qemu/hw/arm/musca.c

670 lines
24 KiB
C

/*
* Arm Musca-B1 test chip board emulation
*
* Copyright (c) 2019 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* The Musca boards are a reference implementation of a system using
* the SSE-200 subsystem for embedded:
* https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
* https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
* We model the A and B1 variants of this board, as described in the TRMs:
* http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
* http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "hw/arm/arm.h"
#include "hw/arm/armsse.h"
#include "hw/boards.h"
#include "hw/char/pl011.h"
#include "hw/core/split-irq.h"
#include "hw/misc/tz-mpc.h"
#include "hw/misc/tz-ppc.h"
#include "hw/misc/unimp.h"
#include "hw/timer/pl031.h"
#define MUSCA_NUMIRQ_MAX 96
#define MUSCA_PPC_MAX 3
#define MUSCA_MPC_MAX 5
typedef struct MPCInfo MPCInfo;
typedef enum MuscaType {
MUSCA_A,
MUSCA_B1,
} MuscaType;
typedef struct {
MachineClass parent;
MuscaType type;
uint32_t init_svtor;
int sram_addr_width;
int num_irqs;
const MPCInfo *mpc_info;
int num_mpcs;
} MuscaMachineClass;
typedef struct {
MachineState parent;
ARMSSE sse;
/* RAM and flash */
MemoryRegion ram[MUSCA_MPC_MAX];
SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
SplitIRQ sec_resp_splitter;
TZPPC ppc[MUSCA_PPC_MAX];
MemoryRegion container;
UnimplementedDeviceState eflash[2];
UnimplementedDeviceState qspi;
TZMPC mpc[MUSCA_MPC_MAX];
UnimplementedDeviceState mhu[2];
UnimplementedDeviceState pwm[3];
UnimplementedDeviceState i2s;
PL011State uart[2];
UnimplementedDeviceState i2c[2];
UnimplementedDeviceState spi;
UnimplementedDeviceState scc;
UnimplementedDeviceState timer;
PL031State rtc;
UnimplementedDeviceState pvt;
UnimplementedDeviceState sdio;
UnimplementedDeviceState gpio;
UnimplementedDeviceState cryptoisland;
} MuscaMachineState;
#define TYPE_MUSCA_MACHINE "musca"
#define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
#define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
#define MUSCA_MACHINE(obj) \
OBJECT_CHECK(MuscaMachineState, obj, TYPE_MUSCA_MACHINE)
#define MUSCA_MACHINE_GET_CLASS(obj) \
OBJECT_GET_CLASS(MuscaMachineClass, obj, TYPE_MUSCA_MACHINE)
#define MUSCA_MACHINE_CLASS(klass) \
OBJECT_CLASS_CHECK(MuscaMachineClass, klass, TYPE_MUSCA_MACHINE)
/*
* Main SYSCLK frequency in Hz
* TODO this should really be different for the two cores, but we
* don't model that in our SSE-200 model yet.
*/
#define SYSCLK_FRQ 40000000
static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
{
/* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
assert(irqno < MUSCA_NUMIRQ_MAX);
return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
}
/*
* Most of the devices in the Musca board sit behind Peripheral Protection
* Controllers. These data structures define the layout of which devices
* sit behind which PPCs.
* The devfn for each port is a function which creates, configures
* and initializes the device, returning the MemoryRegion which
* needs to be plugged into the downstream end of the PPC port.
*/
typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size);
typedef struct PPCPortInfo {
const char *name;
MakeDevFn *devfn;
void *opaque;
hwaddr addr;
hwaddr size;
} PPCPortInfo;
typedef struct PPCInfo {
const char *name;
PPCPortInfo ports[TZ_NUM_PORTS];
} PPCInfo;
static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
void *opaque, const char *name, hwaddr size)
{
/*
* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
* and return a pointer to its MemoryRegion.
*/
UnimplementedDeviceState *uds = opaque;
sysbus_init_child_obj(OBJECT(mms), name, uds,
sizeof(UnimplementedDeviceState),
TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(DEVICE(uds), "name", name);
qdev_prop_set_uint64(DEVICE(uds), "size", size);
object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
}
typedef enum MPCInfoType {
MPC_RAM,
MPC_ROM,
MPC_CRYPTOISLAND,
} MPCInfoType;
struct MPCInfo {
const char *name;
hwaddr addr;
hwaddr size;
MPCInfoType type;
};
/* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
static const MPCInfo a_mpc_info[] = { {
.name = "qspi",
.type = MPC_ROM,
.addr = 0x00200000,
.size = 0x00800000,
}, {
.name = "sram",
.type = MPC_RAM,
.addr = 0x00000000,
.size = 0x00200000,
}
};
static const MPCInfo b1_mpc_info[] = { {
.name = "qspi",
.type = MPC_ROM,
.addr = 0x00000000,
.size = 0x02000000,
}, {
.name = "sram",
.type = MPC_RAM,
.addr = 0x0a400000,
.size = 0x00080000,
}, {
.name = "eflash0",
.type = MPC_ROM,
.addr = 0x0a000000,
.size = 0x00200000,
}, {
.name = "eflash1",
.type = MPC_ROM,
.addr = 0x0a200000,
.size = 0x00200000,
}, {
.name = "cryptoisland",
.type = MPC_CRYPTOISLAND,
.addr = 0x0a000000,
.size = 0x00200000,
}
};
static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
/*
* Create an MPC and the RAM or flash behind it.
* MPC 0: eFlash 0
* MPC 1: eFlash 1
* MPC 2: SRAM
* MPC 3: QSPI flash
* MPC 4: CryptoIsland
* For now we implement the flash regions as ROM (ie not programmable)
* (with their control interface memory regions being unimplemented
* stubs behind the PPCs).
* The whole CryptoIsland region behind its MPC is an unimplemented stub.
*/
MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
TZMPC *mpc = opaque;
int i = mpc - &mms->mpc[0];
MemoryRegion *downstream;
MemoryRegion *upstream;
UnimplementedDeviceState *uds;
char *mpcname;
const MPCInfo *mpcinfo = mmc->mpc_info;
mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
switch (mpcinfo[i].type) {
case MPC_ROM:
downstream = &mms->ram[i];
memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
mpcinfo[i].size, &error_fatal);
break;
case MPC_RAM:
downstream = &mms->ram[i];
memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
mpcinfo[i].size, &error_fatal);
break;
case MPC_CRYPTOISLAND:
/* We don't implement the CryptoIsland yet */
uds = &mms->cryptoisland;
sysbus_init_child_obj(OBJECT(mms), name, uds,
sizeof(UnimplementedDeviceState),
TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
break;
default:
g_assert_not_reached();
}
sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->mpc[0]),
TYPE_TZ_MPC);
object_property_set_link(OBJECT(mpc), OBJECT(downstream),
"downstream", &error_fatal);
object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
/* Map the upstream end of the MPC into system memory */
upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
/* and connect its interrupt to the SSE-200 */
qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
qdev_get_gpio_in_named(DEVICE(&mms->sse),
"mpcexp_status", i));
g_free(mpcname);
/* Return the register interface MR for our caller to map behind the PPC */
return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
}
static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
PL031State *rtc = opaque;
sysbus_init_child_obj(OBJECT(mms), name, rtc, sizeof(mms->rtc), TYPE_PL031);
object_property_set_bool(OBJECT(rtc), true, "realized", &error_fatal);
sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
}
static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
PL011State *uart = opaque;
int i = uart - &mms->uart[0];
int irqbase = 7 + i * 6;
SysBusDevice *s;
sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
TYPE_PL011);
qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
s = SYS_BUS_DEVICE(uart);
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
}
static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
/*
* Create the container MemoryRegion for all the devices that live
* behind the Musca-A PPC's single port. These devices don't have a PPC
* port each, but we use the PPCPortInfo struct as a convenient way
* to describe them. Note that addresses here are relative to the base
* address of the PPC port region: 0x40100000, and devices appear both
* at the 0x4... NS region and the 0x5... S region.
*/
int i;
MemoryRegion *container = &mms->container;
const PPCPortInfo devices[] = {
{ "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
{ "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
{ "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
{ "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
{ "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
{ "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
{ "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
{ "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
{ "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
{ "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
{ "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
{ "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
{ "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
{ "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
{ "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
{ "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
};
memory_region_init(container, OBJECT(mms), "musca-device-container", size);
for (i = 0; i < ARRAY_SIZE(devices); i++) {
const PPCPortInfo *pinfo = &devices[i];
MemoryRegion *mr;
mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
memory_region_add_subregion(container, pinfo->addr, mr);
}
return &mms->container;
}
static void musca_init(MachineState *machine)
{
MuscaMachineState *mms = MUSCA_MACHINE(machine);
MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *system_memory = get_system_memory();
DeviceState *ssedev;
DeviceState *dev_splitter;
const PPCInfo *ppcs;
int num_ppcs;
int i;
assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
error_report("This board can only be used with CPU %s",
mc->default_cpu_type);
exit(1);
}
sysbus_init_child_obj(OBJECT(machine), "sse-200", &mms->sse,
sizeof(mms->sse), TYPE_SSE200);
ssedev = DEVICE(&mms->sse);
object_property_set_link(OBJECT(&mms->sse), OBJECT(system_memory),
"memory", &error_fatal);
qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ);
object_property_set_bool(OBJECT(&mms->sse), true, "realized",
&error_fatal);
/*
* We need to create splitters to feed the IRQ inputs
* for each CPU in the SSE-200 from each device in the board.
*/
for (i = 0; i < mmc->num_irqs; i++) {
char *name = g_strdup_printf("musca-irq-splitter%d", i);
SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
object_initialize_child(OBJECT(machine), name,
splitter, sizeof(*splitter),
TYPE_SPLIT_IRQ, &error_fatal, NULL);
g_free(name);
object_property_set_int(OBJECT(splitter), 2, "num-lines",
&error_fatal);
object_property_set_bool(OBJECT(splitter), true, "realized",
&error_fatal);
qdev_connect_gpio_out(DEVICE(splitter), 0,
qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
qdev_connect_gpio_out(DEVICE(splitter), 1,
qdev_get_gpio_in_named(ssedev,
"EXP_CPU1_IRQ", i));
}
/*
* The sec_resp_cfg output from the SSE-200 must be split into multiple
* lines, one for each of the PPCs we create here.
*/
object_initialize(&mms->sec_resp_splitter, sizeof(mms->sec_resp_splitter),
TYPE_SPLIT_IRQ);
object_property_add_child(OBJECT(machine), "sec-resp-splitter",
OBJECT(&mms->sec_resp_splitter), &error_fatal);
object_property_set_int(OBJECT(&mms->sec_resp_splitter),
ARRAY_SIZE(mms->ppc), "num-lines", &error_fatal);
object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
"realized", &error_fatal);
dev_splitter = DEVICE(&mms->sec_resp_splitter);
qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
qdev_get_gpio_in(dev_splitter, 0));
/*
* Most of the devices in the board are behind Peripheral Protection
* Controllers. The required order for initializing things is:
* + initialize the PPC
* + initialize, configure and realize downstream devices
* + connect downstream device MemoryRegions to the PPC
* + realize the PPC
* + map the PPC's MemoryRegions to the places in the address map
* where the downstream devices should appear
* + wire up the PPC's control lines to the SSE object
*
* The PPC mapping differs for the -A and -B1 variants; the -A version
* is much simpler, using only a single port of a single PPC and putting
* all the devices behind that.
*/
const PPCInfo a_ppcs[] = { {
.name = "ahb_ppcexp0",
.ports = {
{ "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
},
},
};
/*
* Devices listed with an 0x4.. address appear in both the NS 0x4.. region
* and the 0x5.. S region. Devices listed with an 0x5.. address appear
* only in the S region.
*/
const PPCInfo b1_ppcs[] = { {
.name = "apb_ppcexp0",
.ports = {
{ "eflash0", make_unimp_dev, &mms->eflash[0],
0x52400000, 0x1000 },
{ "eflash1", make_unimp_dev, &mms->eflash[1],
0x52500000, 0x1000 },
{ "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
{ "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
{ "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
{ "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
{ "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
{ "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
{ "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
{ }, /* port 9: unused */
{ }, /* port 10: unused */
{ }, /* port 11: unused */
{ }, /* port 12: unused */
{ }, /* port 13: unused */
{ "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
},
}, {
.name = "apb_ppcexp1",
.ports = {
{ "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
{ "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
{ "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
{ "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
{ "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
{ "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
{ "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
{ "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
{ "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
{ "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
{ "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
{ "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
{ "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
{ "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
},
}, {
.name = "ahb_ppcexp0",
.ports = {
{ }, /* port 0: unused */
{ "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
},
},
};
switch (mmc->type) {
case MUSCA_A:
ppcs = a_ppcs;
num_ppcs = ARRAY_SIZE(a_ppcs);
break;
case MUSCA_B1:
ppcs = b1_ppcs;
num_ppcs = ARRAY_SIZE(b1_ppcs);
break;
default:
g_assert_not_reached();
}
assert(num_ppcs <= MUSCA_PPC_MAX);
for (i = 0; i < num_ppcs; i++) {
const PPCInfo *ppcinfo = &ppcs[i];
TZPPC *ppc = &mms->ppc[i];
DeviceState *ppcdev;
int port;
char *gpioname;
sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
sizeof(TZPPC), TYPE_TZ_PPC);
ppcdev = DEVICE(ppc);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
MemoryRegion *mr;
char *portname;
if (!pinfo->devfn) {
continue;
}
mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
portname = g_strdup_printf("port[%d]", port);
object_property_set_link(OBJECT(ppc), OBJECT(mr),
portname, &error_fatal);
g_free(portname);
}
object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
if (!pinfo->devfn) {
continue;
}
sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_nonsec",
port));
g_free(gpioname);
gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_ap", port));
g_free(gpioname);
}
gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_enable", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_clear", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
qdev_connect_gpio_out_named(ppcdev, "irq", 0,
qdev_get_gpio_in_named(ssedev,
gpioname, 0));
g_free(gpioname);
qdev_connect_gpio_out(dev_splitter, i,
qdev_get_gpio_in_named(ppcdev,
"cfg_sec_resp", 0));
}
armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
}
static void musca_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->default_cpus = 2;
mc->min_cpus = mc->default_cpus;
mc->max_cpus = mc->default_cpus;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
mc->init = musca_init;
}
static void musca_a_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
mc->desc = "ARM Musca-A board (dual Cortex-M33)";
mmc->type = MUSCA_A;
mmc->init_svtor = 0x10200000;
mmc->sram_addr_width = 15;
mmc->num_irqs = 64;
mmc->mpc_info = a_mpc_info;
mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
}
static void musca_b1_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
mmc->type = MUSCA_B1;
/*
* This matches the DAPlink firmware which boots from QSPI. There
* is also a firmware blob which boots from the eFlash, which
* uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
* though we could in theory expose a machine property on the command
* line to allow the user to request eFlash boot.
*/
mmc->init_svtor = 0x10000000;
mmc->sram_addr_width = 17;
mmc->num_irqs = 96;
mmc->mpc_info = b1_mpc_info;
mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
}
static const TypeInfo musca_info = {
.name = TYPE_MUSCA_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(MuscaMachineState),
.class_size = sizeof(MuscaMachineClass),
.class_init = musca_class_init,
};
static const TypeInfo musca_a_info = {
.name = TYPE_MUSCA_A_MACHINE,
.parent = TYPE_MUSCA_MACHINE,
.class_init = musca_a_class_init,
};
static const TypeInfo musca_b1_info = {
.name = TYPE_MUSCA_B1_MACHINE,
.parent = TYPE_MUSCA_MACHINE,
.class_init = musca_b1_class_init,
};
static void musca_machine_init(void)
{
type_register_static(&musca_info);
type_register_static(&musca_a_info);
type_register_static(&musca_b1_info);
}
type_init(musca_machine_init);