qemu/numa.c

712 lines
22 KiB
C

/*
* NUMA parameter parsing routines
*
* Copyright (c) 2014 Fujitsu Ltd.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "sysemu/numa.h"
#include "exec/cpu-common.h"
#include "exec/ramlist.h"
#include "qemu/bitmap.h"
#include "qom/cpu.h"
#include "qemu/error-report.h"
#include "include/exec/cpu-common.h" /* for RAM_ADDR_FMT */
#include "qapi-visit.h"
#include "qapi/opts-visitor.h"
#include "hw/boards.h"
#include "sysemu/hostmem.h"
#include "qmp-commands.h"
#include "hw/mem/pc-dimm.h"
#include "qemu/option.h"
#include "qemu/config-file.h"
QemuOptsList qemu_numa_opts = {
.name = "numa",
.implied_opt_name = "type",
.head = QTAILQ_HEAD_INITIALIZER(qemu_numa_opts.head),
.desc = { { 0 } } /* validated with OptsVisitor */
};
static int have_memdevs = -1;
static int max_numa_nodeid; /* Highest specified NUMA node ID, plus one.
* For all nodes, nodeid < max_numa_nodeid
*/
int nb_numa_nodes;
bool have_numa_distance;
NodeInfo numa_info[MAX_NODES];
void numa_set_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node)
{
struct numa_addr_range *range;
/*
* Memory-less nodes can come here with 0 size in which case,
* there is nothing to do.
*/
if (!size) {
return;
}
range = g_malloc0(sizeof(*range));
range->mem_start = addr;
range->mem_end = addr + size - 1;
QLIST_INSERT_HEAD(&numa_info[node].addr, range, entry);
}
void numa_unset_mem_node_id(ram_addr_t addr, uint64_t size, uint32_t node)
{
struct numa_addr_range *range, *next;
QLIST_FOREACH_SAFE(range, &numa_info[node].addr, entry, next) {
if (addr == range->mem_start && (addr + size - 1) == range->mem_end) {
QLIST_REMOVE(range, entry);
g_free(range);
return;
}
}
}
static void numa_set_mem_ranges(void)
{
int i;
ram_addr_t mem_start = 0;
/*
* Deduce start address of each node and use it to store
* the address range info in numa_info address range list
*/
for (i = 0; i < nb_numa_nodes; i++) {
numa_set_mem_node_id(mem_start, numa_info[i].node_mem, i);
mem_start += numa_info[i].node_mem;
}
}
/*
* Check if @addr falls under NUMA @node.
*/
static bool numa_addr_belongs_to_node(ram_addr_t addr, uint32_t node)
{
struct numa_addr_range *range;
QLIST_FOREACH(range, &numa_info[node].addr, entry) {
if (addr >= range->mem_start && addr <= range->mem_end) {
return true;
}
}
return false;
}
/*
* Given an address, return the index of the NUMA node to which the
* address belongs to.
*/
uint32_t numa_get_node(ram_addr_t addr, Error **errp)
{
uint32_t i;
/* For non NUMA configurations, check if the addr falls under node 0 */
if (!nb_numa_nodes) {
if (numa_addr_belongs_to_node(addr, 0)) {
return 0;
}
}
for (i = 0; i < nb_numa_nodes; i++) {
if (numa_addr_belongs_to_node(addr, i)) {
return i;
}
}
error_setg(errp, "Address 0x" RAM_ADDR_FMT " doesn't belong to any "
"NUMA node", addr);
return -1;
}
static void parse_numa_node(MachineState *ms, NumaNodeOptions *node,
QemuOpts *opts, Error **errp)
{
uint16_t nodenr;
uint16List *cpus = NULL;
MachineClass *mc = MACHINE_GET_CLASS(ms);
if (node->has_nodeid) {
nodenr = node->nodeid;
} else {
nodenr = nb_numa_nodes;
}
if (nodenr >= MAX_NODES) {
error_setg(errp, "Max number of NUMA nodes reached: %"
PRIu16 "", nodenr);
return;
}
if (numa_info[nodenr].present) {
error_setg(errp, "Duplicate NUMA nodeid: %" PRIu16, nodenr);
return;
}
if (!mc->cpu_index_to_instance_props) {
error_report("NUMA is not supported by this machine-type");
exit(1);
}
for (cpus = node->cpus; cpus; cpus = cpus->next) {
CpuInstanceProperties props;
if (cpus->value >= max_cpus) {
error_setg(errp,
"CPU index (%" PRIu16 ")"
" should be smaller than maxcpus (%d)",
cpus->value, max_cpus);
return;
}
props = mc->cpu_index_to_instance_props(ms, cpus->value);
props.node_id = nodenr;
props.has_node_id = true;
machine_set_cpu_numa_node(ms, &props, &error_fatal);
}
if (node->has_mem && node->has_memdev) {
error_setg(errp, "cannot specify both mem= and memdev=");
return;
}
if (have_memdevs == -1) {
have_memdevs = node->has_memdev;
}
if (node->has_memdev != have_memdevs) {
error_setg(errp, "memdev option must be specified for either "
"all or no nodes");
return;
}
if (node->has_mem) {
uint64_t mem_size = node->mem;
const char *mem_str = qemu_opt_get(opts, "mem");
/* Fix up legacy suffix-less format */
if (g_ascii_isdigit(mem_str[strlen(mem_str) - 1])) {
mem_size <<= 20;
}
numa_info[nodenr].node_mem = mem_size;
}
if (node->has_memdev) {
Object *o;
o = object_resolve_path_type(node->memdev, TYPE_MEMORY_BACKEND, NULL);
if (!o) {
error_setg(errp, "memdev=%s is ambiguous", node->memdev);
return;
}
object_ref(o);
numa_info[nodenr].node_mem = object_property_get_uint(o, "size", NULL);
numa_info[nodenr].node_memdev = MEMORY_BACKEND(o);
}
numa_info[nodenr].present = true;
max_numa_nodeid = MAX(max_numa_nodeid, nodenr + 1);
}
static void parse_numa_distance(NumaDistOptions *dist, Error **errp)
{
uint16_t src = dist->src;
uint16_t dst = dist->dst;
uint8_t val = dist->val;
if (src >= MAX_NODES || dst >= MAX_NODES) {
error_setg(errp,
"Invalid node %d, max possible could be %d",
MAX(src, dst), MAX_NODES);
return;
}
if (!numa_info[src].present || !numa_info[dst].present) {
error_setg(errp, "Source/Destination NUMA node is missing. "
"Please use '-numa node' option to declare it first.");
return;
}
if (val < NUMA_DISTANCE_MIN) {
error_setg(errp, "NUMA distance (%" PRIu8 ") is invalid, "
"it shouldn't be less than %d.",
val, NUMA_DISTANCE_MIN);
return;
}
if (src == dst && val != NUMA_DISTANCE_MIN) {
error_setg(errp, "Local distance of node %d should be %d.",
src, NUMA_DISTANCE_MIN);
return;
}
numa_info[src].distance[dst] = val;
have_numa_distance = true;
}
static int parse_numa(void *opaque, QemuOpts *opts, Error **errp)
{
NumaOptions *object = NULL;
MachineState *ms = opaque;
Error *err = NULL;
{
Visitor *v = opts_visitor_new(opts);
visit_type_NumaOptions(v, NULL, &object, &err);
visit_free(v);
}
if (err) {
goto end;
}
switch (object->type) {
case NUMA_OPTIONS_TYPE_NODE:
parse_numa_node(ms, &object->u.node, opts, &err);
if (err) {
goto end;
}
nb_numa_nodes++;
break;
case NUMA_OPTIONS_TYPE_DIST:
parse_numa_distance(&object->u.dist, &err);
if (err) {
goto end;
}
break;
case NUMA_OPTIONS_TYPE_CPU:
if (!object->u.cpu.has_node_id) {
error_setg(&err, "Missing mandatory node-id property");
goto end;
}
if (!numa_info[object->u.cpu.node_id].present) {
error_setg(&err, "Invalid node-id=%" PRId64 ", NUMA node must be "
"defined with -numa node,nodeid=ID before it's used with "
"-numa cpu,node-id=ID", object->u.cpu.node_id);
goto end;
}
machine_set_cpu_numa_node(ms, qapi_NumaCpuOptions_base(&object->u.cpu),
&err);
break;
default:
abort();
}
end:
qapi_free_NumaOptions(object);
if (err) {
error_report_err(err);
return -1;
}
return 0;
}
/* If all node pair distances are symmetric, then only distances
* in one direction are enough. If there is even one asymmetric
* pair, though, then all distances must be provided. The
* distance from a node to itself is always NUMA_DISTANCE_MIN,
* so providing it is never necessary.
*/
static void validate_numa_distance(void)
{
int src, dst;
bool is_asymmetrical = false;
for (src = 0; src < nb_numa_nodes; src++) {
for (dst = src; dst < nb_numa_nodes; dst++) {
if (numa_info[src].distance[dst] == 0 &&
numa_info[dst].distance[src] == 0) {
if (src != dst) {
error_report("The distance between node %d and %d is "
"missing, at least one distance value "
"between each nodes should be provided.",
src, dst);
exit(EXIT_FAILURE);
}
}
if (numa_info[src].distance[dst] != 0 &&
numa_info[dst].distance[src] != 0 &&
numa_info[src].distance[dst] !=
numa_info[dst].distance[src]) {
is_asymmetrical = true;
}
}
}
if (is_asymmetrical) {
for (src = 0; src < nb_numa_nodes; src++) {
for (dst = 0; dst < nb_numa_nodes; dst++) {
if (src != dst && numa_info[src].distance[dst] == 0) {
error_report("At least one asymmetrical pair of "
"distances is given, please provide distances "
"for both directions of all node pairs.");
exit(EXIT_FAILURE);
}
}
}
}
}
static void complete_init_numa_distance(void)
{
int src, dst;
/* Fixup NUMA distance by symmetric policy because if it is an
* asymmetric distance table, it should be a complete table and
* there would not be any missing distance except local node, which
* is verified by validate_numa_distance above.
*/
for (src = 0; src < nb_numa_nodes; src++) {
for (dst = 0; dst < nb_numa_nodes; dst++) {
if (numa_info[src].distance[dst] == 0) {
if (src == dst) {
numa_info[src].distance[dst] = NUMA_DISTANCE_MIN;
} else {
numa_info[src].distance[dst] = numa_info[dst].distance[src];
}
}
}
}
}
void numa_legacy_auto_assign_ram(MachineClass *mc, NodeInfo *nodes,
int nb_nodes, ram_addr_t size)
{
int i;
uint64_t usedmem = 0;
/* Align each node according to the alignment
* requirements of the machine class
*/
for (i = 0; i < nb_nodes - 1; i++) {
nodes[i].node_mem = (size / nb_nodes) &
~((1 << mc->numa_mem_align_shift) - 1);
usedmem += nodes[i].node_mem;
}
nodes[i].node_mem = size - usedmem;
}
void numa_default_auto_assign_ram(MachineClass *mc, NodeInfo *nodes,
int nb_nodes, ram_addr_t size)
{
int i;
uint64_t usedmem = 0, node_mem;
uint64_t granularity = size / nb_nodes;
uint64_t propagate = 0;
for (i = 0; i < nb_nodes - 1; i++) {
node_mem = (granularity + propagate) &
~((1 << mc->numa_mem_align_shift) - 1);
propagate = granularity + propagate - node_mem;
nodes[i].node_mem = node_mem;
usedmem += node_mem;
}
nodes[i].node_mem = size - usedmem;
}
void parse_numa_opts(MachineState *ms)
{
int i;
MachineClass *mc = MACHINE_GET_CLASS(ms);
if (qemu_opts_foreach(qemu_find_opts("numa"), parse_numa, ms, NULL)) {
exit(1);
}
assert(max_numa_nodeid <= MAX_NODES);
/* No support for sparse NUMA node IDs yet: */
for (i = max_numa_nodeid - 1; i >= 0; i--) {
/* Report large node IDs first, to make mistakes easier to spot */
if (!numa_info[i].present) {
error_report("numa: Node ID missing: %d", i);
exit(1);
}
}
/* This must be always true if all nodes are present: */
assert(nb_numa_nodes == max_numa_nodeid);
if (nb_numa_nodes > 0) {
uint64_t numa_total;
if (nb_numa_nodes > MAX_NODES) {
nb_numa_nodes = MAX_NODES;
}
/* If no memory size is given for any node, assume the default case
* and distribute the available memory equally across all nodes
*/
for (i = 0; i < nb_numa_nodes; i++) {
if (numa_info[i].node_mem != 0) {
break;
}
}
if (i == nb_numa_nodes) {
assert(mc->numa_auto_assign_ram);
mc->numa_auto_assign_ram(mc, numa_info, nb_numa_nodes, ram_size);
}
numa_total = 0;
for (i = 0; i < nb_numa_nodes; i++) {
numa_total += numa_info[i].node_mem;
}
if (numa_total != ram_size) {
error_report("total memory for NUMA nodes (0x%" PRIx64 ")"
" should equal RAM size (0x" RAM_ADDR_FMT ")",
numa_total, ram_size);
exit(1);
}
for (i = 0; i < nb_numa_nodes; i++) {
QLIST_INIT(&numa_info[i].addr);
}
numa_set_mem_ranges();
/* QEMU needs at least all unique node pair distances to build
* the whole NUMA distance table. QEMU treats the distance table
* as symmetric by default, i.e. distance A->B == distance B->A.
* Thus, QEMU is able to complete the distance table
* initialization even though only distance A->B is provided and
* distance B->A is not. QEMU knows the distance of a node to
* itself is always 10, so A->A distances may be omitted. When
* the distances of two nodes of a pair differ, i.e. distance
* A->B != distance B->A, then that means the distance table is
* asymmetric. In this case, the distances for both directions
* of all node pairs are required.
*/
if (have_numa_distance) {
/* Validate enough NUMA distance information was provided. */
validate_numa_distance();
/* Validation succeeded, now fill in any missing distances. */
complete_init_numa_distance();
}
} else {
numa_set_mem_node_id(0, ram_size, 0);
}
}
void numa_cpu_pre_plug(const CPUArchId *slot, DeviceState *dev, Error **errp)
{
int node_id = object_property_get_int(OBJECT(dev), "node-id", &error_abort);
if (node_id == CPU_UNSET_NUMA_NODE_ID) {
/* due to bug in libvirt, it doesn't pass node-id from props on
* device_add as expected, so we have to fix it up here */
if (slot->props.has_node_id) {
object_property_set_int(OBJECT(dev), slot->props.node_id,
"node-id", errp);
}
} else if (node_id != slot->props.node_id) {
error_setg(errp, "node-id=%d must match numa node specified "
"with -numa option", node_id);
}
}
static void allocate_system_memory_nonnuma(MemoryRegion *mr, Object *owner,
const char *name,
uint64_t ram_size)
{
if (mem_path) {
#ifdef __linux__
Error *err = NULL;
memory_region_init_ram_from_file(mr, owner, name, ram_size, false,
mem_path, &err);
if (err) {
error_report_err(err);
if (mem_prealloc) {
exit(1);
}
/* Legacy behavior: if allocation failed, fall back to
* regular RAM allocation.
*/
memory_region_init_ram_nomigrate(mr, owner, name, ram_size, &error_fatal);
}
#else
fprintf(stderr, "-mem-path not supported on this host\n");
exit(1);
#endif
} else {
memory_region_init_ram_nomigrate(mr, owner, name, ram_size, &error_fatal);
}
vmstate_register_ram_global(mr);
}
void memory_region_allocate_system_memory(MemoryRegion *mr, Object *owner,
const char *name,
uint64_t ram_size)
{
uint64_t addr = 0;
int i;
if (nb_numa_nodes == 0 || !have_memdevs) {
allocate_system_memory_nonnuma(mr, owner, name, ram_size);
return;
}
memory_region_init(mr, owner, name, ram_size);
for (i = 0; i < MAX_NODES; i++) {
uint64_t size = numa_info[i].node_mem;
HostMemoryBackend *backend = numa_info[i].node_memdev;
if (!backend) {
continue;
}
MemoryRegion *seg = host_memory_backend_get_memory(backend,
&error_fatal);
if (memory_region_is_mapped(seg)) {
char *path = object_get_canonical_path_component(OBJECT(backend));
error_report("memory backend %s is used multiple times. Each "
"-numa option must use a different memdev value.",
path);
exit(1);
}
host_memory_backend_set_mapped(backend, true);
memory_region_add_subregion(mr, addr, seg);
vmstate_register_ram_global(seg);
addr += size;
}
}
static void numa_stat_memory_devices(NumaNodeMem node_mem[])
{
MemoryDeviceInfoList *info_list = NULL;
MemoryDeviceInfoList **prev = &info_list;
MemoryDeviceInfoList *info;
PCDIMMDeviceInfo *pcdimm_info;
qmp_pc_dimm_device_list(qdev_get_machine(), &prev);
for (info = info_list; info; info = info->next) {
MemoryDeviceInfo *value = info->value;
if (value) {
switch (value->type) {
case MEMORY_DEVICE_INFO_KIND_DIMM: {
pcdimm_info = value->u.dimm.data;
node_mem[pcdimm_info->node].node_mem += pcdimm_info->size;
if (pcdimm_info->hotpluggable && pcdimm_info->hotplugged) {
node_mem[pcdimm_info->node].node_plugged_mem +=
pcdimm_info->size;
}
break;
}
default:
break;
}
}
}
qapi_free_MemoryDeviceInfoList(info_list);
}
void query_numa_node_mem(NumaNodeMem node_mem[])
{
int i;
if (nb_numa_nodes <= 0) {
return;
}
numa_stat_memory_devices(node_mem);
for (i = 0; i < nb_numa_nodes; i++) {
node_mem[i].node_mem += numa_info[i].node_mem;
}
}
static int query_memdev(Object *obj, void *opaque)
{
MemdevList **list = opaque;
MemdevList *m = NULL;
if (object_dynamic_cast(obj, TYPE_MEMORY_BACKEND)) {
m = g_malloc0(sizeof(*m));
m->value = g_malloc0(sizeof(*m->value));
m->value->id = object_property_get_str(obj, "id", NULL);
m->value->has_id = !!m->value->id;
m->value->size = object_property_get_uint(obj, "size",
&error_abort);
m->value->merge = object_property_get_bool(obj, "merge",
&error_abort);
m->value->dump = object_property_get_bool(obj, "dump",
&error_abort);
m->value->prealloc = object_property_get_bool(obj,
"prealloc",
&error_abort);
m->value->policy = object_property_get_enum(obj,
"policy",
"HostMemPolicy",
&error_abort);
object_property_get_uint16List(obj, "host-nodes",
&m->value->host_nodes,
&error_abort);
m->next = *list;
*list = m;
}
return 0;
}
MemdevList *qmp_query_memdev(Error **errp)
{
Object *obj = object_get_objects_root();
MemdevList *list = NULL;
object_child_foreach(obj, query_memdev, &list);
return list;
}
void ram_block_notifier_add(RAMBlockNotifier *n)
{
QLIST_INSERT_HEAD(&ram_list.ramblock_notifiers, n, next);
}
void ram_block_notifier_remove(RAMBlockNotifier *n)
{
QLIST_REMOVE(n, next);
}
void ram_block_notify_add(void *host, size_t size)
{
RAMBlockNotifier *notifier;
QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) {
notifier->ram_block_added(notifier, host, size);
}
}
void ram_block_notify_remove(void *host, size_t size)
{
RAMBlockNotifier *notifier;
QLIST_FOREACH(notifier, &ram_list.ramblock_notifiers, next) {
notifier->ram_block_removed(notifier, host, size);
}
}