &istcp);
if (isip4) {
fragment = net_rx_pkt_get_ip4_info(pkt)->fragment;
} else if (isip6) {
fragment = net_rx_pkt_get_ip6_info(pkt)->fragment;
} else {
return false;
}
if (fragment && (core->mac[RFCTL] & E1000_RFCTL_IPFRSP_DIS)) {
return false;
}
if (!fragment && (isudp || istcp)) {
*hdr_len = net_rx_pkt_get_l5_hdr_offset(pkt);
} else {
*hdr_len = net_rx_pkt_get_l4_hdr_offset(pkt);
}
if ((*hdr_len > core->rxbuf_sizes[0]) ||
(*hdr_len > net_rx_pkt_get_total_len(pkt))) {
return false;
}
return true;
}
static void
e1000e_write_packet_to_guest(E1000ECore *core, struct NetRxPkt *pkt,
const E1000E_RxRing *rxr,
const E1000E_RSSInfo *rss_info)
{
PCIDevice *d = core->owner;
dma_addr_t base;
uint8_t desc[E1000_MAX_RX_DESC_LEN];
size_t desc_size;
size_t desc_offset = 0;
size_t iov_ofs = 0;
struct iovec *iov = net_rx_pkt_get_iovec(pkt);
size_t size = net_rx_pkt_get_total_len(pkt);
size_t total_size = size + e1000x_fcs_len(core->mac);
const E1000E_RingInfo *rxi;
size_t ps_hdr_len = 0;
bool do_ps = e1000e_do_ps(core, pkt, &ps_hdr_len);
bool is_first = true;
rxi = rxr->i;
do {
hwaddr ba[MAX_PS_BUFFERS];
e1000e_ba_state bastate = { { 0 } };
bool is_last = false;
desc_size = total_size - desc_offset;
if (desc_size > core->rx_desc_buf_size) {
desc_size = core->rx_desc_buf_size;
}
if (e1000e_ring_empty(core, rxi)) {
return;
}
base = e1000e_ring_head_descr(core, rxi);
pci_dma_read(d, base, &desc, core->rx_desc_len);
trace_e1000e_rx_descr(rxi->idx, base, core->rx_desc_len);
e1000e_read_rx_descr(core, desc, &ba);
if (ba[0]) {
if (desc_offset < size) {
static const uint32_t fcs_pad;
size_t iov_copy;
size_t copy_size = size - desc_offset;
if (copy_size > core->rx_desc_buf_size) {
copy_size = core->rx_desc_buf_size;
}
/* For PS mode copy the packet header first */
if (do_ps) {
if (is_first) {
size_t ps_hdr_copied = 0;
do {
iov_copy = MIN(ps_hdr_len - ps_hdr_copied,
iov->iov_len - iov_ofs);
e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
iov->iov_base, iov_copy);
copy_size -= iov_copy;
ps_hdr_copied += iov_copy;
iov_ofs += iov_copy;
if (iov_ofs == iov->iov_len) {
iov++;
iov_ofs = 0;
}
} while (ps_hdr_copied < ps_hdr_len);
is_first = false;
} else {
/* Leave buffer 0 of each descriptor except first */
/* empty as per spec 7.1.5.1 */
e1000e_write_hdr_to_rx_buffers(core, &ba, &bastate,
NULL, 0);
}
}
/* Copy packet payload */
while (copy_size) {
iov_copy = MIN(copy_size, iov->iov_len - iov_ofs);
e1000e_write_to_rx_buffers(core, &ba, &bastate,
iov->iov_base + iov_ofs, iov_copy);
copy_size -= iov_copy;
iov_ofs += iov_copy;
if (iov_ofs == iov->iov_len) {
iov++;
iov_ofs = 0;
}
}
if (desc_offset + desc_size >= total_size) {
/* Simulate FCS checksum presence in the last descriptor */
e1000e_write_to_rx_buffers(core, &ba, &bastate,
(const char *) &fcs_pad, e1000x_fcs_len(core->mac));
}
}
} else { /* as per intel docs; skip descriptors with null buf addr */
trace_e1000e_rx_null_descriptor();
}
desc_offset += desc_size;
if (desc_offset >= total_size) {
is_last = true;
}
e1000e_write_rx_descr(core, desc, is_last ? core->rx_pkt : NULL,
rss_info, do_ps ? ps_hdr_len : 0, &bastate.written);
pci_dma_write(d, base, &desc, core->rx_desc_len);
e1000e_ring_advance(core, rxi,
core->rx_desc_len / E1000_MIN_RX_DESC_LEN);
} while (desc_offset < total_size);
e1000e_update_rx_stats(core, size, total_size);
}
static inline void
e1000e_rx_fix_l4_csum(E1000ECore *core, struct NetRxPkt *pkt)
{
if (net_rx_pkt_has_virt_hdr(pkt)) {
struct virtio_net_hdr *vhdr = net_rx_pkt_get_vhdr(pkt);
if (vhdr->flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) {
net_rx_pkt_fix_l4_csum(pkt);
}
}
}
ssize_t
e1000e_receive_iov(E1000ECore *core, const struct iovec *iov, int iovcnt)
{
static const int maximum_ethernet_hdr_len = (14 + 4);
/* Min. octets in an ethernet frame sans FCS */
static const int min_buf_size = 60;
uint32_t n = 0;
uint8_t min_buf[min_buf_size];
struct iovec min_iov;
uint8_t *filter_buf;
size_t size, orig_size;
size_t iov_ofs = 0;
E1000E_RxRing rxr;
E1000E_RSSInfo rss_info;
size_t total_size;
ssize_t retval;
bool rdmts_hit;
trace_e1000e_rx_receive_iov(iovcnt);
if (!e1000x_hw_rx_enabled(core->mac)) {
return -1;
}
/* Pull virtio header in */
if (core->has_vnet) {
net_rx_pkt_set_vhdr_iovec(core->rx_pkt, iov, iovcnt);
iov_ofs = sizeof(struct virtio_net_hdr);
}
filter_buf = iov->iov_base + iov_ofs;
orig_size = iov_size(iov, iovcnt);
size = orig_size - iov_ofs;
/* Pad to minimum Ethernet frame length */
if (size < sizeof(min_buf)) {
iov_to_buf(iov, iovcnt, iov_ofs, min_buf, size);
memset(&min_buf[size], 0, sizeof(min_buf) - size);
e1000x_inc_reg_if_not_full(core->mac, RUC);
min_iov.iov_base = filter_buf = min_buf;
min_iov.iov_len = size = sizeof(min_buf);
iovcnt = 1;
iov = &min_iov;
iov_ofs = 0;
} else if (iov->iov_len < maximum_ethernet_hdr_len) {
/* This is very unlikely, but may happen. */
iov_to_buf(iov, iovcnt, iov_ofs, min_buf, maximum_ethernet_hdr_len);
filter_buf = min_buf;
}
/* Discard oversized packets if !LPE and !SBP. */
if (e1000x_is_oversized(core->mac, size)) {
return orig_size;
}
net_rx_pkt_set_packet_type(core->rx_pkt,
get_eth_packet_type(PKT_GET_ETH_HDR(filter_buf)));
if (!e1000e_receive_filter(core, filter_buf, size)) {
trace_e1000e_rx_flt_dropped();
return orig_size;
}
net_rx_pkt_attach_iovec_ex(core->rx_pkt, iov, iovcnt, iov_ofs,
e1000x_vlan_enabled(core->mac), core->vet);
e1000e_rss_parse_packet(core, core->rx_pkt, &rss_info);
e1000e_rx_ring_init(core, &rxr, rss_info.queue);
trace_e1000e_rx_rss_dispatched_to_queue(rxr.i->idx);
total_size = net_rx_pkt_get_total_len(core->rx_pkt) +
e1000x_fcs_len(core->mac);
if (e1000e_has_rxbufs(core, rxr.i, total_size)) {
e1000e_rx_fix_l4_csum(core, core->rx_pkt);
e1000e_write_packet_to_guest(core, core->rx_pkt, &rxr, &rss_info);
retval = orig_size;
/* Perform small receive detection (RSRPD) */
if (total_size < core->mac[RSRPD]) {
n |= E1000_ICS_SRPD;
}
/* Perform ACK receive detection */
if (!(core->mac[RFCTL] & E1000_RFCTL_ACK_DIS) &&
(e1000e_is_tcp_ack(core, core->rx_pkt))) {
n |= E1000_ICS_ACK;
}
/* Check if receive descriptor minimum threshold hit */
rdmts_hit = e1000e_rx_descr_threshold_hit(core, rxr.i);
n |= e1000e_rx_wb_interrupt_cause(core, rxr.i->idx, rdmts_hit);
trace_e1000e_rx_written_to_guest(n);
} else {
n |= E1000_ICS_RXO;
retval = 0;
trace_e1000e_rx_not_written_to_guest(n);
}
if (!e1000e_intrmgr_delay_rx_causes(core, &n)) {
trace_e1000e_rx_interrupt_set(n);
e1000e_set_interrupt_cause(core, n);
} else {
trace_e1000e_rx_interrupt_delayed(n);
}
return retval;
}
static inline bool
e1000e_have_autoneg(E1000ECore *core)
{
return core->phy[0][PHY_CTRL] & MII_CR_AUTO_NEG_EN;
}
static void e1000e_update_flowctl_status(E1000ECore *core)
{
if (e1000e_have_autoneg(core) &&
core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE) {
trace_e1000e_link_autoneg_flowctl(true);
core->mac[CTRL] |= E1000_CTRL_TFCE | E1000_CTRL_RFCE;
} else {
trace_e1000e_link_autoneg_flowctl(false);
}
}
static inline void
e1000e_link_down(E1000ECore *core)
{
e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
e1000e_update_flowctl_status(core);
}
static inline void
e1000e_set_phy_ctrl(E1000ECore *core, int index, uint16_t val)
{
/* bits 0-5 reserved; MII_CR_[RESTART_AUTO_NEG,RESET] are self clearing */
core->phy[0][PHY_CTRL] = val & ~(0x3f |
MII_CR_RESET |
MII_CR_RESTART_AUTO_NEG);
if ((val & MII_CR_RESTART_AUTO_NEG) &&
e1000e_have_autoneg(core)) {
e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
}
}
static void
e1000e_set_phy_oem_bits(E1000ECore *core, int index, uint16_t val)
{
core->phy[0][PHY_OEM_BITS] = val & ~BIT(10);
if (val & BIT(10)) {
e1000x_restart_autoneg(core->mac, core->phy[0], core->autoneg_timer);
}
}
static void
e1000e_set_phy_page(E1000ECore *core, int index, uint16_t val)
{
core->phy[0][PHY_PAGE] = val & PHY_PAGE_RW_MASK;
}
void
e1000e_core_set_link_status(E1000ECore *core)
{
NetClientState *nc = qemu_get_queue(core->owner_nic);
uint32_t old_status = core->mac[STATUS];
trace_e1000e_link_status_changed(nc->link_down ? false : true);
if (nc->link_down) {
e1000x_update_regs_on_link_down(core->mac, core->phy[0]);
} else {
if (e1000e_have_autoneg(core) &&
!(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
e1000x_restart_autoneg(core->mac, core->phy[0],
core->autoneg_timer);
} else {
e1000x_update_regs_on_link_up(core->mac, core->phy[0]);
e1000e_start_recv(core);
}
}
if (core->mac[STATUS] != old_status) {
e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
}
}
static void
e1000e_set_ctrl(E1000ECore *core, int index, uint32_t val)
{
trace_e1000e_core_ctrl_write(index, val);
/* RST is self clearing */
core->mac[CTRL] = val & ~E1000_CTRL_RST;
core->mac[CTRL_DUP] = core->mac[CTRL];
trace_e1000e_link_set_params(
!!(val & E1000_CTRL_ASDE),
(val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
!!(val & E1000_CTRL_FRCSPD),
!!(val & E1000_CTRL_FRCDPX),
!!(val & E1000_CTRL_RFCE),
!!(val & E1000_CTRL_TFCE));
if (val & E1000_CTRL_RST) {
trace_e1000e_core_ctrl_sw_reset();
e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
}
if (val & E1000_CTRL_PHY_RST) {
trace_e1000e_core_ctrl_phy_reset();
core->mac[STATUS] |= E1000_STATUS_PHYRA;
}
}
static void
e1000e_set_rfctl(E1000ECore *core, int index, uint32_t val)
{
trace_e1000e_rx_set_rfctl(val);
if (!(val & E1000_RFCTL_ISCSI_DIS)) {
trace_e1000e_wrn_iscsi_filtering_not_supported();
}
if (!(val & E1000_RFCTL_NFSW_DIS)) {
trace_e1000e_wrn_nfsw_filtering_not_supported();
}
if (!(val & E1000_RFCTL_NFSR_DIS)) {
trace_e1000e_wrn_nfsr_filtering_not_supported();
}
core->mac[RFCTL] = val;
}
static void
e1000e_calc_per_desc_buf_size(E1000ECore *core)
{
int i;
core->rx_desc_buf_size = 0;
for (i = 0; i < ARRAY_SIZE(core->rxbuf_sizes); i++) {
core->rx_desc_buf_size += core->rxbuf_sizes[i];
}
}
static void
e1000e_parse_rxbufsize(E1000ECore *core)
{
uint32_t rctl = core->mac[RCTL];
memset(core->rxbuf_sizes, 0, sizeof(core->rxbuf_sizes));
if (rctl & E1000_RCTL_DTYP_MASK) {
uint32_t bsize;
bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE0_MASK;
core->rxbuf_sizes[0] = (bsize >> E1000_PSRCTL_BSIZE0_SHIFT) * 128;
bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE1_MASK;
core->rxbuf_sizes[1] = (bsize >> E1000_PSRCTL_BSIZE1_SHIFT) * 1024;
bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE2_MASK;
core->rxbuf_sizes[2] = (bsize >> E1000_PSRCTL_BSIZE2_SHIFT) * 1024;
bsize = core->mac[PSRCTL] & E1000_PSRCTL_BSIZE3_MASK;
core->rxbuf_sizes[3] = (bsize >> E1000_PSRCTL_BSIZE3_SHIFT) * 1024;
} else if (rctl & E1000_RCTL_FLXBUF_MASK) {
int flxbuf = rctl & E1000_RCTL_FLXBUF_MASK;
core->rxbuf_sizes[0] = (flxbuf >> E1000_RCTL_FLXBUF_SHIFT) * 1024;
} else {
core->rxbuf_sizes[0] = e1000x_rxbufsize(rctl);
}
trace_e1000e_rx_desc_buff_sizes(core->rxbuf_sizes[0], core->rxbuf_sizes[1],
core->rxbuf_sizes[2], core->rxbuf_sizes[3]);
e1000e_calc_per_desc_buf_size(core);
}
static void
e1000e_calc_rxdesclen(E1000ECore *core)
{
if (e1000e_rx_use_legacy_descriptor(core)) {
core->rx_desc_len = sizeof(struct e1000_rx_desc);
} else {
if (core->mac[RCTL] & E1000_RCTL_DTYP_PS) {
core->rx_desc_len = sizeof(union e1000_rx_desc_packet_split);
} else {
core->rx_desc_len = sizeof(union e1000_rx_desc_extended);
}
}
trace_e1000e_rx_desc_len(core->rx_desc_len);
}
static void
e1000e_set_rx_control(E1000ECore *core, int index, uint32_t val)
{
core->mac[RCTL] = val;
trace_e1000e_rx_set_rctl(core->mac[RCTL]);
if (val & E1000_RCTL_EN) {
e1000e_parse_rxbufsize(core);
e1000e_calc_rxdesclen(core);
core->rxbuf_min_shift = ((val / E1000_RCTL_RDMTS_QUAT) & 3) + 1 +
E1000_RING_DESC_LEN_SHIFT;
e1000e_start_recv(core);
}
}
static
void(*e1000e_phyreg_writeops[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE])
(E1000ECore *, int, uint16_t) = {
[0] = {
[PHY_CTRL] = e1000e_set_phy_ctrl,
[PHY_PAGE] = e1000e_set_phy_page,
[PHY_OEM_BITS] = e1000e_set_phy_oem_bits
}
};
static inline void
e1000e_clear_ims_bits(E1000ECore *core, uint32_t bits)
{
trace_e1000e_irq_clear_ims(bits, core->mac[IMS], core->mac[IMS] & ~bits);
core->mac[IMS] &= ~bits;
}
static inline bool
e1000e_postpone_interrupt(bool *interrupt_pending,
E1000IntrDelayTimer *timer)
{
if (timer->running) {
trace_e1000e_irq_postponed_by_xitr(timer->delay_reg << 2);
*interrupt_pending = true;
return true;
}
if (timer->core->mac[timer->delay_reg] != 0) {
e1000e_intrmgr_rearm_timer(timer);
}
return false;
}
static inline bool
e1000e_itr_should_postpone(E1000ECore *core)
{
return e1000e_postpone_interrupt(&core->itr_intr_pending, &core->itr);
}
static inline bool
e1000e_eitr_should_postpone(E1000ECore *core, int idx)
{
return e1000e_postpone_interrupt(&core->eitr_intr_pending[idx],
&core->eitr[idx]);
}
static void
e1000e_msix_notify_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
{
uint32_t effective_eiac;
if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
if (vec < E1000E_MSIX_VEC_NUM) {
if (!e1000e_eitr_should_postpone(core, vec)) {
trace_e1000e_irq_msix_notify_vec(vec);
msix_notify(core->owner, vec);
}
} else {
trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
}
} else {
trace_e1000e_wrn_msix_invalid(cause, int_cfg);
}
if (core->mac[CTRL_EXT] & E1000_CTRL_EXT_EIAME) {
trace_e1000e_irq_iam_clear_eiame(core->mac[IAM], cause);
core->mac[IAM] &= ~cause;
}
trace_e1000e_irq_icr_clear_eiac(core->mac[ICR], core->mac[EIAC]);
effective_eiac = core->mac[EIAC] & cause;
core->mac[ICR] &= ~effective_eiac;
core->msi_causes_pending &= ~effective_eiac;
if (!(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
core->mac[IMS] &= ~effective_eiac;
}
}
static void
e1000e_msix_notify(E1000ECore *core, uint32_t causes)
{
if (causes & E1000_ICR_RXQ0) {
e1000e_msix_notify_one(core, E1000_ICR_RXQ0,
E1000_IVAR_RXQ0(core->mac[IVAR]));
}
if (causes & E1000_ICR_RXQ1) {
e1000e_msix_notify_one(core, E1000_ICR_RXQ1,
E1000_IVAR_RXQ1(core->mac[IVAR]));
}
if (causes & E1000_ICR_TXQ0) {
e1000e_msix_notify_one(core, E1000_ICR_TXQ0,
E1000_IVAR_TXQ0(core->mac[IVAR]));
}
if (causes & E1000_ICR_TXQ1) {
e1000e_msix_notify_one(core, E1000_ICR_TXQ1,
E1000_IVAR_TXQ1(core->mac[IVAR]));
}
if (causes & E1000_ICR_OTHER) {
e1000e_msix_notify_one(core, E1000_ICR_OTHER,
E1000_IVAR_OTHER(core->mac[IVAR]));
}
}
static void
e1000e_msix_clear_one(E1000ECore *core, uint32_t cause, uint32_t int_cfg)
{
if (E1000_IVAR_ENTRY_VALID(int_cfg)) {
uint32_t vec = E1000_IVAR_ENTRY_VEC(int_cfg);
if (vec < E1000E_MSIX_VEC_NUM) {
trace_e1000e_irq_msix_pending_clearing(cause, int_cfg, vec);
msix_clr_pending(core->owner, vec);
} else {
trace_e1000e_wrn_msix_vec_wrong(cause, int_cfg);
}
} else {
trace_e1000e_wrn_msix_invalid(cause, int_cfg);
}
}
static void
e1000e_msix_clear(E1000ECore *core, uint32_t causes)
{
if (causes & E1000_ICR_RXQ0) {
e1000e_msix_clear_one(core, E1000_ICR_RXQ0,
E1000_IVAR_RXQ0(core->mac[IVAR]));
}
if (causes & E1000_ICR_RXQ1) {
e1000e_msix_clear_one(core, E1000_ICR_RXQ1,
E1000_IVAR_RXQ1(core->mac[IVAR]));
}
if (causes & E1000_ICR_TXQ0) {
e1000e_msix_clear_one(core, E1000_ICR_TXQ0,
E1000_IVAR_TXQ0(core->mac[IVAR]));
}
if (causes & E1000_ICR_TXQ1) {
e1000e_msix_clear_one(core, E1000_ICR_TXQ1,
E1000_IVAR_TXQ1(core->mac[IVAR]));
}
if (causes & E1000_ICR_OTHER) {
e1000e_msix_clear_one(core, E1000_ICR_OTHER,
E1000_IVAR_OTHER(core->mac[IVAR]));
}
}
static inline void
e1000e_fix_icr_asserted(E1000ECore *core)
{
core->mac[ICR] &= ~E1000_ICR_ASSERTED;
if (core->mac[ICR]) {
core->mac[ICR] |= E1000_ICR_ASSERTED;
}
trace_e1000e_irq_fix_icr_asserted(core->mac[ICR]);
}
static void
e1000e_send_msi(E1000ECore *core, bool msix)
{
uint32_t causes = core->mac[ICR] & core->mac[IMS] & ~E1000_ICR_ASSERTED;
core->msi_causes_pending &= causes;
causes ^= core->msi_causes_pending;
if (causes == 0) {
return;
}
core->msi_causes_pending |= causes;
if (msix) {
e1000e_msix_notify(core, causes);
} else {
if (!e1000e_itr_should_postpone(core)) {
trace_e1000e_irq_msi_notify(causes);
msi_notify(core->owner, 0);
}
}
}
static void
e1000e_update_interrupt_state(E1000ECore *core)
{
bool interrupts_pending;
bool is_msix = msix_enabled(core->owner);
/* Set ICR[OTHER] for MSI-X */
if (is_msix) {
if (core->mac[ICR] & E1000_ICR_OTHER_CAUSES) {
core->mac[ICR] |= E1000_ICR_OTHER;
trace_e1000e_irq_add_msi_other(core->mac[ICR]);
}
}
e1000e_fix_icr_asserted(core);
/*
* Make sure ICR and ICS registers have the same value.
* The spec says that the ICS register is write-only. However in practice,
* on real hardware ICS is readable, and for reads it has the same value as
* ICR (except that ICS does not have the clear on read behaviour of ICR).
*
* The VxWorks PRO/1000 driver uses this behaviour.
*/
core->mac[ICS] = core->mac[ICR];
interrupts_pending = (core->mac[IMS] & core->mac[ICR]) ? true : false;
if (!interrupts_pending) {
core->msi_causes_pending = 0;
}
trace_e1000e_irq_pending_interrupts(core->mac[ICR] & core->mac[IMS],
core->mac[ICR], core->mac[IMS]);
if (is_msix || msi_enabled(core->owner)) {
if (interrupts_pending) {
e1000e_send_msi(core, is_msix);
}
} else {
if (interrupts_pending) {
if (!e1000e_itr_should_postpone(core)) {
e1000e_raise_legacy_irq(core);
}
} else {
e1000e_lower_legacy_irq(core);
}
}
}
static void
e1000e_set_interrupt_cause(E1000ECore *core, uint32_t val)
{
trace_e1000e_irq_set_cause_entry(val, core->mac[ICR]);
val |= e1000e_intmgr_collect_delayed_causes(core);
core->mac[ICR] |= val;
trace_e1000e_irq_set_cause_exit(val, core->mac[ICR]);
e1000e_update_interrupt_state(core);
}
static inline void
e1000e_autoneg_timer(void *opaque)
{
E1000ECore *core = opaque;
if (!qemu_get_queue(core->owner_nic)->link_down) {
e1000x_update_regs_on_autoneg_done(core->mac, core->phy[0]);
e1000e_start_recv(core);
e1000e_update_flowctl_status(core);
/* signal link status change to the guest */
e1000e_set_interrupt_cause(core, E1000_ICR_LSC);
}
}
static inline uint16_t
e1000e_get_reg_index_with_offset(const uint16_t *mac_reg_access, hwaddr addr)
{
uint16_t index = (addr & 0x1ffff) >> 2;
return index + (mac_reg_access[index] & 0xfffe);
}
static const char e1000e_phy_regcap[E1000E_PHY_PAGES][0x20] = {
[0] = {
[PHY_CTRL] = PHY_ANYPAGE | PHY_RW,
[PHY_STATUS] = PHY_ANYPAGE | PHY_R,
[PHY_ID1] = PHY_ANYPAGE | PHY_R,
[PHY_ID2] = PHY_ANYPAGE | PHY_R,
[PHY_AUTONEG_ADV] = PHY_ANYPAGE | PHY_RW,
[PHY_LP_ABILITY] = PHY_ANYPAGE | PHY_R,
[PHY_AUTONEG_EXP] = PHY_ANYPAGE | PHY_R,
[PHY_NEXT_PAGE_TX] = PHY_ANYPAGE | PHY_RW,
[PHY_LP_NEXT_PAGE] = PHY_ANYPAGE | PHY_R,
[PHY_1000T_CTRL] = PHY_ANYPAGE | PHY_RW,
[PHY_1000T_STATUS] = PHY_ANYPAGE | PHY_R,
[PHY_EXT_STATUS] = PHY_ANYPAGE | PHY_R,
[PHY_PAGE] = PHY_ANYPAGE | PHY_RW,
[PHY_COPPER_CTRL1] = PHY_RW,
[PHY_COPPER_STAT1] = PHY_R,
[PHY_COPPER_CTRL3] = PHY_RW,
[PHY_RX_ERR_CNTR] = PHY_R,
[PHY_OEM_BITS] = PHY_RW,
[PHY_BIAS_1] = PHY_RW,
[PHY_BIAS_2] = PHY_RW,
[PHY_COPPER_INT_ENABLE] = PHY_RW,
[PHY_COPPER_STAT2] = PHY_R,
[PHY_COPPER_CTRL2] = PHY_RW
},
[2] = {
[PHY_MAC_CTRL1] = PHY_RW,
[PHY_MAC_INT_ENABLE] = PHY_RW,
[PHY_MAC_STAT] = PHY_R,
[PHY_MAC_CTRL2] = PHY_RW
},
[3] = {
[PHY_LED_03_FUNC_CTRL1] = PHY_RW,
[PHY_LED_03_POL_CTRL] = PHY_RW,
[PHY_LED_TIMER_CTRL] = PHY_RW,
[PHY_LED_45_CTRL] = PHY_RW
},
[5] = {
[PHY_1000T_SKEW] = PHY_R,
[PHY_1000T_SWAP] = PHY_R
},
[6] = {
[PHY_CRC_COUNTERS] = PHY_R
}
};
static bool
e1000e_phy_reg_check_cap(E1000ECore *core, uint32_t addr,
char cap, uint8_t *page)
{
*page =
(e1000e_phy_regcap[0][addr] & PHY_ANYPAGE) ? 0
: core->phy[0][PHY_PAGE];
if (*page >= E1000E_PHY_PAGES) {
return false;
}
return e1000e_phy_regcap[*page][addr] & cap;
}
static void
e1000e_phy_reg_write(E1000ECore *core, uint8_t page,
uint32_t addr, uint16_t data)
{
assert(page < E1000E_PHY_PAGES);
assert(addr < E1000E_PHY_PAGE_SIZE);
if (e1000e_phyreg_writeops[page][addr]) {
e1000e_phyreg_writeops[page][addr](core, addr, data);
} else {
core->phy[page][addr] = data;
}
}
static void
e1000e_set_mdic(E1000ECore *core, int index, uint32_t val)
{
uint32_t data = val & E1000_MDIC_DATA_MASK;
uint32_t addr = ((val & E1000_MDIC_REG_MASK) >> E1000_MDIC_REG_SHIFT);
uint8_t page;
if ((val & E1000_MDIC_PHY_MASK) >> E1000_MDIC_PHY_SHIFT != 1) { /* phy # */
val = core->mac[MDIC] | E1000_MDIC_ERROR;
} else if (val & E1000_MDIC_OP_READ) {
if (!e1000e_phy_reg_check_cap(core, addr, PHY_R, &page)) {
trace_e1000e_core_mdic_read_unhandled(page, addr);
val |= E1000_MDIC_ERROR;
} else {
val = (val ^ data) | core->phy[page][addr];
trace_e1000e_core_mdic_read(page, addr, val);
}
} else if (val & E1000_MDIC_OP_WRITE) {
if (!e1000e_phy_reg_check_cap(core, addr, PHY_W, &page)) {
trace_e1000e_core_mdic_write_unhandled(page, addr);
val |= E1000_MDIC_ERROR;
} else {
trace_e1000e_core_mdic_write(page, addr, data);
e1000e_phy_reg_write(core, page, addr, data);
}
}
core->mac[MDIC] = val | E1000_MDIC_READY;
if (val & E1000_MDIC_INT_EN) {
e1000e_set_interrupt_cause(core, E1000_ICR_MDAC);
}
}
static void
e1000e_set_rdt(E1000ECore *core, int index, uint32_t val)
{
core->mac[index] = val & 0xffff;
trace_e1000e_rx_set_rdt(e1000e_mq_queue_idx(RDT0, index), val);
e1000e_start_recv(core);
}
static void
e1000e_set_status(E1000ECore *core, int index, uint32_t val)
{
if ((val & E1000_STATUS_PHYRA) == 0) {
core->mac[index] &= ~E1000_STATUS_PHYRA;
}
}
static void
e1000e_set_ctrlext(E1000ECore *core, int index, uint32_t val)
{
trace_e1000e_link_set_ext_params(!!(val & E1000_CTRL_EXT_ASDCHK),
!!(val & E1000_CTRL_EXT_SPD_BYPS));
/* Zero self-clearing bits */
val &= ~(E1000_CTRL_EXT_ASDCHK | E1000_CTRL_EXT_EE_RST);
core->mac[CTRL_EXT] = val;
}
static void
e1000e_set_pbaclr(E1000ECore *core, int index, uint32_t val)
{
int i;
core->mac[PBACLR] = val & E1000_PBACLR_VALID_MASK;
if (!msix_enabled(core->owner)) {
return;
}
for (i = 0; i < E1000E_MSIX_VEC_NUM; i++) {
if (core->mac[PBACLR] & BIT(i)) {
msix_clr_pending(core->owner, i);
}
}
}
static void
e1000e_set_fcrth(E1000ECore *core, int index, uint32_t val)
{
core->mac[FCRTH] = val & 0xFFF8;
}
static void
e1000e_set_fcrtl(E1000ECore *core, int index, uint32_t val)
{
core->mac[FCRTL] = val & 0x8000FFF8;
}
static inline void
e1000e_set_16bit(E1000ECore *core, int index, uint32_t val)
{
core->mac[index] = val & 0xffff;
}
static void
e1000e_set_12bit(E1000ECore *core, int index, uint32_t val)
{
core->mac[index] = val & 0xfff;
}
static void
e1000e_set_vet(E1000ECore *core, int index, uint32_t val)
{
core->mac[VET] = val & 0xffff;
core->vet = le16_to_cpu(core->mac[VET]);
trace_e1000e_vlan_vet(core->vet);
}
static void
e1000e_set_dlen(E1000ECore *core, int index, uint32_t val)
{
core->mac[index] = val & E1000_XDLEN_MASK;
}
static void
e1000e_set_dbal(E1000ECore *core, int index, uint32_t val)
{
core->mac[index] = val & E1000_XDBAL_MASK;
}
static void
e1000e_set_tctl(E1000ECore *core, int index, uint32_t val)
{
E1000E_TxRing txr;
core->mac[index] = val;
if (core->mac[TARC0] & E1000_TARC_ENABLE) {
e1000e_tx_ring_init(core, &txr, 0);
e1000e_start_xmit(core, &txr);
}
if (core->mac[TARC1] & E1000_TARC_ENABLE) {
e1000e_tx_ring_init(core, &txr, 1);
e1000e_start_xmit(core, &txr);
}
}
static void
e1000e_set_tdt(E1000ECore *core, int index, uint32_t val)
{
E1000E_TxRing txr;
int qidx = e1000e_mq_queue_idx(TDT, index);
uint32_t tarc_reg = (qidx == 0) ? TARC0 : TARC1;
core->mac[index] = val & 0xffff;
if (core->mac[tarc_reg] & E1000_TARC_ENABLE) {
e1000e_tx_ring_init(core, &txr, qidx);
e1000e_start_xmit(core, &txr);
}
}
static void
e1000e_set_ics(E1000ECore *core, int index, uint32_t val)
{
trace_e1000e_irq_write_ics(val);
e1000e_set_interrupt_cause(core, val);
}
static void
e1000e_set_icr(E1000ECore *core, int index, uint32_t val)
{
uint32_t icr = 0;
if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
trace_e1000e_irq_icr_process_iame();
e1000e_clear_ims_bits(core, core->mac[IAM]);
}
icr = core->mac[ICR] & ~val;
/* Windows driver expects that the "receive overrun" bit and other
* ones to be cleared when the "Other" bit (#24) is cleared.
*/
icr = (val & E1000_ICR_OTHER) ? (icr & ~E1000_ICR_OTHER_CAUSES) : icr;
trace_e1000e_irq_icr_write(val, core->mac[ICR], icr);
core->mac[ICR] = icr;
e1000e_update_interrupt_state(core);
}
static void
e1000e_set_imc(E1000ECore *core, int index, uint32_t val)
{
trace_e1000e_irq_ims_clear_set_imc(val);
e1000e_clear_ims_bits(core, val);
e1000e_update_interrupt_state(core);
}
static void
e1000e_set_ims(E1000ECore *core, int index, uint32_t val)
{
static const uint32_t ims_ext_mask =
E1000_IMS_RXQ0 | E1000_IMS_RXQ1 |
E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
E1000_IMS_OTHER;
static const uint32_t ims_valid_mask =
E1000_IMS_TXDW | E1000_IMS_TXQE | E1000_IMS_LSC |
E1000_IMS_RXDMT0 | E1000_IMS_RXO | E1000_IMS_RXT0 |
E1000_IMS_MDAC | E1000_IMS_TXD_LOW | E1000_IMS_SRPD |
E1000_IMS_ACK | E1000_IMS_MNG | E1000_IMS_RXQ0 |
E1000_IMS_RXQ1 | E1000_IMS_TXQ0 | E1000_IMS_TXQ1 |
E1000_IMS_OTHER;
uint32_t valid_val = val & ims_valid_mask;
trace_e1000e_irq_set_ims(val, core->mac[IMS], core->mac[IMS] | valid_val);
core->mac[IMS] |= valid_val;
if ((valid_val & ims_ext_mask) &&
(core->mac[CTRL_EXT] & E1000_CTRL_EXT_PBA_CLR) &&
msix_enabled(core->owner)) {
e1000e_msix_clear(core, valid_val);
}
if ((valid_val == ims_valid_mask) &&
(core->mac[CTRL_EXT] & E1000_CTRL_EXT_INT_TIMERS_CLEAR_ENA)) {
trace_e1000e_irq_fire_all_timers(val);
e1000e_intrmgr_fire_all_timers(core);
}
e1000e_update_interrupt_state(core);
}
static void
e1000e_set_rdtr(E1000ECore *core, int index, uint32_t val)
{
e1000e_set_16bit(core, index, val);
if ((val & E1000_RDTR_FPD) && (core->rdtr.running)) {
trace_e1000e_irq_rdtr_fpd_running();
e1000e_intrmgr_fire_delayed_interrupts(core);
} else {
trace_e1000e_irq_rdtr_fpd_not_running();
}
}
static void
e1000e_set_tidv(E1000ECore *core, int index, uint32_t val)
{
e1000e_set_16bit(core, index, val);
if ((val & E1000_TIDV_FPD) && (core->tidv.running)) {
trace_e1000e_irq_tidv_fpd_running();
e1000e_intrmgr_fire_delayed_interrupts(core);
} else {
trace_e1000e_irq_tidv_fpd_not_running();
}
}
static uint32_t
e1000e_mac_readreg(E1000ECore *core, int index)
{
return core->mac[index];
}
static uint32_t
e1000e_mac_ics_read(E1000ECore *core, int index)
{
trace_e1000e_irq_read_ics(core->mac[ICS]);
return core->mac[ICS];
}
static uint32_t
e1000e_mac_ims_read(E1000ECore *core, int index)
{
trace_e1000e_irq_read_ims(core->mac[IMS]);
return core->mac[IMS];
}
#define E1000E_LOW_BITS_READ_FUNC(num) \
static uint32_t \
e1000e_mac_low##num##_read(E1000ECore *core, int index) \
{ \
return core->mac[index] & (BIT(num) - 1); \
} \
#define E1000E_LOW_BITS_READ(num) \
e1000e_mac_low##num##_read
E1000E_LOW_BITS_READ_FUNC(4);
E1000E_LOW_BITS_READ_FUNC(6);
E1000E_LOW_BITS_READ_FUNC(11);
E1000E_LOW_BITS_READ_FUNC(13);
E1000E_LOW_BITS_READ_FUNC(16);
static uint32_t
e1000e_mac_swsm_read(E1000ECore *core, int index)
{
uint32_t val = core->mac[SWSM];
core->mac[SWSM] = val | 1;
return val;
}
static uint32_t
e1000e_mac_itr_read(E1000ECore *core, int index)
{
return core->itr_guest_value;
}
static uint32_t
e1000e_mac_eitr_read(E1000ECore *core, int index)
{
return core->eitr_guest_value[index - EITR];
}
static uint32_t
e1000e_mac_icr_read(E1000ECore *core, int index)
{
uint32_t ret = core->mac[ICR];
trace_e1000e_irq_icr_read_entry(ret);
if (core->mac[IMS] == 0) {
trace_e1000e_irq_icr_clear_zero_ims();
core->mac[ICR] = 0;
}
if ((core->mac[ICR] & E1000_ICR_ASSERTED) &&
(core->mac[CTRL_EXT] & E1000_CTRL_EXT_IAME)) {
trace_e1000e_irq_icr_clear_iame();
core->mac[ICR] = 0;
trace_e1000e_irq_icr_process_iame();
e1000e_clear_ims_bits(core, core->mac[IAM]);
}
trace_e1000e_irq_icr_read_exit(core->mac[ICR]);
e1000e_update_interrupt_state(core);
return ret;
}
static uint32_t
e1000e_mac_read_clr4(E1000ECore *core, int index)
{
uint32_t ret = core->mac[index];
core->mac[index] = 0;
return ret;
}
static uint32_t
e1000e_mac_read_clr8(E1000ECore *core, int index)
{
uint32_t ret = core->mac[index];
core->mac[index] = 0;
core->mac[index - 1] = 0;
return ret;
}
static uint32_t
e1000e_get_ctrl(E1000ECore *core, int index)
{
uint32_t val = core->mac[CTRL];
trace_e1000e_link_read_params(
!!(val & E1000_CTRL_ASDE),
(val & E1000_CTRL_SPD_SEL) >> E1000_CTRL_SPD_SHIFT,
!!(val & E1000_CTRL_FRCSPD),
!!(val & E1000_CTRL_FRCDPX),
!!(val & E1000_CTRL_RFCE),
!!(val & E1000_CTRL_TFCE));
return val;
}
static uint32_t
e1000e_get_status(E1000ECore *core, int index)
{
uint32_t res = core->mac[STATUS];
if (!(core->mac[CTRL] & E1000_CTRL_GIO_MASTER_DISABLE)) {
res |= E1000_STATUS_GIO_MASTER_ENABLE;
}
if (core->mac[CTRL] & E1000_CTRL_FRCDPX) {
res |= (core->mac[CTRL] & E1000_CTRL_FD) ? E1000_STATUS_FD : 0;
} else {
res |= E1000_STATUS_FD;
}
if ((core->mac[CTRL] & E1000_CTRL_FRCSPD) ||
(core->mac[CTRL_EXT] & E1000_CTRL_EXT_SPD_BYPS)) {
switch (core->mac[CTRL] & E1000_CTRL_SPD_SEL) {
case E1000_CTRL_SPD_10:
res |= E1000_STATUS_SPEED_10;
break;
case E1000_CTRL_SPD_100:
res |= E1000_STATUS_SPEED_100;
break;
case E1000_CTRL_SPD_1000:
default:
res |= E1000_STATUS_SPEED_1000;
break;
}
} else {
res |= E1000_STATUS_SPEED_1000;
}
trace_e1000e_link_status(
!!(res & E1000_STATUS_LU),
!!(res & E1000_STATUS_FD),
(res & E1000_STATUS_SPEED_MASK) >> E1000_STATUS_SPEED_SHIFT,
(res & E1000_STATUS_ASDV) >> E1000_STATUS_ASDV_SHIFT);
return res;
}
static uint32_t
e1000e_get_tarc(E1000ECore *core, int index)
{
return core->mac[index] & ((BIT(11) - 1) |
BIT(27) |
BIT(28) |
BIT(29) |
BIT(30));
}
static void
e1000e_mac_writereg(E1000ECore *core, int index, uint32_t val)
{
core->mac[index] = val;
}
static void
e1000e_mac_setmacaddr(E1000ECore *core, int index, uint32_t val)
{
uint32_t macaddr[2];
core->mac[index] = val;
macaddr[0] = cpu_to_le32(core->mac[RA]);
macaddr[1] = cpu_to_le32(core->mac[RA + 1]);
qemu_format_nic_info_str(qemu_get_queue(core->owner_nic),
(uint8_t *) macaddr);
trace_e1000e_mac_set_sw(MAC_ARG(macaddr));
}
static void
e1000e_set_eecd(E1000ECore *core, int index, uint32_t val)
{
static const uint32_t ro_bits = E1000_EECD_PRES |
E1000_EECD_AUTO_RD |
E1000_EECD_SIZE_EX_MASK;
core->mac[EECD] = (core->mac[EECD] & ro_bits) | (val & ~ro_bits);
}
static void
e1000e_set_eerd(E1000ECore *core, int index, uint32_t val)
{
uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
uint32_t flags = 0;
uint32_t data = 0;
if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
data = core->eeprom[addr];
flags = E1000_EERW_DONE;
}
core->mac[EERD] = flags |
(addr << E1000_EERW_ADDR_SHIFT) |
(data << E1000_EERW_DATA_SHIFT);
}
static void
e1000e_set_eewr(E1000ECore *core, int index, uint32_t val)
{
uint32_t addr = (val >> E1000_EERW_ADDR_SHIFT) & E1000_EERW_ADDR_MASK;
uint32_t data = (val >> E1000_EERW_DATA_SHIFT) & E1000_EERW_DATA_MASK;
uint32_t flags = 0;
if ((addr < E1000E_EEPROM_SIZE) && (val & E1000_EERW_START)) {
core->eeprom[addr] = data;
flags = E1000_EERW_DONE;
}
core->mac[EERD] = flags |
(addr << E1000_EERW_ADDR_SHIFT) |
(data << E1000_EERW_DATA_SHIFT);
}
static void
e1000e_set_rxdctl(E1000ECore *core, int index, uint32_t val)
{
core->mac[RXDCTL] = core->mac[RXDCTL1] = val;
}
static void
e1000e_set_itr(E1000ECore *core, int index, uint32_t val)
{
uint32_t interval = val & 0xffff;
trace_e1000e_irq_itr_set(val);
core->itr_guest_value = interval;
core->mac[index] = MAX(interval, E1000E_MIN_XITR);
}
static void
e1000e_set_eitr(E1000ECore *core, int index, uint32_t val)
{
uint32_t interval = val & 0xffff;
uint32_t eitr_num = index - EITR;
trace_e1000e_irq_eitr_set(eitr_num, val);
core->eitr_guest_value[eitr_num] = interval;
core->mac[index] = MAX(interval, E1000E_MIN_XITR);
}
static void
e1000e_set_psrctl(E1000ECore *core, int index, uint32_t val)
{
if (core->mac[RCTL] & E1000_RCTL_DTYP_MASK) {
if ((val & E1000_PSRCTL_BSIZE0_MASK) == 0) {
qemu_log_mask(LOG_GUEST_ERROR,
"e1000e: PSRCTL.BSIZE0 cannot be zero");
return;
}
if ((val & E1000_PSRCTL_BSIZE1_MASK) == 0) {
qemu_log_mask(LOG_GUEST_ERROR,
"e1000e: PSRCTL.BSIZE1 cannot be zero");
return;
}
}
core->mac[PSRCTL] = val;
}
static void
e1000e_update_rx_offloads(E1000ECore *core)
{
int cso_state = e1000e_rx_l4_cso_enabled(core);
trace_e1000e_rx_set_cso(cso_state);
if (core->has_vnet) {
qemu_set_offload(qemu_get_queue(core->owner_nic)->peer,
cso_state, 0, 0, 0, 0);
}
}
static void
e1000e_set_rxcsum(E1000ECore *core, int index, uint32_t val)
{
core->mac[RXCSUM] = val;
e1000e_update_rx_offloads(core);
}
static void
e1000e_set_gcr(E1000ECore *core, int index, uint32_t val)
{
uint32_t ro_bits = core->mac[GCR] & E1000_GCR_RO_BITS;
core->mac[GCR] = (val & ~E1000_GCR_RO_BITS) | ro_bits;
}
#define e1000e_getreg(x) [x] = e1000e_mac_readreg
typedef uint32_t (*readops)(E1000ECore *, int);
static const readops e1000e_macreg_readops[] = {
e1000e_getreg(PBA),
e1000e_getreg(WUFC),
e1000e_getreg(MANC),
e1000e_getreg(TOTL),
e1000e_getreg(RDT0),
e1000e_getreg(RDBAH0),
e1000e_getreg(TDBAL1),
e1000e_getreg(RDLEN0),
e1000e_getreg(RDH1),
e1000e_getreg(LATECOL),
e1000e_getreg(SEQEC),
e1000e_getreg(XONTXC),
e1000e_getreg(WUS),
e1000e_getreg(GORCL),
e1000e_getreg(MGTPRC),
e1000e_getreg(EERD),
e1000e_getreg(EIAC),
e1000e_getreg(PSRCTL),
e1000e_getreg(MANC2H),
e1000e_getreg(RXCSUM),
e1000e_getreg(GSCL_3),
e1000e_getreg(GSCN_2),
e1000e_getreg(RSRPD),
e1000e_getreg(RDBAL1),
e1000e_getreg(FCAH),
e1000e_getreg(FCRTH),
e1000e_getreg(FLOP),
e1000e_getreg(FLASHT),
e1000e_getreg(RXSTMPH),
e1000e_getreg(TXSTMPL),
e1000e_getreg(TIMADJL),
e1000e_getreg(TXDCTL),
e1000e_getreg(RDH0),
e1000e_getreg(TDT1),
e1000e_getreg(TNCRS),
e1000e_getreg(RJC),
e1000e_getreg(IAM),
e1000e_getreg(GSCL_2),
e1000e_getreg(RDBAH1),
e1000e_getreg(FLSWDATA),
e1000e_getreg(RXSATRH),
e1000e_getreg(TIPG),
e1000e_getreg(FLMNGCTL),
e1000e_getreg(FLMNGCNT),
e1000e_getreg(TSYNCTXCTL),
e1000e_getreg(EXTCNF_SIZE),
e1000e_getreg(EXTCNF_CTRL),
e1000e_getreg(EEMNGDATA),
e1000e_getreg(CTRL_EXT),
e1000e_getreg(SYSTIMH),
e1000e_getreg(EEMNGCTL),
e1000e_getreg(FLMNGDATA),
e1000e_getreg(TSYNCRXCTL),
e1000e_getreg(TDH),
e1000e_getreg(LEDCTL),
e1000e_getreg(TCTL),
e1000e_getreg(TDBAL),
e1000e_getreg(TDLEN),
e1000e_getreg(TDH1),
e1000e_getreg(RADV),
e1000e_getreg(ECOL),
e1000e_getreg(DC),
e1000e_getreg(RLEC),
e1000e_getreg(XOFFTXC),
e1000e_getreg(RFC),
e1000e_getreg(RNBC),
e1000e_getreg(MGTPTC),
e1000e_getreg(TIMINCA),
e1000e_getreg(RXCFGL),
e1000e_getreg(MFUTP01),
e1000e_getreg(FACTPS),
e1000e_getreg(GSCL_1),
e1000e_getreg(GSCN_0),
e1000e_getreg(GCR2),
e1000e_getreg(RDT1),
e1000e_getreg(PBACLR),
e1000e_getreg(FCTTV),
e1000e_getreg(EEWR),
e1000e_getreg(FLSWCTL),
e1000e_getreg(RXDCTL1),
e1000e_getreg(RXSATRL),
e1000e_getreg(SYSTIML),
e1000e_getreg(RXUDP),
e1000e_getreg(TORL),
e1000e_getreg(TDLEN1),
e1000e_getreg(MCC),
e1000e_getreg(WUC),
e1000e_getreg(EECD),
e1000e_getreg(MFUTP23),
e1000e_getreg(RAID),
e1000e_getreg(FCRTV),
e1000e_getreg(TXDCTL1),
e1000e_getreg(RCTL),
e1000e_getreg(TDT),
e1000e_getreg(MDIC),
e1000e_getreg(FCRUC),
e1000e_getreg(VET),
e1000e_getreg(RDBAL0),
e1000e_getreg(TDBAH1),
e1000e_getreg(RDTR),
e1000e_getreg(SCC),
e1000e_getreg(COLC),
e1000e_getreg(CEXTERR),
e1000e_getreg(XOFFRXC),
e1000e_getreg(IPAV),
e1000e_getreg(GOTCL),
e1000e_getreg(MGTPDC),
e1000e_getreg(GCR),
e1000e_getreg(IVAR),
e1000e_getreg(POEMB),
e1000e_getreg(MFVAL),
e1000e_getreg(FUNCTAG),
e1000e_getreg(GSCL_4),
e1000e_getreg(GSCN_3),
e1000e_getreg(MRQC),
e1000e_getreg(RDLEN1),
e1000e_getreg(FCT),
e1000e_getreg(FLA),
e1000e_getreg(FLOL),
e1000e_getreg(RXDCTL),
e1000e_getreg(RXSTMPL),
e1000e_getreg(TXSTMPH),
e1000e_getreg(TIMADJH),
e1000e_getreg(FCRTL),
e1000e_getreg(TDBAH),
e1000e_getreg(TADV),
e1000e_getreg(XONRXC),
e1000e_getreg(TSCTFC),
e1000e_getreg(RFCTL),
e1000e_getreg(GSCN_1),
e1000e_getreg(FCAL),
e1000e_getreg(FLSWCNT),
[TOTH] = e1000e_mac_read_clr8,
[GOTCH] = e1000e_mac_read_clr8,
[PRC64] = e1000e_mac_read_clr4,
[PRC255] = e1000e_mac_read_clr4,
[PRC1023] = e1000e_mac_read_clr4,
[PTC64] = e1000e_mac_read_clr4,
[PTC255] = e1000e_mac_read_clr4,
[PTC1023] = e1000e_mac_read_clr4,
[GPRC] = e1000e_mac_read_clr4,
[TPT] = e1000e_mac_read_clr4,
[RUC] = e1000e_mac_read_clr4,
[BPRC] = e1000e_mac_read_clr4,
[MPTC] = e1000e_mac_read_clr4,
[IAC] = e1000e_mac_read_clr4,
[ICR] = e1000e_mac_icr_read,
[RDFH] = E1000E_LOW_BITS_READ(13),
[RDFHS] = E1000E_LOW_BITS_READ(13),
[RDFPC] = E1000E_LOW_BITS_READ(13),
[TDFH] = E1000E_LOW_BITS_READ(13),
[TDFHS] = E1000E_LOW_BITS_READ(13),
[STATUS] = e1000e_get_status,
[TARC0] = e1000e_get_tarc,
[PBS] = E1000E_LOW_BITS_READ(6),
[ICS] = e1000e_mac_ics_read,
[AIT] = E1000E_LOW_BITS_READ(16),
[TORH] = e1000e_mac_read_clr8,
[GORCH] = e1000e_mac_read_clr8,
[PRC127] = e1000e_mac_read_clr4,
[PRC511] = e1000e_mac_read_clr4,
[PRC1522] = e1000e_mac_read_clr4,
[PTC127] = e1000e_mac_read_clr4,
[PTC511] = e1000e_mac_read_clr4,
[PTC1522] = e1000e_mac_read_clr4,
[GPTC] = e1000e_mac_read_clr4,
[TPR] = e1000e_mac_read_clr4,
[ROC] = e1000e_mac_read_clr4,
[MPRC] = e1000e_mac_read_clr4,
[BPTC] = e1000e_mac_read_clr4,
[TSCTC] = e1000e_mac_read_clr4,
[ITR] = e1000e_mac_itr_read,
[RDFT] = E1000E_LOW_BITS_READ(13),
[RDFTS] = E1000E_LOW_BITS_READ(13),
[TDFPC] = E1000E_LOW_BITS_READ(13),
[TDFT] = E1000E_LOW_BITS_READ(13),
[TDFTS] = E1000E_LOW_BITS_READ(13),
[CTRL] = e1000e_get_ctrl,
[TARC1] = e1000e_get_tarc,
[SWSM] = e1000e_mac_swsm_read,
[IMS] = e1000e_mac_ims_read,
[CRCERRS ... MPC] = e1000e_mac_readreg,
[IP6AT ... IP6AT + 3] = e1000e_mac_readreg,
[IP4AT ... IP4AT + 6] = e1000e_mac_readreg,
[RA ... RA + 31] = e1000e_mac_readreg,
[WUPM ... WUPM + 31] = e1000e_mac_readreg,
[MTA ... MTA + 127] = e1000e_mac_readreg,
[VFTA ... VFTA + 127] = e1000e_mac_readreg,
[FFMT ... FFMT + 254] = E1000E_LOW_BITS_READ(4),
[FFVT ... FFVT + 254] = e1000e_mac_readreg,
[MDEF ... MDEF + 7] = e1000e_mac_readreg,
[FFLT ... FFLT + 10] = E1000E_LOW_BITS_READ(11),
[FTFT ... FTFT + 254] = e1000e_mac_readreg,
[PBM ... PBM + 10239] = e1000e_mac_readreg,
[RETA ... RETA + 31] = e1000e_mac_readreg,
[RSSRK ... RSSRK + 31] = e1000e_mac_readreg,
[MAVTV0 ... MAVTV3] = e1000e_mac_readreg,
[EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_mac_eitr_read
};
enum { E1000E_NREADOPS = ARRAY_SIZE(e1000e_macreg_readops) };
#define e1000e_putreg(x) [x] = e1000e_mac_writereg
typedef void (*writeops)(E1000ECore *, int, uint32_t);
static const writeops e1000e_macreg_writeops[] = {
e1000e_putreg(PBA),
e1000e_putreg(SWSM),
e1000e_putreg(WUFC),
e1000e_putreg(RDBAH1),
e1000e_putreg(TDBAH),
e1000e_putreg(TXDCTL),
e1000e_putreg(RDBAH0),
e1000e_putreg(LEDCTL),
e1000e_putreg(FCAL),
e1000e_putreg(FCRUC),
e1000e_putreg(AIT),
e1000e_putreg(TDFH),
e1000e_putreg(TDFT),
e1000e_putreg(TDFHS),
e1000e_putreg(TDFTS),
e1000e_putreg(TDFPC),
e1000e_putreg(WUC),
e1000e_putreg(WUS),
e1000e_putreg(RDFH),
e1000e_putreg(RDFT),
e1000e_putreg(RDFHS),
e1000e_putreg(RDFTS),
e1000e_putreg(RDFPC),
e1000e_putreg(IPAV),
e1000e_putreg(TDBAH1),
e1000e_putreg(TIMINCA),
e1000e_putreg(IAM),
e1000e_putreg(EIAC),
e1000e_putreg(IVAR),
e1000e_putreg(TARC0),
e1000e_putreg(TARC1),
e1000e_putreg(FLSWDATA),
e1000e_putreg(POEMB),
e1000e_putreg(PBS),
e1000e_putreg(MFUTP01),
e1000e_putreg(MFUTP23),
e1000e_putreg(MANC),
e1000e_putreg(MANC2H),
e1000e_putreg(MFVAL),
e1000e_putreg(EXTCNF_CTRL),
e1000e_putreg(FACTPS),
e1000e_putreg(FUNCTAG),
e1000e_putreg(GSCL_1),
e1000e_putreg(GSCL_2),
e1000e_putreg(GSCL_3),
e1000e_putreg(GSCL_4),
e1000e_putreg(GSCN_0),
e1000e_putreg(GSCN_1),
e1000e_putreg(GSCN_2),
e1000e_putreg(GSCN_3),
e1000e_putreg(GCR2),
e1000e_putreg(MRQC),
e1000e_putreg(FLOP),
e1000e_putreg(FLOL),
e1000e_putreg(FLSWCTL),
e1000e_putreg(FLSWCNT),
e1000e_putreg(FLA),
e1000e_putreg(RXDCTL1),
e1000e_putreg(TXDCTL1),
e1000e_putreg(TIPG),
e1000e_putreg(RXSTMPH),
e1000e_putreg(RXSTMPL),
e1000e_putreg(RXSATRL),
e1000e_putreg(RXSATRH),
e1000e_putreg(TXSTMPL),
e1000e_putreg(TXSTMPH),
e1000e_putreg(SYSTIML),
e1000e_putreg(SYSTIMH),
e1000e_putreg(TIMADJL),
e1000e_putreg(TIMADJH),
e1000e_putreg(RXUDP),
e1000e_putreg(RXCFGL),
e1000e_putreg(TSYNCRXCTL),
e1000e_putreg(TSYNCTXCTL),
e1000e_putreg(EXTCNF_SIZE),
e1000e_putreg(EEMNGCTL),
e1000e_putreg(RA),
[TDH1] = e1000e_set_16bit,
[TDT1] = e1000e_set_tdt,
[TCTL] = e1000e_set_tctl,
[TDT] = e1000e_set_tdt,
[MDIC] = e1000e_set_mdic,
[ICS] = e1000e_set_ics,
[TDH] = e1000e_set_16bit,
[RDH0] = e1000e_set_16bit,
[RDT0] = e1000e_set_rdt,
[IMC] = e1000e_set_imc,
[IMS] = e1000e_set_ims,
[ICR] = e1000e_set_icr,
[EECD] = e1000e_set_eecd,
[RCTL] = e1000e_set_rx_control,
[CTRL] = e1000e_set_ctrl,
[RDTR] = e1000e_set_rdtr,
[RADV] = e1000e_set_16bit,
[TADV] = e1000e_set_16bit,
[ITR] = e1000e_set_itr,
[EERD] = e1000e_set_eerd,
[GCR] = e1000e_set_gcr,
[PSRCTL] = e1000e_set_psrctl,
[RXCSUM] = e1000e_set_rxcsum,
[RAID] = e1000e_set_16bit,
[RSRPD] = e1000e_set_12bit,
[TIDV] = e1000e_set_tidv,
[TDLEN1] = e1000e_set_dlen,
[TDLEN] = e1000e_set_dlen,
[RDLEN0] = e1000e_set_dlen,
[RDLEN1] = e1000e_set_dlen,
[TDBAL] = e1000e_set_dbal,
[TDBAL1] = e1000e_set_dbal,
[RDBAL0] = e1000e_set_dbal,
[RDBAL1] = e1000e_set_dbal,
[RDH1] = e1000e_set_16bit,
[RDT1] = e1000e_set_rdt,
[STATUS] = e1000e_set_status,
[PBACLR] = e1000e_set_pbaclr,
[CTRL_EXT] = e1000e_set_ctrlext,
[FCAH] = e1000e_set_16bit,
[FCT] = e1000e_set_16bit,
[FCTTV] = e1000e_set_16bit,
[FCRTV] = e1000e_set_16bit,
[FCRTH] = e1000e_set_fcrth,
[FCRTL] = e1000e_set_fcrtl,
[VET] = e1000e_set_vet,
[RXDCTL] = e1000e_set_rxdctl,
[FLASHT] = e1000e_set_16bit,
[EEWR] = e1000e_set_eewr,
[CTRL_DUP] = e1000e_set_ctrl,
[RFCTL] = e1000e_set_rfctl,
[RA + 1] = e1000e_mac_setmacaddr,
[IP6AT ... IP6AT + 3] = e1000e_mac_writereg,
[IP4AT ... IP4AT + 6] = e1000e_mac_writereg,
[RA + 2 ... RA + 31] = e1000e_mac_writereg,
[WUPM ... WUPM + 31] = e1000e_mac_writereg,
[MTA ... MTA + 127] = e1000e_mac_writereg,
[VFTA ... VFTA + 127] = e1000e_mac_writereg,
[FFMT ... FFMT + 254] = e1000e_mac_writereg,
[FFVT ... FFVT + 254] = e1000e_mac_writereg,
[PBM ... PBM + 10239] = e1000e_mac_writereg,
[MDEF ... MDEF + 7] = e1000e_mac_writereg,
[FFLT ... FFLT + 10] = e1000e_mac_writereg,
[FTFT ... FTFT + 254] = e1000e_mac_writereg,
[RETA ... RETA + 31] = e1000e_mac_writereg,
[RSSRK ... RSSRK + 31] = e1000e_mac_writereg,
[MAVTV0 ... MAVTV3] = e1000e_mac_writereg,
[EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = e1000e_set_eitr
};
enum { E1000E_NWRITEOPS = ARRAY_SIZE(e1000e_macreg_writeops) };
enum { MAC_ACCESS_PARTIAL = 1 };
/* The array below combines alias offsets of the index values for the
* MAC registers that have aliases, with the indication of not fully
* implemented registers (lowest bit). This combination is possible
* because all of the offsets are even. */
static const uint16_t mac_reg_access[E1000E_MAC_SIZE] = {
/* Alias index offsets */
[FCRTL_A] = 0x07fe, [FCRTH_A] = 0x0802,
[RDH0_A] = 0x09bc, [RDT0_A] = 0x09bc, [RDTR_A] = 0x09c6,
[RDFH_A] = 0xe904, [RDFT_A] = 0xe904,
[TDH_A] = 0x0cf8, [TDT_A] = 0x0cf8, [TIDV_A] = 0x0cf8,
[TDFH_A] = 0xed00, [TDFT_A] = 0xed00,
[RA_A ... RA_A + 31] = 0x14f0,
[VFTA_A ... VFTA_A + 127] = 0x1400,
[RDBAL0_A ... RDLEN0_A] = 0x09bc,
[TDBAL_A ... TDLEN_A] = 0x0cf8,
/* Access options */
[RDFH] = MAC_ACCESS_PARTIAL, [RDFT] = MAC_ACCESS_PARTIAL,
[RDFHS] = MAC_ACCESS_PARTIAL, [RDFTS] = MAC_ACCESS_PARTIAL,
[RDFPC] = MAC_ACCESS_PARTIAL,
[TDFH] = MAC_ACCESS_PARTIAL, [TDFT] = MAC_ACCESS_PARTIAL,
[TDFHS] = MAC_ACCESS_PARTIAL, [TDFTS] = MAC_ACCESS_PARTIAL,
[TDFPC] = MAC_ACCESS_PARTIAL, [EECD] = MAC_ACCESS_PARTIAL,
[PBM] = MAC_ACCESS_PARTIAL, [FLA] = MAC_ACCESS_PARTIAL,
[FCAL] = MAC_ACCESS_PARTIAL, [FCAH] = MAC_ACCESS_PARTIAL,
[FCT] = MAC_ACCESS_PARTIAL, [FCTTV] = MAC_ACCESS_PARTIAL,
[FCRTV] = MAC_ACCESS_PARTIAL, [FCRTL] = MAC_ACCESS_PARTIAL,
[FCRTH] = MAC_ACCESS_PARTIAL, [TXDCTL] = MAC_ACCESS_PARTIAL,
[TXDCTL1] = MAC_ACCESS_PARTIAL,
[MAVTV0 ... MAVTV3] = MAC_ACCESS_PARTIAL
};
void
e1000e_core_write(E1000ECore *core, hwaddr addr, uint64_t val, unsigned size)
{
uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
if (index < E1000E_NWRITEOPS && e1000e_macreg_writeops[index]) {
if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
trace_e1000e_wrn_regs_write_trivial(index << 2);
}
trace_e1000e_core_write(index << 2, size, val);
e1000e_macreg_writeops[index](core, index, val);
} else if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
trace_e1000e_wrn_regs_write_ro(index << 2, size, val);
} else {
trace_e1000e_wrn_regs_write_unknown(index << 2, size, val);
}
}
uint64_t
e1000e_core_read(E1000ECore *core, hwaddr addr, unsigned size)
{
uint64_t val;
uint16_t index = e1000e_get_reg_index_with_offset(mac_reg_access, addr);
if (index < E1000E_NREADOPS && e1000e_macreg_readops[index]) {
if (mac_reg_access[index] & MAC_ACCESS_PARTIAL) {
trace_e1000e_wrn_regs_read_trivial(index << 2);
}
val = e1000e_macreg_readops[index](core, index);
trace_e1000e_core_read(index << 2, size, val);
return val;
} else {
trace_e1000e_wrn_regs_read_unknown(index << 2, size);
}
return 0;
}
static inline void
e1000e_autoneg_pause(E1000ECore *core)
{
timer_del(core->autoneg_timer);
}
static void
e1000e_autoneg_resume(E1000ECore *core)
{
if (e1000e_have_autoneg(core) &&
!(core->phy[0][PHY_STATUS] & MII_SR_AUTONEG_COMPLETE)) {
qemu_get_queue(core->owner_nic)->link_down = false;
timer_mod(core->autoneg_timer,
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + 500);
}
}
static void
e1000e_vm_state_change(void *opaque, int running, RunState state)
{
E1000ECore *core = opaque;
if (running) {
trace_e1000e_vm_state_running();
e1000e_intrmgr_resume(core);
e1000e_autoneg_resume(core);
} else {
trace_e1000e_vm_state_stopped();
e1000e_autoneg_pause(core);
e1000e_intrmgr_pause(core);
}
}
void
e1000e_core_pci_realize(E1000ECore *core,
const uint16_t *eeprom_templ,
uint32_t eeprom_size,
const uint8_t *macaddr)
{
int i;
core->autoneg_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
e1000e_autoneg_timer, core);
e1000e_intrmgr_pci_realize(core);
core->vmstate =
qemu_add_vm_change_state_handler(e1000e_vm_state_change, core);
for (i = 0; i < E1000E_NUM_QUEUES; i++) {
net_tx_pkt_init(&core->tx[i].tx_pkt, core->owner,
E1000E_MAX_TX_FRAGS, core->has_vnet);
}
net_rx_pkt_init(&core->rx_pkt, core->has_vnet);
e1000x_core_prepare_eeprom(core->eeprom,
eeprom_templ,
eeprom_size,
PCI_DEVICE_GET_CLASS(core->owner)->device_id,
macaddr);
e1000e_update_rx_offloads(core);
}
void
e1000e_core_pci_uninit(E1000ECore *core)
{
int i;
timer_free(core->autoneg_timer);
e1000e_intrmgr_pci_unint(core);
qemu_del_vm_change_state_handler(core->vmstate);
for (i = 0; i < E1000E_NUM_QUEUES; i++) {
net_tx_pkt_reset(core->tx[i].tx_pkt);
net_tx_pkt_uninit(core->tx[i].tx_pkt);
}
net_rx_pkt_uninit(core->rx_pkt);
}
static const uint16_t
e1000e_phy_reg_init[E1000E_PHY_PAGES][E1000E_PHY_PAGE_SIZE] = {
[0] = {
[PHY_CTRL] = MII_CR_SPEED_SELECT_MSB |
MII_CR_FULL_DUPLEX |
MII_CR_AUTO_NEG_EN,
[PHY_STATUS] = MII_SR_EXTENDED_CAPS |
MII_SR_LINK_STATUS |
MII_SR_AUTONEG_CAPS |
MII_SR_PREAMBLE_SUPPRESS |
MII_SR_EXTENDED_STATUS |
MII_SR_10T_HD_CAPS |
MII_SR_10T_FD_CAPS |
MII_SR_100X_HD_CAPS |
MII_SR_100X_FD_CAPS,
[PHY_ID1] = 0x141,
[PHY_ID2] = E1000_PHY_ID2_82574x,
[PHY_AUTONEG_ADV] = 0xde1,
[PHY_LP_ABILITY] = 0x7e0,
[PHY_AUTONEG_EXP] = BIT(2),
[PHY_NEXT_PAGE_TX] = BIT(0) | BIT(13),
[PHY_1000T_CTRL] = BIT(8) | BIT(9) | BIT(10) | BIT(11),
[PHY_1000T_STATUS] = 0x3c00,
[PHY_EXT_STATUS] = BIT(12) | BIT(13),
[PHY_COPPER_CTRL1] = BIT(5) | BIT(6) | BIT(8) | BIT(9) |
BIT(12) | BIT(13),
[PHY_COPPER_STAT1] = BIT(3) | BIT(10) | BIT(11) | BIT(13) | BIT(15)
},
[2] = {
[PHY_MAC_CTRL1] = BIT(3) | BIT(7),
[PHY_MAC_CTRL2] = BIT(1) | BIT(2) | BIT(6) | BIT(12)
},
[3] = {
[PHY_LED_TIMER_CTRL] = BIT(0) | BIT(2) | BIT(14)
}
};
static const uint32_t e1000e_mac_reg_init[] = {
[PBA] = 0x00140014,
[LEDCTL] = BIT(1) | BIT(8) | BIT(9) | BIT(15) | BIT(17) | BIT(18),
[EXTCNF_CTRL] = BIT(3),
[EEMNGCTL] = BIT(31),
[FLASHT] = 0x2,
[FLSWCTL] = BIT(30) | BIT(31),
[FLOL] = BIT(0),
[RXDCTL] = BIT(16),
[RXDCTL1] = BIT(16),
[TIPG] = 0x8 | (0x8 << 10) | (0x6 << 20),
[RXCFGL] = 0x88F7,
[RXUDP] = 0x319,
[CTRL] = E1000_CTRL_FD | E1000_CTRL_SWDPIN2 | E1000_CTRL_SWDPIN0 |
E1000_CTRL_SPD_1000 | E1000_CTRL_SLU |
E1000_CTRL_ADVD3WUC,
[STATUS] = E1000_STATUS_ASDV_1000 | E1000_STATUS_LU,
[PSRCTL] = (2 << E1000_PSRCTL_BSIZE0_SHIFT) |
(4 << E1000_PSRCTL_BSIZE1_SHIFT) |
(4 << E1000_PSRCTL_BSIZE2_SHIFT),
[TARC0] = 0x3 | E1000_TARC_ENABLE,
[TARC1] = 0x3 | E1000_TARC_ENABLE,
[EECD] = E1000_EECD_AUTO_RD | E1000_EECD_PRES,
[EERD] = E1000_EERW_DONE,
[EEWR] = E1000_EERW_DONE,
[GCR] = E1000_L0S_ADJUST |
E1000_L1_ENTRY_LATENCY_MSB |
E1000_L1_ENTRY_LATENCY_LSB,
[TDFH] = 0x600,
[TDFT] = 0x600,
[TDFHS] = 0x600,
[TDFTS] = 0x600,
[POEMB] = 0x30D,
[PBS] = 0x028,
[MANC] = E1000_MANC_DIS_IP_CHK_ARP,
[FACTPS] = E1000_FACTPS_LAN0_ON | 0x20000000,
[SWSM] = 1,
[RXCSUM] = E1000_RXCSUM_IPOFLD | E1000_RXCSUM_TUOFLD,
[ITR] = E1000E_MIN_XITR,
[EITR...EITR + E1000E_MSIX_VEC_NUM - 1] = E1000E_MIN_XITR,
};
void
e1000e_core_reset(E1000ECore *core)
{
int i;
timer_del(core->autoneg_timer);
e1000e_intrmgr_reset(core);
memset(core->phy, 0, sizeof core->phy);
memmove(core->phy, e1000e_phy_reg_init, sizeof e1000e_phy_reg_init);
memset(core->mac, 0, sizeof core->mac);
memmove(core->mac, e1000e_mac_reg_init, sizeof e1000e_mac_reg_init);
core->rxbuf_min_shift = 1 + E1000_RING_DESC_LEN_SHIFT;
if (qemu_get_queue(core->owner_nic)->link_down) {
e1000e_link_down(core);
}
e1000x_reset_mac_addr(core->owner_nic, core->mac, core->permanent_mac);
for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
net_tx_pkt_reset(core->tx[i].tx_pkt);
memset(&core->tx[i].props, 0, sizeof(core->tx[i].props));
core->tx[i].skip_cp = false;
}
}
void e1000e_core_pre_save(E1000ECore *core)
{
int i;
NetClientState *nc = qemu_get_queue(core->owner_nic);
/*
* If link is down and auto-negotiation is supported and ongoing,
* complete auto-negotiation immediately. This allows us to look
* at MII_SR_AUTONEG_COMPLETE to infer link status on load.
*/
if (nc->link_down && e1000e_have_autoneg(core)) {
core->phy[0][PHY_STATUS] |= MII_SR_AUTONEG_COMPLETE;
e1000e_update_flowctl_status(core);
}
for (i = 0; i < ARRAY_SIZE(core->tx); i++) {
if (net_tx_pkt_has_fragments(core->tx[i].tx_pkt)) {
core->tx[i].skip_cp = true;
}
}
}
int
e1000e_core_post_load(E1000ECore *core)
{
NetClientState *nc = qemu_get_queue(core->owner_nic);
/* nc.link_down can't be migrated, so infer link_down according
* to link status bit in core.mac[STATUS].
*/
nc->link_down = (core->mac[STATUS] & E1000_STATUS_LU) == 0;
return 0;
}