mirror of https://gitee.com/openkylin/qemu.git
472 lines
14 KiB
C
472 lines
14 KiB
C
/*
|
|
* TriCore emulation for qemu: fpu helper.
|
|
*
|
|
* Copyright (c) 2016 Bastian Koppelmann University of Paderborn
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2.1 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "cpu.h"
|
|
#include "exec/helper-proto.h"
|
|
#include "fpu/softfloat.h"
|
|
|
|
#define QUIET_NAN 0x7fc00000
|
|
#define ADD_NAN 0x7fc00001
|
|
#define SQRT_NAN 0x7fc00004
|
|
#define DIV_NAN 0x7fc00008
|
|
#define MUL_NAN 0x7fc00002
|
|
#define FPU_FS PSW_USB_C
|
|
#define FPU_FI PSW_USB_V
|
|
#define FPU_FV PSW_USB_SV
|
|
#define FPU_FZ PSW_USB_AV
|
|
#define FPU_FU PSW_USB_SAV
|
|
|
|
#define float32_sqrt_nan make_float32(SQRT_NAN)
|
|
#define float32_quiet_nan make_float32(QUIET_NAN)
|
|
|
|
/* we don't care about input_denormal */
|
|
static inline uint8_t f_get_excp_flags(CPUTriCoreState *env)
|
|
{
|
|
return get_float_exception_flags(&env->fp_status)
|
|
& (float_flag_invalid
|
|
| float_flag_overflow
|
|
| float_flag_underflow
|
|
| float_flag_output_denormal
|
|
| float_flag_divbyzero
|
|
| float_flag_inexact);
|
|
}
|
|
|
|
static inline float32 f_maddsub_nan_result(float32 arg1, float32 arg2,
|
|
float32 arg3, float32 result,
|
|
uint32_t muladd_negate_c)
|
|
{
|
|
uint32_t aSign, bSign, cSign;
|
|
uint32_t aExp, bExp, cExp;
|
|
|
|
if (float32_is_any_nan(arg1) || float32_is_any_nan(arg2) ||
|
|
float32_is_any_nan(arg3)) {
|
|
return QUIET_NAN;
|
|
} else if (float32_is_infinity(arg1) && float32_is_zero(arg2)) {
|
|
return MUL_NAN;
|
|
} else if (float32_is_zero(arg1) && float32_is_infinity(arg2)) {
|
|
return MUL_NAN;
|
|
} else {
|
|
aSign = arg1 >> 31;
|
|
bSign = arg2 >> 31;
|
|
cSign = arg3 >> 31;
|
|
|
|
aExp = (arg1 >> 23) & 0xff;
|
|
bExp = (arg2 >> 23) & 0xff;
|
|
cExp = (arg3 >> 23) & 0xff;
|
|
|
|
if (muladd_negate_c) {
|
|
cSign ^= 1;
|
|
}
|
|
if (((aExp == 0xff) || (bExp == 0xff)) && (cExp == 0xff)) {
|
|
if (aSign ^ bSign ^ cSign) {
|
|
return ADD_NAN;
|
|
}
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
static void f_update_psw_flags(CPUTriCoreState *env, uint8_t flags)
|
|
{
|
|
uint8_t some_excp = 0;
|
|
set_float_exception_flags(0, &env->fp_status);
|
|
|
|
if (flags & float_flag_invalid) {
|
|
env->FPU_FI = 1 << 31;
|
|
some_excp = 1;
|
|
}
|
|
|
|
if (flags & float_flag_overflow) {
|
|
env->FPU_FV = 1 << 31;
|
|
some_excp = 1;
|
|
}
|
|
|
|
if (flags & float_flag_underflow || flags & float_flag_output_denormal) {
|
|
env->FPU_FU = 1 << 31;
|
|
some_excp = 1;
|
|
}
|
|
|
|
if (flags & float_flag_divbyzero) {
|
|
env->FPU_FZ = 1 << 31;
|
|
some_excp = 1;
|
|
}
|
|
|
|
if (flags & float_flag_inexact || flags & float_flag_output_denormal) {
|
|
env->PSW |= 1 << 26;
|
|
some_excp = 1;
|
|
}
|
|
|
|
env->FPU_FS = some_excp;
|
|
}
|
|
|
|
#define FADD_SUB(op) \
|
|
uint32_t helper_f##op(CPUTriCoreState *env, uint32_t r1, uint32_t r2) \
|
|
{ \
|
|
float32 arg1 = make_float32(r1); \
|
|
float32 arg2 = make_float32(r2); \
|
|
uint32_t flags; \
|
|
float32 f_result; \
|
|
\
|
|
f_result = float32_##op(arg2, arg1, &env->fp_status); \
|
|
flags = f_get_excp_flags(env); \
|
|
if (flags) { \
|
|
/* If the output is a NaN, but the inputs aren't, \
|
|
we return a unique value. */ \
|
|
if ((flags & float_flag_invalid) \
|
|
&& !float32_is_any_nan(arg1) \
|
|
&& !float32_is_any_nan(arg2)) { \
|
|
f_result = ADD_NAN; \
|
|
} \
|
|
f_update_psw_flags(env, flags); \
|
|
} else { \
|
|
env->FPU_FS = 0; \
|
|
} \
|
|
return (uint32_t)f_result; \
|
|
}
|
|
FADD_SUB(add)
|
|
FADD_SUB(sub)
|
|
|
|
uint32_t helper_fmul(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
|
|
{
|
|
uint32_t flags;
|
|
float32 arg1 = make_float32(r1);
|
|
float32 arg2 = make_float32(r2);
|
|
float32 f_result;
|
|
|
|
f_result = float32_mul(arg1, arg2, &env->fp_status);
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags) {
|
|
/* If the output is a NaN, but the inputs aren't,
|
|
we return a unique value. */
|
|
if ((flags & float_flag_invalid)
|
|
&& !float32_is_any_nan(arg1)
|
|
&& !float32_is_any_nan(arg2)) {
|
|
f_result = MUL_NAN;
|
|
}
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
return (uint32_t)f_result;
|
|
|
|
}
|
|
|
|
/*
|
|
* Target TriCore QSEED.F significand Lookup Table
|
|
*
|
|
* The QSEED.F output significand depends on the least-significant
|
|
* exponent bit and the 6 most-significant significand bits.
|
|
*
|
|
* IEEE 754 float datatype
|
|
* partitioned into Sign (S), Exponent (E) and Significand (M):
|
|
*
|
|
* S E E E E E E E E M M M M M M ...
|
|
* | | |
|
|
* +------+------+-------+-------+
|
|
* | |
|
|
* for lookup table
|
|
* calculating index for
|
|
* output E output M
|
|
*
|
|
* This lookup table was extracted by analyzing QSEED output
|
|
* from the real hardware
|
|
*/
|
|
static const uint8_t target_qseed_significand_table[128] = {
|
|
253, 252, 245, 244, 239, 238, 231, 230, 225, 224, 217, 216,
|
|
211, 210, 205, 204, 201, 200, 195, 194, 189, 188, 185, 184,
|
|
179, 178, 175, 174, 169, 168, 165, 164, 161, 160, 157, 156,
|
|
153, 152, 149, 148, 145, 144, 141, 140, 137, 136, 133, 132,
|
|
131, 130, 127, 126, 123, 122, 121, 120, 117, 116, 115, 114,
|
|
111, 110, 109, 108, 103, 102, 99, 98, 93, 92, 89, 88, 83,
|
|
82, 79, 78, 75, 74, 71, 70, 67, 66, 63, 62, 59, 58, 55,
|
|
54, 53, 52, 49, 48, 45, 44, 43, 42, 39, 38, 37, 36, 33,
|
|
32, 31, 30, 27, 26, 25, 24, 23, 22, 19, 18, 17, 16, 15,
|
|
14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2
|
|
};
|
|
|
|
uint32_t helper_qseed(CPUTriCoreState *env, uint32_t r1)
|
|
{
|
|
uint32_t arg1, S, E, M, E_minus_one, m_idx;
|
|
uint32_t new_E, new_M, new_S, result;
|
|
|
|
arg1 = make_float32(r1);
|
|
|
|
/* fetch IEEE-754 fields S, E and the uppermost 6-bit of M */
|
|
S = extract32(arg1, 31, 1);
|
|
E = extract32(arg1, 23, 8);
|
|
M = extract32(arg1, 17, 6);
|
|
|
|
if (float32_is_any_nan(arg1)) {
|
|
result = float32_quiet_nan;
|
|
} else if (float32_is_zero_or_denormal(arg1)) {
|
|
if (float32_is_neg(arg1)) {
|
|
result = float32_infinity | (1 << 31);
|
|
} else {
|
|
result = float32_infinity;
|
|
}
|
|
} else if (float32_is_neg(arg1)) {
|
|
result = float32_sqrt_nan;
|
|
} else if (float32_is_infinity(arg1)) {
|
|
result = float32_zero;
|
|
} else {
|
|
E_minus_one = E - 1;
|
|
m_idx = ((E_minus_one & 1) << 6) | M;
|
|
new_S = S;
|
|
new_E = 0xBD - E_minus_one / 2;
|
|
new_M = target_qseed_significand_table[m_idx];
|
|
|
|
result = 0;
|
|
result = deposit32(result, 31, 1, new_S);
|
|
result = deposit32(result, 23, 8, new_E);
|
|
result = deposit32(result, 15, 8, new_M);
|
|
}
|
|
|
|
if (float32_is_signaling_nan(arg1, &env->fp_status)
|
|
|| result == float32_sqrt_nan) {
|
|
env->FPU_FI = 1 << 31;
|
|
env->FPU_FS = 1;
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
|
|
return (uint32_t) result;
|
|
}
|
|
|
|
uint32_t helper_fdiv(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
|
|
{
|
|
uint32_t flags;
|
|
float32 arg1 = make_float32(r1);
|
|
float32 arg2 = make_float32(r2);
|
|
float32 f_result;
|
|
|
|
f_result = float32_div(arg1, arg2 , &env->fp_status);
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags) {
|
|
/* If the output is a NaN, but the inputs aren't,
|
|
we return a unique value. */
|
|
if ((flags & float_flag_invalid)
|
|
&& !float32_is_any_nan(arg1)
|
|
&& !float32_is_any_nan(arg2)) {
|
|
f_result = DIV_NAN;
|
|
}
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
|
|
return (uint32_t)f_result;
|
|
}
|
|
|
|
uint32_t helper_fmadd(CPUTriCoreState *env, uint32_t r1,
|
|
uint32_t r2, uint32_t r3)
|
|
{
|
|
uint32_t flags;
|
|
float32 arg1 = make_float32(r1);
|
|
float32 arg2 = make_float32(r2);
|
|
float32 arg3 = make_float32(r3);
|
|
float32 f_result;
|
|
|
|
f_result = float32_muladd(arg1, arg2, arg3, 0, &env->fp_status);
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags) {
|
|
if (flags & float_flag_invalid) {
|
|
arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
|
|
arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
|
|
arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
|
|
f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 0);
|
|
}
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
return (uint32_t)f_result;
|
|
}
|
|
|
|
uint32_t helper_fmsub(CPUTriCoreState *env, uint32_t r1,
|
|
uint32_t r2, uint32_t r3)
|
|
{
|
|
uint32_t flags;
|
|
float32 arg1 = make_float32(r1);
|
|
float32 arg2 = make_float32(r2);
|
|
float32 arg3 = make_float32(r3);
|
|
float32 f_result;
|
|
|
|
f_result = float32_muladd(arg1, arg2, arg3, float_muladd_negate_product,
|
|
&env->fp_status);
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags) {
|
|
if (flags & float_flag_invalid) {
|
|
arg1 = float32_squash_input_denormal(arg1, &env->fp_status);
|
|
arg2 = float32_squash_input_denormal(arg2, &env->fp_status);
|
|
arg3 = float32_squash_input_denormal(arg3, &env->fp_status);
|
|
|
|
f_result = f_maddsub_nan_result(arg1, arg2, arg3, f_result, 1);
|
|
}
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
return (uint32_t)f_result;
|
|
}
|
|
|
|
uint32_t helper_fcmp(CPUTriCoreState *env, uint32_t r1, uint32_t r2)
|
|
{
|
|
uint32_t result, flags;
|
|
float32 arg1 = make_float32(r1);
|
|
float32 arg2 = make_float32(r2);
|
|
|
|
set_flush_inputs_to_zero(0, &env->fp_status);
|
|
|
|
result = 1 << (float32_compare_quiet(arg1, arg2, &env->fp_status) + 1);
|
|
result |= float32_is_denormal(arg1) << 4;
|
|
result |= float32_is_denormal(arg2) << 5;
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags) {
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
|
|
set_flush_inputs_to_zero(1, &env->fp_status);
|
|
return result;
|
|
}
|
|
|
|
uint32_t helper_ftoi(CPUTriCoreState *env, uint32_t arg)
|
|
{
|
|
float32 f_arg = make_float32(arg);
|
|
int32_t result, flags;
|
|
|
|
result = float32_to_int32(f_arg, &env->fp_status);
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags) {
|
|
if (float32_is_any_nan(f_arg)) {
|
|
result = 0;
|
|
}
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
return (uint32_t)result;
|
|
}
|
|
|
|
uint32_t helper_itof(CPUTriCoreState *env, uint32_t arg)
|
|
{
|
|
float32 f_result;
|
|
uint32_t flags;
|
|
f_result = int32_to_float32(arg, &env->fp_status);
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags) {
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
return (uint32_t)f_result;
|
|
}
|
|
|
|
uint32_t helper_utof(CPUTriCoreState *env, uint32_t arg)
|
|
{
|
|
float32 f_result;
|
|
uint32_t flags;
|
|
|
|
f_result = uint32_to_float32(arg, &env->fp_status);
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags) {
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
return (uint32_t)f_result;
|
|
}
|
|
|
|
uint32_t helper_ftoiz(CPUTriCoreState *env, uint32_t arg)
|
|
{
|
|
float32 f_arg = make_float32(arg);
|
|
uint32_t result;
|
|
int32_t flags;
|
|
|
|
result = float32_to_int32_round_to_zero(f_arg, &env->fp_status);
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags & float_flag_invalid) {
|
|
flags &= ~float_flag_inexact;
|
|
if (float32_is_any_nan(f_arg)) {
|
|
result = 0;
|
|
}
|
|
}
|
|
|
|
if (flags) {
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
uint32_t helper_ftouz(CPUTriCoreState *env, uint32_t arg)
|
|
{
|
|
float32 f_arg = make_float32(arg);
|
|
uint32_t result;
|
|
int32_t flags;
|
|
|
|
result = float32_to_uint32_round_to_zero(f_arg, &env->fp_status);
|
|
|
|
flags = f_get_excp_flags(env);
|
|
if (flags & float_flag_invalid) {
|
|
flags &= ~float_flag_inexact;
|
|
if (float32_is_any_nan(f_arg)) {
|
|
result = 0;
|
|
}
|
|
} else if (float32_lt_quiet(f_arg, 0, &env->fp_status)) {
|
|
flags = float_flag_invalid;
|
|
result = 0;
|
|
}
|
|
|
|
if (flags) {
|
|
f_update_psw_flags(env, flags);
|
|
} else {
|
|
env->FPU_FS = 0;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void helper_updfl(CPUTriCoreState *env, uint32_t arg)
|
|
{
|
|
env->FPU_FS = extract32(arg, 7, 1) & extract32(arg, 15, 1);
|
|
env->FPU_FI = (extract32(arg, 6, 1) & extract32(arg, 14, 1)) << 31;
|
|
env->FPU_FV = (extract32(arg, 5, 1) & extract32(arg, 13, 1)) << 31;
|
|
env->FPU_FZ = (extract32(arg, 4, 1) & extract32(arg, 12, 1)) << 31;
|
|
env->FPU_FU = (extract32(arg, 3, 1) & extract32(arg, 11, 1)) << 31;
|
|
/* clear FX and RM */
|
|
env->PSW &= ~(extract32(arg, 10, 1) << 26);
|
|
env->PSW |= (extract32(arg, 2, 1) & extract32(arg, 10, 1)) << 26;
|
|
|
|
fpu_set_state(env);
|
|
}
|