qemu/tests/ptimer-test.c

832 lines
22 KiB
C

/*
* QTest testcase for the ptimer
*
* Copyright (c) 2016 Dmitry Osipenko <digetx@gmail.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#include "qemu/osdep.h"
#include <glib/gprintf.h>
#include "qemu/main-loop.h"
#include "hw/ptimer.h"
#include "libqtest.h"
#include "ptimer-test.h"
static bool triggered;
static void ptimer_trigger(void *opaque)
{
triggered = true;
}
static void ptimer_test_expire_qemu_timers(int64_t expire_time,
QEMUClockType type)
{
QEMUTimerList *timer_list = main_loop_tlg.tl[type];
QEMUTimer *t = timer_list->active_timers.next;
while (t != NULL) {
if (t->expire_time == expire_time) {
timer_del(t);
if (t->cb != NULL) {
t->cb(t->opaque);
}
}
t = t->next;
}
}
static void ptimer_test_set_qemu_time_ns(int64_t ns)
{
ptimer_test_time_ns = ns;
}
static void qemu_clock_step(uint64_t ns)
{
int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
QEMU_TIMER_ATTR_ALL);
int64_t advanced_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns;
while (deadline != -1 && deadline <= advanced_time) {
ptimer_test_set_qemu_time_ns(deadline);
ptimer_test_expire_qemu_timers(deadline, QEMU_CLOCK_VIRTUAL);
deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
QEMU_TIMER_ATTR_ALL);
}
ptimer_test_set_qemu_time_ns(advanced_time);
}
static void check_set_count(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
triggered = false;
ptimer_set_count(ptimer, 1000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 1000);
g_assert_false(triggered);
ptimer_free(ptimer);
}
static void check_set_limit(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
triggered = false;
ptimer_set_limit(ptimer, 1000, 0);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_cmpuint(ptimer_get_limit(ptimer), ==, 1000);
g_assert_false(triggered);
ptimer_set_limit(ptimer, 2000, 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 2000);
g_assert_cmpuint(ptimer_get_limit(ptimer), ==, 2000);
g_assert_false(triggered);
ptimer_free(ptimer);
}
static void check_oneshot(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
bool no_round_down = (*policy & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN);
triggered = false;
ptimer_set_period(ptimer, 2000000);
ptimer_set_count(ptimer, 10);
ptimer_run(ptimer, 1);
qemu_clock_step(2000000 * 2 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 8 : 7);
g_assert_false(triggered);
ptimer_stop(ptimer);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 8 : 7);
g_assert_false(triggered);
qemu_clock_step(2000000 * 11);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 8 : 7);
g_assert_false(triggered);
ptimer_run(ptimer, 1);
qemu_clock_step(2000000 * 7 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 1 : 0);
if (no_round_down) {
g_assert_false(triggered);
} else {
g_assert_true(triggered);
triggered = false;
}
qemu_clock_step(2000000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
if (no_round_down) {
g_assert_true(triggered);
triggered = false;
} else {
g_assert_false(triggered);
}
qemu_clock_step(4000000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_false(triggered);
ptimer_set_count(ptimer, 10);
qemu_clock_step(20000000 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 10);
g_assert_false(triggered);
ptimer_set_limit(ptimer, 9, 1);
qemu_clock_step(20000000 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 9);
g_assert_false(triggered);
ptimer_run(ptimer, 1);
qemu_clock_step(2000000 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 8 : 7);
g_assert_false(triggered);
ptimer_set_count(ptimer, 20);
qemu_clock_step(2000000 * 19 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 1 : 0);
g_assert_false(triggered);
qemu_clock_step(2000000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_true(triggered);
ptimer_stop(ptimer);
triggered = false;
qemu_clock_step(2000000 * 12 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_false(triggered);
ptimer_free(ptimer);
}
static void check_periodic(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
bool wrap_policy = (*policy & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD);
bool no_immediate_trigger = (*policy & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER);
bool no_immediate_reload = (*policy & PTIMER_POLICY_NO_IMMEDIATE_RELOAD);
bool no_round_down = (*policy & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN);
bool trig_only_on_dec = (*policy & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT);
triggered = false;
ptimer_set_period(ptimer, 2000000);
ptimer_set_limit(ptimer, 10, 1);
ptimer_run(ptimer, 0);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 10);
g_assert_false(triggered);
qemu_clock_step(1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 10 : 9);
g_assert_false(triggered);
qemu_clock_step(2000000 * 10 - 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, wrap_policy ? 0 : 10);
g_assert_true(triggered);
qemu_clock_step(1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
wrap_policy ? 0 : (no_round_down ? 10 : 9));
g_assert_true(triggered);
triggered = false;
qemu_clock_step(2000000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
(no_round_down ? 9 : 8) + (wrap_policy ? 1 : 0));
g_assert_false(triggered);
ptimer_set_count(ptimer, 20);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 20);
g_assert_false(triggered);
qemu_clock_step(1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 20 : 19);
g_assert_false(triggered);
qemu_clock_step(2000000 * 11 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 9 : 8);
g_assert_false(triggered);
qemu_clock_step(2000000 * 10);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
(no_round_down ? 9 : 8) + (wrap_policy ? 1 : 0));
g_assert_true(triggered);
triggered = false;
ptimer_set_count(ptimer, 3);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 3);
g_assert_false(triggered);
qemu_clock_step(1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 3 : 2);
g_assert_false(triggered);
qemu_clock_step(2000000 * 4);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
(no_round_down ? 9 : 8) + (wrap_policy ? 1 : 0));
g_assert_true(triggered);
ptimer_stop(ptimer);
triggered = false;
qemu_clock_step(2000000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
(no_round_down ? 9 : 8) + (wrap_policy ? 1 : 0));
g_assert_false(triggered);
ptimer_set_count(ptimer, 3);
ptimer_run(ptimer, 0);
qemu_clock_step(2000000 * 3 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
wrap_policy ? 0 : (no_round_down ? 10 : 9));
g_assert_true(triggered);
triggered = false;
qemu_clock_step(2000000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
(no_round_down ? 9 : 8) + (wrap_policy ? 1 : 0));
g_assert_false(triggered);
ptimer_set_count(ptimer, 0);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
no_immediate_reload ? 0 : 10);
if (no_immediate_trigger || trig_only_on_dec) {
g_assert_false(triggered);
} else {
g_assert_true(triggered);
}
triggered = false;
qemu_clock_step(1);
if (no_immediate_reload) {
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_false(triggered);
qemu_clock_step(2000000);
if (no_immediate_trigger) {
g_assert_true(triggered);
} else {
g_assert_false(triggered);
}
triggered = false;
}
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 10 : 9);
g_assert_false(triggered);
qemu_clock_step(2000000 * 12);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
(no_round_down ? 8 : 7) + (wrap_policy ? 1 : 0));
g_assert_true(triggered);
ptimer_stop(ptimer);
triggered = false;
qemu_clock_step(2000000 * 10);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
(no_round_down ? 8 : 7) + (wrap_policy ? 1 : 0));
g_assert_false(triggered);
ptimer_run(ptimer, 0);
ptimer_set_period(ptimer, 0);
qemu_clock_step(2000000 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
(no_round_down ? 8 : 7) + (wrap_policy ? 1 : 0));
g_assert_false(triggered);
ptimer_free(ptimer);
}
static void check_on_the_fly_mode_change(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
bool wrap_policy = (*policy & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD);
bool no_round_down = (*policy & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN);
triggered = false;
ptimer_set_period(ptimer, 2000000);
ptimer_set_limit(ptimer, 10, 1);
ptimer_run(ptimer, 1);
qemu_clock_step(2000000 * 9 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 1 : 0);
g_assert_false(triggered);
ptimer_run(ptimer, 0);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 1 : 0);
g_assert_false(triggered);
qemu_clock_step(2000000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
wrap_policy ? 0 : (no_round_down ? 10 : 9));
g_assert_true(triggered);
triggered = false;
qemu_clock_step(2000000 * 9);
ptimer_run(ptimer, 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
(no_round_down ? 1 : 0) + (wrap_policy ? 1 : 0));
g_assert_false(triggered);
qemu_clock_step(2000000 * 3);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_true(triggered);
ptimer_free(ptimer);
}
static void check_on_the_fly_period_change(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
bool no_round_down = (*policy & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN);
triggered = false;
ptimer_set_period(ptimer, 2000000);
ptimer_set_limit(ptimer, 8, 1);
ptimer_run(ptimer, 1);
qemu_clock_step(2000000 * 4 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 4 : 3);
g_assert_false(triggered);
ptimer_set_period(ptimer, 4000000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 4 : 3);
qemu_clock_step(4000000 * 2 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 2 : 0);
g_assert_false(triggered);
qemu_clock_step(4000000 * 2);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_true(triggered);
ptimer_free(ptimer);
}
static void check_on_the_fly_freq_change(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
bool no_round_down = (*policy & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN);
triggered = false;
ptimer_set_freq(ptimer, 500);
ptimer_set_limit(ptimer, 8, 1);
ptimer_run(ptimer, 1);
qemu_clock_step(2000000 * 4 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 4 : 3);
g_assert_false(triggered);
ptimer_set_freq(ptimer, 250);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 4 : 3);
qemu_clock_step(2000000 * 4 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 2 : 0);
g_assert_false(triggered);
qemu_clock_step(2000000 * 4);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_true(triggered);
ptimer_free(ptimer);
}
static void check_run_with_period_0(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
triggered = false;
ptimer_set_count(ptimer, 99);
ptimer_run(ptimer, 1);
qemu_clock_step(10 * NANOSECONDS_PER_SECOND);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 99);
g_assert_false(triggered);
ptimer_free(ptimer);
}
static void check_run_with_delta_0(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
bool wrap_policy = (*policy & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD);
bool no_immediate_trigger = (*policy & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER);
bool no_immediate_reload = (*policy & PTIMER_POLICY_NO_IMMEDIATE_RELOAD);
bool no_round_down = (*policy & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN);
bool trig_only_on_dec = (*policy & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT);
triggered = false;
ptimer_set_period(ptimer, 2000000);
ptimer_set_limit(ptimer, 99, 0);
ptimer_run(ptimer, 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
no_immediate_reload ? 0 : 99);
if (no_immediate_trigger || trig_only_on_dec) {
g_assert_false(triggered);
} else {
g_assert_true(triggered);
}
triggered = false;
if (no_immediate_trigger || no_immediate_reload) {
qemu_clock_step(2000000 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
no_immediate_reload ? 0 : (no_round_down ? 98 : 97));
if (no_immediate_trigger && no_immediate_reload) {
g_assert_true(triggered);
triggered = false;
} else {
g_assert_false(triggered);
}
ptimer_set_count(ptimer, 99);
ptimer_run(ptimer, 1);
}
qemu_clock_step(2000000 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 98 : 97);
g_assert_false(triggered);
qemu_clock_step(2000000 * 97);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 1 : 0);
g_assert_false(triggered);
qemu_clock_step(2000000 * 2);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_true(triggered);
triggered = false;
ptimer_set_count(ptimer, 0);
ptimer_run(ptimer, 0);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
no_immediate_reload ? 0 : 99);
if (no_immediate_trigger || trig_only_on_dec) {
g_assert_false(triggered);
} else {
g_assert_true(triggered);
}
triggered = false;
qemu_clock_step(1);
if (no_immediate_reload) {
qemu_clock_step(2000000);
}
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 99 : 98);
if (no_immediate_reload && no_immediate_trigger) {
g_assert_true(triggered);
} else {
g_assert_false(triggered);
}
triggered = false;
qemu_clock_step(2000000);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, no_round_down ? 98 : 97);
g_assert_false(triggered);
qemu_clock_step(2000000 * 98);
g_assert_cmpuint(ptimer_get_count(ptimer), ==,
wrap_policy ? 0 : (no_round_down ? 99 : 98));
g_assert_true(triggered);
ptimer_stop(ptimer);
ptimer_free(ptimer);
}
static void check_periodic_with_load_0(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
bool continuous_trigger = (*policy & PTIMER_POLICY_CONTINUOUS_TRIGGER);
bool no_immediate_trigger = (*policy & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER);
bool trig_only_on_dec = (*policy & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT);
triggered = false;
ptimer_set_period(ptimer, 2000000);
ptimer_run(ptimer, 0);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
if (no_immediate_trigger || trig_only_on_dec) {
g_assert_false(triggered);
} else {
g_assert_true(triggered);
}
triggered = false;
qemu_clock_step(2000000 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
if (continuous_trigger || no_immediate_trigger) {
g_assert_true(triggered);
} else {
g_assert_false(triggered);
}
triggered = false;
ptimer_set_count(ptimer, 10);
ptimer_run(ptimer, 0);
qemu_clock_step(2000000 * 10 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
g_assert_true(triggered);
triggered = false;
qemu_clock_step(2000000 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
if (continuous_trigger) {
g_assert_true(triggered);
} else {
g_assert_false(triggered);
}
ptimer_stop(ptimer);
ptimer_free(ptimer);
}
static void check_oneshot_with_load_0(gconstpointer arg)
{
const uint8_t *policy = arg;
QEMUBH *bh = qemu_bh_new(ptimer_trigger, NULL);
ptimer_state *ptimer = ptimer_init(bh, *policy);
bool no_immediate_trigger = (*policy & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER);
bool trig_only_on_dec = (*policy & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT);
triggered = false;
ptimer_set_period(ptimer, 2000000);
ptimer_run(ptimer, 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
if (no_immediate_trigger || trig_only_on_dec) {
g_assert_false(triggered);
} else {
g_assert_true(triggered);
}
triggered = false;
qemu_clock_step(2000000 + 1);
g_assert_cmpuint(ptimer_get_count(ptimer), ==, 0);
if (no_immediate_trigger) {
g_assert_true(triggered);
} else {
g_assert_false(triggered);
}
ptimer_free(ptimer);
}
static void add_ptimer_tests(uint8_t policy)
{
char policy_name[256] = "";
char *tmp;
if (policy == PTIMER_POLICY_DEFAULT) {
g_sprintf(policy_name, "default");
}
if (policy & PTIMER_POLICY_WRAP_AFTER_ONE_PERIOD) {
g_strlcat(policy_name, "wrap_after_one_period,", 256);
}
if (policy & PTIMER_POLICY_CONTINUOUS_TRIGGER) {
g_strlcat(policy_name, "continuous_trigger,", 256);
}
if (policy & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER) {
g_strlcat(policy_name, "no_immediate_trigger,", 256);
}
if (policy & PTIMER_POLICY_NO_IMMEDIATE_RELOAD) {
g_strlcat(policy_name, "no_immediate_reload,", 256);
}
if (policy & PTIMER_POLICY_NO_COUNTER_ROUND_DOWN) {
g_strlcat(policy_name, "no_counter_rounddown,", 256);
}
if (policy & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) {
g_strlcat(policy_name, "trigger_only_on_decrement,", 256);
}
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/set_count policy=%s", policy_name),
g_memdup(&policy, 1), check_set_count, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/set_limit policy=%s", policy_name),
g_memdup(&policy, 1), check_set_limit, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/oneshot policy=%s", policy_name),
g_memdup(&policy, 1), check_oneshot, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/periodic policy=%s", policy_name),
g_memdup(&policy, 1), check_periodic, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/on_the_fly_mode_change policy=%s",
policy_name),
g_memdup(&policy, 1), check_on_the_fly_mode_change, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/on_the_fly_period_change policy=%s",
policy_name),
g_memdup(&policy, 1), check_on_the_fly_period_change, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/on_the_fly_freq_change policy=%s",
policy_name),
g_memdup(&policy, 1), check_on_the_fly_freq_change, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/run_with_period_0 policy=%s",
policy_name),
g_memdup(&policy, 1), check_run_with_period_0, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/run_with_delta_0 policy=%s",
policy_name),
g_memdup(&policy, 1), check_run_with_delta_0, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/periodic_with_load_0 policy=%s",
policy_name),
g_memdup(&policy, 1), check_periodic_with_load_0, g_free);
g_free(tmp);
g_test_add_data_func_full(
tmp = g_strdup_printf("/ptimer/oneshot_with_load_0 policy=%s",
policy_name),
g_memdup(&policy, 1), check_oneshot_with_load_0, g_free);
g_free(tmp);
}
static void add_all_ptimer_policies_comb_tests(void)
{
int last_policy = PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT;
int policy = PTIMER_POLICY_DEFAULT;
for (; policy < (last_policy << 1); policy++) {
if ((policy & PTIMER_POLICY_TRIGGER_ONLY_ON_DECREMENT) &&
(policy & PTIMER_POLICY_NO_IMMEDIATE_TRIGGER)) {
/* Incompatible policy flag settings -- don't try to test them */
continue;
}
add_ptimer_tests(policy);
}
}
int main(int argc, char **argv)
{
int i;
g_test_init(&argc, &argv, NULL);
for (i = 0; i < QEMU_CLOCK_MAX; i++) {
main_loop_tlg.tl[i] = g_new0(QEMUTimerList, 1);
}
add_all_ptimer_policies_comb_tests();
qtest_allowed = true;
return g_test_run();
}