qemu/kqemu.c

914 lines
25 KiB
C

/*
* KQEMU support
*
* Copyright (c) 2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#ifdef _WIN32
#include <windows.h>
#include <winioctl.h>
#else
#include <sys/types.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#endif
#ifdef HOST_SOLARIS
#include <sys/ioccom.h>
#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <string.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>
#include "cpu.h"
#include "exec-all.h"
#ifdef USE_KQEMU
#define DEBUG
//#define PROFILE
#include <unistd.h>
#include <fcntl.h>
#include "kqemu.h"
/* compatibility stuff */
#ifndef KQEMU_RET_SYSCALL
#define KQEMU_RET_SYSCALL 0x0300 /* syscall insn */
#endif
#ifndef KQEMU_MAX_RAM_PAGES_TO_UPDATE
#define KQEMU_MAX_RAM_PAGES_TO_UPDATE 512
#define KQEMU_RAM_PAGES_UPDATE_ALL (KQEMU_MAX_RAM_PAGES_TO_UPDATE + 1)
#endif
#ifndef KQEMU_MAX_MODIFIED_RAM_PAGES
#define KQEMU_MAX_MODIFIED_RAM_PAGES 512
#endif
#ifdef _WIN32
#define KQEMU_DEVICE "\\\\.\\kqemu"
#else
#define KQEMU_DEVICE "/dev/kqemu"
#endif
#ifdef _WIN32
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) CloseHandle(x)
#else
#define KQEMU_INVALID_FD -1
int kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) close(x)
#endif
/* 0 = not allowed
1 = user kqemu
2 = kernel kqemu
*/
int kqemu_allowed = 1;
unsigned long *pages_to_flush;
unsigned int nb_pages_to_flush;
unsigned long *ram_pages_to_update;
unsigned int nb_ram_pages_to_update;
unsigned long *modified_ram_pages;
unsigned int nb_modified_ram_pages;
uint8_t *modified_ram_pages_table;
extern uint32_t **l1_phys_map;
#define cpuid(index, eax, ebx, ecx, edx) \
asm volatile ("cpuid" \
: "=a" (eax), "=b" (ebx), "=c" (ecx), "=d" (edx) \
: "0" (index))
#ifdef __x86_64__
static int is_cpuid_supported(void)
{
return 1;
}
#else
static int is_cpuid_supported(void)
{
int v0, v1;
asm volatile ("pushf\n"
"popl %0\n"
"movl %0, %1\n"
"xorl $0x00200000, %0\n"
"pushl %0\n"
"popf\n"
"pushf\n"
"popl %0\n"
: "=a" (v0), "=d" (v1)
:
: "cc");
return (v0 != v1);
}
#endif
static void kqemu_update_cpuid(CPUState *env)
{
int critical_features_mask, features, ext_features, ext_features_mask;
uint32_t eax, ebx, ecx, edx;
/* the following features are kept identical on the host and
target cpus because they are important for user code. Strictly
speaking, only SSE really matters because the OS must support
it if the user code uses it. */
critical_features_mask =
CPUID_CMOV | CPUID_CX8 |
CPUID_FXSR | CPUID_MMX | CPUID_SSE |
CPUID_SSE2 | CPUID_SEP;
ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
if (!is_cpuid_supported()) {
features = 0;
ext_features = 0;
} else {
cpuid(1, eax, ebx, ecx, edx);
features = edx;
ext_features = ecx;
}
#ifdef __x86_64__
/* NOTE: on x86_64 CPUs, SYSENTER is not supported in
compatibility mode, so in order to have the best performances
it is better not to use it */
features &= ~CPUID_SEP;
#endif
env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
(features & critical_features_mask);
env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
(ext_features & ext_features_mask);
/* XXX: we could update more of the target CPUID state so that the
non accelerated code sees exactly the same CPU features as the
accelerated code */
}
int kqemu_init(CPUState *env)
{
struct kqemu_init init;
int ret, version;
#ifdef _WIN32
DWORD temp;
#endif
if (!kqemu_allowed)
return -1;
#ifdef _WIN32
kqemu_fd = CreateFile(KQEMU_DEVICE, GENERIC_WRITE | GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
NULL);
#else
kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
#endif
if (kqemu_fd == KQEMU_INVALID_FD) {
fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
KQEMU_DEVICE, strerror(errno));
return -1;
}
version = 0;
#ifdef _WIN32
DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
&version, sizeof(version), &temp, NULL);
#else
ioctl(kqemu_fd, KQEMU_GET_VERSION, &version);
#endif
if (version != KQEMU_VERSION) {
fprintf(stderr, "Version mismatch between kqemu module and qemu (%08x %08x) - disabling kqemu use\n",
version, KQEMU_VERSION);
goto fail;
}
pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
sizeof(unsigned long));
if (!pages_to_flush)
goto fail;
ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
sizeof(unsigned long));
if (!ram_pages_to_update)
goto fail;
modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
sizeof(unsigned long));
if (!modified_ram_pages)
goto fail;
modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS);
if (!modified_ram_pages_table)
goto fail;
init.ram_base = phys_ram_base;
init.ram_size = phys_ram_size;
init.ram_dirty = phys_ram_dirty;
init.phys_to_ram_map = l1_phys_map;
init.pages_to_flush = pages_to_flush;
#if KQEMU_VERSION >= 0x010200
init.ram_pages_to_update = ram_pages_to_update;
#endif
#if KQEMU_VERSION >= 0x010300
init.modified_ram_pages = modified_ram_pages;
#endif
#ifdef _WIN32
ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &init, sizeof(init),
NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
#else
ret = ioctl(kqemu_fd, KQEMU_INIT, &init);
#endif
if (ret < 0) {
fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
fail:
kqemu_closefd(kqemu_fd);
kqemu_fd = KQEMU_INVALID_FD;
return -1;
}
kqemu_update_cpuid(env);
env->kqemu_enabled = kqemu_allowed;
nb_pages_to_flush = 0;
nb_ram_pages_to_update = 0;
return 0;
}
void kqemu_flush_page(CPUState *env, target_ulong addr)
{
#if defined(DEBUG)
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
}
#endif
if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
nb_pages_to_flush = KQEMU_FLUSH_ALL;
else
pages_to_flush[nb_pages_to_flush++] = addr;
}
void kqemu_flush(CPUState *env, int global)
{
#ifdef DEBUG
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "kqemu_flush:\n");
}
#endif
nb_pages_to_flush = KQEMU_FLUSH_ALL;
}
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
{
#ifdef DEBUG
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "kqemu_set_notdirty: addr=%08lx\n", ram_addr);
}
#endif
/* we only track transitions to dirty state */
if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
return;
if (nb_ram_pages_to_update >= KQEMU_MAX_RAM_PAGES_TO_UPDATE)
nb_ram_pages_to_update = KQEMU_RAM_PAGES_UPDATE_ALL;
else
ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
}
static void kqemu_reset_modified_ram_pages(void)
{
int i;
unsigned long page_index;
for(i = 0; i < nb_modified_ram_pages; i++) {
page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
modified_ram_pages_table[page_index] = 0;
}
nb_modified_ram_pages = 0;
}
void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
{
unsigned long page_index;
int ret;
#ifdef _WIN32
DWORD temp;
#endif
page_index = ram_addr >> TARGET_PAGE_BITS;
if (!modified_ram_pages_table[page_index]) {
#if 0
printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
#endif
modified_ram_pages_table[page_index] = 1;
modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
/* flush */
#ifdef _WIN32
ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
&nb_modified_ram_pages,
sizeof(nb_modified_ram_pages),
NULL, 0, &temp, NULL);
#else
ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
&nb_modified_ram_pages);
#endif
kqemu_reset_modified_ram_pages();
}
}
}
struct fpstate {
uint16_t fpuc;
uint16_t dummy1;
uint16_t fpus;
uint16_t dummy2;
uint16_t fptag;
uint16_t dummy3;
uint32_t fpip;
uint32_t fpcs;
uint32_t fpoo;
uint32_t fpos;
uint8_t fpregs1[8 * 10];
};
struct fpxstate {
uint16_t fpuc;
uint16_t fpus;
uint16_t fptag;
uint16_t fop;
uint32_t fpuip;
uint16_t cs_sel;
uint16_t dummy0;
uint32_t fpudp;
uint16_t ds_sel;
uint16_t dummy1;
uint32_t mxcsr;
uint32_t mxcsr_mask;
uint8_t fpregs1[8 * 16];
uint8_t xmm_regs[16 * 16];
uint8_t dummy2[96];
};
static struct fpxstate fpx1 __attribute__((aligned(16)));
static void restore_native_fp_frstor(CPUState *env)
{
int fptag, i, j;
struct fpstate fp1, *fp = &fp1;
fp->fpuc = env->fpuc;
fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for (i=7; i>=0; i--) {
fptag <<= 2;
if (env->fptags[i]) {
fptag |= 3;
} else {
/* the FPU automatically computes it */
}
}
fp->fptag = fptag;
j = env->fpstt;
for(i = 0;i < 8; i++) {
memcpy(&fp->fpregs1[i * 10], &env->fpregs[j].d, 10);
j = (j + 1) & 7;
}
asm volatile ("frstor %0" : "=m" (*fp));
}
static void save_native_fp_fsave(CPUState *env)
{
int fptag, i, j;
uint16_t fpuc;
struct fpstate fp1, *fp = &fp1;
asm volatile ("fsave %0" : : "m" (*fp));
env->fpuc = fp->fpuc;
env->fpstt = (fp->fpus >> 11) & 7;
env->fpus = fp->fpus & ~0x3800;
fptag = fp->fptag;
for(i = 0;i < 8; i++) {
env->fptags[i] = ((fptag & 3) == 3);
fptag >>= 2;
}
j = env->fpstt;
for(i = 0;i < 8; i++) {
memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 10], 10);
j = (j + 1) & 7;
}
/* we must restore the default rounding state */
fpuc = 0x037f | (env->fpuc & (3 << 10));
asm volatile("fldcw %0" : : "m" (fpuc));
}
static void restore_native_fp_fxrstor(CPUState *env)
{
struct fpxstate *fp = &fpx1;
int i, j, fptag;
fp->fpuc = env->fpuc;
fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
for(i = 0; i < 8; i++)
fptag |= (env->fptags[i] << i);
fp->fptag = fptag ^ 0xff;
j = env->fpstt;
for(i = 0;i < 8; i++) {
memcpy(&fp->fpregs1[i * 16], &env->fpregs[j].d, 10);
j = (j + 1) & 7;
}
if (env->cpuid_features & CPUID_SSE) {
fp->mxcsr = env->mxcsr;
/* XXX: check if DAZ is not available */
fp->mxcsr_mask = 0xffff;
memcpy(fp->xmm_regs, env->xmm_regs, CPU_NB_REGS * 16);
}
asm volatile ("fxrstor %0" : "=m" (*fp));
}
static void save_native_fp_fxsave(CPUState *env)
{
struct fpxstate *fp = &fpx1;
int fptag, i, j;
uint16_t fpuc;
asm volatile ("fxsave %0" : : "m" (*fp));
env->fpuc = fp->fpuc;
env->fpstt = (fp->fpus >> 11) & 7;
env->fpus = fp->fpus & ~0x3800;
fptag = fp->fptag ^ 0xff;
for(i = 0;i < 8; i++) {
env->fptags[i] = (fptag >> i) & 1;
}
j = env->fpstt;
for(i = 0;i < 8; i++) {
memcpy(&env->fpregs[j].d, &fp->fpregs1[i * 16], 10);
j = (j + 1) & 7;
}
if (env->cpuid_features & CPUID_SSE) {
env->mxcsr = fp->mxcsr;
memcpy(env->xmm_regs, fp->xmm_regs, CPU_NB_REGS * 16);
}
/* we must restore the default rounding state */
asm volatile ("fninit");
fpuc = 0x037f | (env->fpuc & (3 << 10));
asm volatile("fldcw %0" : : "m" (fpuc));
}
static int do_syscall(CPUState *env,
struct kqemu_cpu_state *kenv)
{
int selector;
selector = (env->star >> 32) & 0xffff;
#ifdef __x86_64__
if (env->hflags & HF_LMA_MASK) {
int code64;
env->regs[R_ECX] = kenv->next_eip;
env->regs[11] = env->eflags;
code64 = env->hflags & HF_CS64_MASK;
cpu_x86_set_cpl(env, 0);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->eflags &= ~env->fmask;
if (code64)
env->eip = env->lstar;
else
env->eip = env->cstar;
} else
#endif
{
env->regs[R_ECX] = (uint32_t)kenv->next_eip;
cpu_x86_set_cpl(env, 0);
cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
env->eip = (uint32_t)env->star;
}
return 2;
}
#ifdef CONFIG_PROFILER
#define PC_REC_SIZE 1
#define PC_REC_HASH_BITS 16
#define PC_REC_HASH_SIZE (1 << PC_REC_HASH_BITS)
typedef struct PCRecord {
unsigned long pc;
int64_t count;
struct PCRecord *next;
} PCRecord;
static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
static int nb_pc_records;
static void kqemu_record_pc(unsigned long pc)
{
unsigned long h;
PCRecord **pr, *r;
h = pc / PC_REC_SIZE;
h = h ^ (h >> PC_REC_HASH_BITS);
h &= (PC_REC_HASH_SIZE - 1);
pr = &pc_rec_hash[h];
for(;;) {
r = *pr;
if (r == NULL)
break;
if (r->pc == pc) {
r->count++;
return;
}
pr = &r->next;
}
r = malloc(sizeof(PCRecord));
r->count = 1;
r->pc = pc;
r->next = NULL;
*pr = r;
nb_pc_records++;
}
static int pc_rec_cmp(const void *p1, const void *p2)
{
PCRecord *r1 = *(PCRecord **)p1;
PCRecord *r2 = *(PCRecord **)p2;
if (r1->count < r2->count)
return 1;
else if (r1->count == r2->count)
return 0;
else
return -1;
}
static void kqemu_record_flush(void)
{
PCRecord *r, *r_next;
int h;
for(h = 0; h < PC_REC_HASH_SIZE; h++) {
for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
r_next = r->next;
free(r);
}
pc_rec_hash[h] = NULL;
}
nb_pc_records = 0;
}
void kqemu_record_dump(void)
{
PCRecord **pr, *r;
int i, h;
FILE *f;
int64_t total, sum;
pr = malloc(sizeof(PCRecord *) * nb_pc_records);
i = 0;
total = 0;
for(h = 0; h < PC_REC_HASH_SIZE; h++) {
for(r = pc_rec_hash[h]; r != NULL; r = r->next) {
pr[i++] = r;
total += r->count;
}
}
qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
f = fopen("/tmp/kqemu.stats", "w");
if (!f) {
perror("/tmp/kqemu.stats");
exit(1);
}
fprintf(f, "total: %" PRId64 "\n", total);
sum = 0;
for(i = 0; i < nb_pc_records; i++) {
r = pr[i];
sum += r->count;
fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
r->pc,
r->count,
(double)r->count / (double)total * 100.0,
(double)sum / (double)total * 100.0);
}
fclose(f);
free(pr);
kqemu_record_flush();
}
#endif
int kqemu_cpu_exec(CPUState *env)
{
struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
int ret, cpl, i;
#ifdef CONFIG_PROFILER
int64_t ti;
#endif
#ifdef _WIN32
DWORD temp;
#endif
#ifdef CONFIG_PROFILER
ti = profile_getclock();
#endif
#ifdef DEBUG
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "kqemu: cpu_exec: enter\n");
cpu_dump_state(env, logfile, fprintf, 0);
}
#endif
memcpy(kenv->regs, env->regs, sizeof(kenv->regs));
kenv->eip = env->eip;
kenv->eflags = env->eflags;
memcpy(&kenv->segs, &env->segs, sizeof(env->segs));
memcpy(&kenv->ldt, &env->ldt, sizeof(env->ldt));
memcpy(&kenv->tr, &env->tr, sizeof(env->tr));
memcpy(&kenv->gdt, &env->gdt, sizeof(env->gdt));
memcpy(&kenv->idt, &env->idt, sizeof(env->idt));
kenv->cr0 = env->cr[0];
kenv->cr2 = env->cr[2];
kenv->cr3 = env->cr[3];
kenv->cr4 = env->cr[4];
kenv->a20_mask = env->a20_mask;
#if KQEMU_VERSION >= 0x010100
kenv->efer = env->efer;
#endif
#if KQEMU_VERSION >= 0x010300
kenv->tsc_offset = 0;
kenv->star = env->star;
kenv->sysenter_cs = env->sysenter_cs;
kenv->sysenter_esp = env->sysenter_esp;
kenv->sysenter_eip = env->sysenter_eip;
#ifdef __x86_64__
kenv->lstar = env->lstar;
kenv->cstar = env->cstar;
kenv->fmask = env->fmask;
kenv->kernelgsbase = env->kernelgsbase;
#endif
#endif
if (env->dr[7] & 0xff) {
kenv->dr7 = env->dr[7];
kenv->dr0 = env->dr[0];
kenv->dr1 = env->dr[1];
kenv->dr2 = env->dr[2];
kenv->dr3 = env->dr[3];
} else {
kenv->dr7 = 0;
}
kenv->dr6 = env->dr[6];
cpl = (env->hflags & HF_CPL_MASK);
kenv->cpl = cpl;
kenv->nb_pages_to_flush = nb_pages_to_flush;
#if KQEMU_VERSION >= 0x010200
kenv->user_only = (env->kqemu_enabled == 1);
kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
#endif
nb_ram_pages_to_update = 0;
#if KQEMU_VERSION >= 0x010300
kenv->nb_modified_ram_pages = nb_modified_ram_pages;
#endif
kqemu_reset_modified_ram_pages();
if (env->cpuid_features & CPUID_FXSR)
restore_native_fp_fxrstor(env);
else
restore_native_fp_frstor(env);
#ifdef _WIN32
if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
kenv, sizeof(struct kqemu_cpu_state),
kenv, sizeof(struct kqemu_cpu_state),
&temp, NULL)) {
ret = kenv->retval;
} else {
ret = -1;
}
#else
#if KQEMU_VERSION >= 0x010100
ioctl(kqemu_fd, KQEMU_EXEC, kenv);
ret = kenv->retval;
#else
ret = ioctl(kqemu_fd, KQEMU_EXEC, kenv);
#endif
#endif
if (env->cpuid_features & CPUID_FXSR)
save_native_fp_fxsave(env);
else
save_native_fp_fsave(env);
memcpy(env->regs, kenv->regs, sizeof(env->regs));
env->eip = kenv->eip;
env->eflags = kenv->eflags;
memcpy(env->segs, kenv->segs, sizeof(env->segs));
cpu_x86_set_cpl(env, kenv->cpl);
memcpy(&env->ldt, &kenv->ldt, sizeof(env->ldt));
#if 0
/* no need to restore that */
memcpy(env->tr, kenv->tr, sizeof(env->tr));
memcpy(env->gdt, kenv->gdt, sizeof(env->gdt));
memcpy(env->idt, kenv->idt, sizeof(env->idt));
env->a20_mask = kenv->a20_mask;
#endif
env->cr[0] = kenv->cr0;
env->cr[4] = kenv->cr4;
env->cr[3] = kenv->cr3;
env->cr[2] = kenv->cr2;
env->dr[6] = kenv->dr6;
#if KQEMU_VERSION >= 0x010300
#ifdef __x86_64__
env->kernelgsbase = kenv->kernelgsbase;
#endif
#endif
/* flush pages as indicated by kqemu */
if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
tlb_flush(env, 1);
} else {
for(i = 0; i < kenv->nb_pages_to_flush; i++) {
tlb_flush_page(env, pages_to_flush[i]);
}
}
nb_pages_to_flush = 0;
#ifdef CONFIG_PROFILER
kqemu_time += profile_getclock() - ti;
kqemu_exec_count++;
#endif
#if KQEMU_VERSION >= 0x010200
if (kenv->nb_ram_pages_to_update > 0) {
cpu_tlb_update_dirty(env);
}
#endif
#if KQEMU_VERSION >= 0x010300
if (kenv->nb_modified_ram_pages > 0) {
for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
unsigned long addr;
addr = modified_ram_pages[i];
tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
}
}
#endif
/* restore the hidden flags */
{
unsigned int new_hflags;
#ifdef TARGET_X86_64
if ((env->hflags & HF_LMA_MASK) &&
(env->segs[R_CS].flags & DESC_L_MASK)) {
/* long mode */
new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
} else
#endif
{
/* legacy / compatibility case */
new_hflags = (env->segs[R_CS].flags & DESC_B_MASK)
>> (DESC_B_SHIFT - HF_CS32_SHIFT);
new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
>> (DESC_B_SHIFT - HF_SS32_SHIFT);
if (!(env->cr[0] & CR0_PE_MASK) ||
(env->eflags & VM_MASK) ||
!(env->hflags & HF_CS32_MASK)) {
/* XXX: try to avoid this test. The problem comes from the
fact that is real mode or vm86 mode we only modify the
'base' and 'selector' fields of the segment cache to go
faster. A solution may be to force addseg to one in
translate-i386.c. */
new_hflags |= HF_ADDSEG_MASK;
} else {
new_hflags |= ((env->segs[R_DS].base |
env->segs[R_ES].base |
env->segs[R_SS].base) != 0) <<
HF_ADDSEG_SHIFT;
}
}
env->hflags = (env->hflags &
~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
new_hflags;
}
/* update FPU flags */
env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
if (env->cr[4] & CR4_OSFXSR_MASK)
env->hflags |= HF_OSFXSR_MASK;
else
env->hflags &= ~HF_OSFXSR_MASK;
#ifdef DEBUG
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
}
#endif
if (ret == KQEMU_RET_SYSCALL) {
/* syscall instruction */
return do_syscall(env, kenv);
} else
if ((ret & 0xff00) == KQEMU_RET_INT) {
env->exception_index = ret & 0xff;
env->error_code = 0;
env->exception_is_int = 1;
env->exception_next_eip = kenv->next_eip;
#ifdef CONFIG_PROFILER
kqemu_ret_int_count++;
#endif
#ifdef DEBUG
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "kqemu: interrupt v=%02x:\n",
env->exception_index);
cpu_dump_state(env, logfile, fprintf, 0);
}
#endif
return 1;
} else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
env->exception_index = ret & 0xff;
env->error_code = kenv->error_code;
env->exception_is_int = 0;
env->exception_next_eip = 0;
#ifdef CONFIG_PROFILER
kqemu_ret_excp_count++;
#endif
#ifdef DEBUG
if (loglevel & CPU_LOG_INT) {
fprintf(logfile, "kqemu: exception v=%02x e=%04x:\n",
env->exception_index, env->error_code);
cpu_dump_state(env, logfile, fprintf, 0);
}
#endif
return 1;
} else if (ret == KQEMU_RET_INTR) {
#ifdef CONFIG_PROFILER
kqemu_ret_intr_count++;
#endif
#ifdef DEBUG
if (loglevel & CPU_LOG_INT) {
cpu_dump_state(env, logfile, fprintf, 0);
}
#endif
return 0;
} else if (ret == KQEMU_RET_SOFTMMU) {
#ifdef CONFIG_PROFILER
{
unsigned long pc = env->eip + env->segs[R_CS].base;
kqemu_record_pc(pc);
}
#endif
#ifdef DEBUG
if (loglevel & CPU_LOG_INT) {
cpu_dump_state(env, logfile, fprintf, 0);
}
#endif
return 2;
} else {
cpu_dump_state(env, stderr, fprintf, 0);
fprintf(stderr, "Unsupported return value: 0x%x\n", ret);
exit(1);
}
return 0;
}
void kqemu_cpu_interrupt(CPUState *env)
{
#if defined(_WIN32) && KQEMU_VERSION >= 0x010101
/* cancelling the I/O request causes KQEMU to finish executing the
current block and successfully returning. */
CancelIo(kqemu_fd);
#endif
}
#endif