qemu/hw/spapr_pci.c

509 lines
17 KiB
C

/*
* QEMU sPAPR PCI host originated from Uninorth PCI host
*
* Copyright (c) 2011 Alexey Kardashevskiy, IBM Corporation.
* Copyright (C) 2011 David Gibson, IBM Corporation.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "pci.h"
#include "pci_host.h"
#include "hw/spapr.h"
#include "hw/spapr_pci.h"
#include "exec-memory.h"
#include <libfdt.h>
#include "hw/pci_internals.h"
static const uint32_t bars[] = {
PCI_BASE_ADDRESS_0, PCI_BASE_ADDRESS_1,
PCI_BASE_ADDRESS_2, PCI_BASE_ADDRESS_3,
PCI_BASE_ADDRESS_4, PCI_BASE_ADDRESS_5
/*, PCI_ROM_ADDRESS*/
};
static PCIDevice *find_dev(sPAPREnvironment *spapr,
uint64_t buid, uint32_t config_addr)
{
DeviceState *qdev;
int devfn = (config_addr >> 8) & 0xFF;
sPAPRPHBState *phb;
QLIST_FOREACH(phb, &spapr->phbs, list) {
if (phb->buid != buid) {
continue;
}
QTAILQ_FOREACH(qdev, &phb->host_state.bus->qbus.children, sibling) {
PCIDevice *dev = (PCIDevice *)qdev;
if (dev->devfn == devfn) {
return dev;
}
}
}
return NULL;
}
static void rtas_ibm_read_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0));
if (!dev) {
rtas_st(rets, 0, -1);
return;
}
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0) & 0xFF;
val = pci_default_read_config(dev, addr, size);
rtas_st(rets, 0, 0);
rtas_st(rets, 1, val);
}
static void rtas_read_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0));
if (!dev) {
rtas_st(rets, 0, -1);
return;
}
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0) & 0xFF;
val = pci_default_read_config(dev, addr, size);
rtas_st(rets, 0, 0);
rtas_st(rets, 1, val);
}
static void rtas_ibm_write_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
uint64_t buid = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 2);
PCIDevice *dev = find_dev(spapr, buid, rtas_ld(args, 0));
if (!dev) {
rtas_st(rets, 0, -1);
return;
}
val = rtas_ld(args, 4);
size = rtas_ld(args, 3);
addr = rtas_ld(args, 0) & 0xFF;
pci_default_write_config(dev, addr, val, size);
rtas_st(rets, 0, 0);
}
static void rtas_write_pci_config(sPAPREnvironment *spapr,
uint32_t token, uint32_t nargs,
target_ulong args,
uint32_t nret, target_ulong rets)
{
uint32_t val, size, addr;
PCIDevice *dev = find_dev(spapr, 0, rtas_ld(args, 0));
if (!dev) {
rtas_st(rets, 0, -1);
return;
}
val = rtas_ld(args, 2);
size = rtas_ld(args, 1);
addr = rtas_ld(args, 0) & 0xFF;
pci_default_write_config(dev, addr, val, size);
rtas_st(rets, 0, 0);
}
static int pci_spapr_map_irq(PCIDevice *pci_dev, int irq_num)
{
/*
* Here we need to convert pci_dev + irq_num to some unique value
* which is less than number of IRQs on the specific bus (now it
* is 16). At the moment irq_num == device_id (number of the
* slot?)
* FIXME: we should swizzle in fn and irq_num
*/
return (pci_dev->devfn >> 3) % SPAPR_PCI_NUM_LSI;
}
static void pci_spapr_set_irq(void *opaque, int irq_num, int level)
{
/*
* Here we use the number returned by pci_spapr_map_irq to find a
* corresponding qemu_irq.
*/
sPAPRPHBState *phb = opaque;
qemu_set_irq(phb->lsi_table[irq_num].qirq, level);
}
static int spapr_phb_init(SysBusDevice *s)
{
sPAPRPHBState *phb = FROM_SYSBUS(sPAPRPHBState, s);
int i;
/* Initialize the LSI table */
for (i = 0; i < SPAPR_PCI_NUM_LSI; i++) {
qemu_irq qirq;
uint32_t num;
qirq = spapr_allocate_irq(0, &num);
if (!qirq) {
return -1;
}
phb->lsi_table[i].dt_irq = num;
phb->lsi_table[i].qirq = qirq;
}
return 0;
}
static int spapr_main_pci_host_init(PCIDevice *d)
{
return 0;
}
static PCIDeviceInfo spapr_main_pci_host_info = {
.qdev.name = "spapr-pci-host-bridge",
.qdev.size = sizeof(PCIDevice),
.init = spapr_main_pci_host_init,
};
static void spapr_register_devices(void)
{
sysbus_register_dev("spapr-pci-host-bridge", sizeof(sPAPRPHBState),
spapr_phb_init);
pci_qdev_register(&spapr_main_pci_host_info);
}
device_init(spapr_register_devices)
static uint64_t spapr_io_read(void *opaque, target_phys_addr_t addr,
unsigned size)
{
switch (size) {
case 1:
return cpu_inb(addr);
case 2:
return cpu_inw(addr);
case 4:
return cpu_inl(addr);
}
assert(0);
}
static void spapr_io_write(void *opaque, target_phys_addr_t addr,
uint64_t data, unsigned size)
{
switch (size) {
case 1:
cpu_outb(addr, data);
return;
case 2:
cpu_outw(addr, data);
return;
case 4:
cpu_outl(addr, data);
return;
}
assert(0);
}
static MemoryRegionOps spapr_io_ops = {
.endianness = DEVICE_LITTLE_ENDIAN,
.read = spapr_io_read,
.write = spapr_io_write
};
void spapr_create_phb(sPAPREnvironment *spapr,
const char *busname, uint64_t buid,
uint64_t mem_win_addr, uint64_t mem_win_size,
uint64_t io_win_addr)
{
DeviceState *dev;
SysBusDevice *s;
sPAPRPHBState *phb;
PCIBus *bus;
char namebuf[strlen(busname)+11];
dev = qdev_create(NULL, "spapr-pci-host-bridge");
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
phb = FROM_SYSBUS(sPAPRPHBState, s);
phb->mem_win_addr = mem_win_addr;
sprintf(namebuf, "%s-mem", busname);
memory_region_init(&phb->memspace, namebuf, INT64_MAX);
sprintf(namebuf, "%s-memwindow", busname);
memory_region_init_alias(&phb->memwindow, namebuf, &phb->memspace,
SPAPR_PCI_MEM_WIN_BUS_OFFSET, mem_win_size);
memory_region_add_subregion(get_system_memory(), mem_win_addr,
&phb->memwindow);
phb->io_win_addr = io_win_addr;
/* On ppc, we only have MMIO no specific IO space from the CPU
* perspective. In theory we ought to be able to embed the PCI IO
* memory region direction in the system memory space. However,
* if any of the IO BAR subregions use the old_portio mechanism,
* that won't be processed properly unless accessed from the
* system io address space. This hack to bounce things via
* system_io works around the problem until all the users of
* old_portion are updated */
sprintf(namebuf, "%s-io", busname);
memory_region_init(&phb->iospace, namebuf, SPAPR_PCI_IO_WIN_SIZE);
/* FIXME: fix to support multiple PHBs */
memory_region_add_subregion(get_system_io(), 0, &phb->iospace);
sprintf(namebuf, "%s-iowindow", busname);
memory_region_init_io(&phb->iowindow, &spapr_io_ops, phb,
namebuf, SPAPR_PCI_IO_WIN_SIZE);
memory_region_add_subregion(get_system_memory(), io_win_addr,
&phb->iowindow);
phb->host_state.bus = bus = pci_register_bus(&phb->busdev.qdev, busname,
pci_spapr_set_irq,
pci_spapr_map_irq,
phb,
&phb->memspace, &phb->iospace,
PCI_DEVFN(0, 0),
SPAPR_PCI_NUM_LSI);
spapr_rtas_register("read-pci-config", rtas_read_pci_config);
spapr_rtas_register("write-pci-config", rtas_write_pci_config);
spapr_rtas_register("ibm,read-pci-config", rtas_ibm_read_pci_config);
spapr_rtas_register("ibm,write-pci-config", rtas_ibm_write_pci_config);
QLIST_INSERT_HEAD(&spapr->phbs, phb, list);
/* pci_bus_set_mem_base(bus, mem_va_start - SPAPR_PCI_MEM_BAR_START); */
}
/* Macros to operate with address in OF binding to PCI */
#define b_x(x, p, l) (((x) & ((1<<(l))-1)) << (p))
#define b_n(x) b_x((x), 31, 1) /* 0 if relocatable */
#define b_p(x) b_x((x), 30, 1) /* 1 if prefetchable */
#define b_t(x) b_x((x), 29, 1) /* 1 if the address is aliased */
#define b_ss(x) b_x((x), 24, 2) /* the space code */
#define b_bbbbbbbb(x) b_x((x), 16, 8) /* bus number */
#define b_ddddd(x) b_x((x), 11, 5) /* device number */
#define b_fff(x) b_x((x), 8, 3) /* function number */
#define b_rrrrrrrr(x) b_x((x), 0, 8) /* register number */
static uint32_t regtype_to_ss(uint8_t type)
{
if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) {
return 3;
}
if (type == PCI_BASE_ADDRESS_SPACE_IO) {
return 1;
}
return 2;
}
int spapr_populate_pci_devices(sPAPRPHBState *phb,
uint32_t xics_phandle,
void *fdt)
{
PCIBus *bus = phb->host_state.bus;
int bus_off, node_off = 0, devid, fn, i, n, devices;
DeviceState *qdev;
char nodename[256];
struct {
uint32_t hi;
uint64_t addr;
uint64_t size;
} __attribute__((packed)) reg[PCI_NUM_REGIONS + 1],
assigned_addresses[PCI_NUM_REGIONS];
uint32_t bus_range[] = { cpu_to_be32(0), cpu_to_be32(0xff) };
struct {
uint32_t hi;
uint64_t child;
uint64_t parent;
uint64_t size;
} __attribute__((packed)) ranges[] = {
{
cpu_to_be32(b_ss(1)), cpu_to_be64(0),
cpu_to_be64(phb->io_win_addr),
cpu_to_be64(memory_region_size(&phb->iospace)),
},
{
cpu_to_be32(b_ss(2)), cpu_to_be64(SPAPR_PCI_MEM_WIN_BUS_OFFSET),
cpu_to_be64(phb->mem_win_addr),
cpu_to_be64(memory_region_size(&phb->memwindow)),
},
};
uint64_t bus_reg[] = { cpu_to_be64(phb->buid), 0 };
uint32_t interrupt_map_mask[] = {
cpu_to_be32(b_ddddd(-1)|b_fff(-1)), 0x0, 0x0, 0x0};
uint32_t interrupt_map[bus->nirq][7];
/* Start populating the FDT */
sprintf(nodename, "pci@%" PRIx64, phb->buid);
bus_off = fdt_add_subnode(fdt, 0, nodename);
if (bus_off < 0) {
return bus_off;
}
#define _FDT(exp) \
do { \
int ret = (exp); \
if (ret < 0) { \
return ret; \
} \
} while (0)
/* Write PHB properties */
_FDT(fdt_setprop_string(fdt, bus_off, "device_type", "pci"));
_FDT(fdt_setprop_string(fdt, bus_off, "compatible", "IBM,Logical_PHB"));
_FDT(fdt_setprop_cell(fdt, bus_off, "#address-cells", 0x3));
_FDT(fdt_setprop_cell(fdt, bus_off, "#size-cells", 0x2));
_FDT(fdt_setprop_cell(fdt, bus_off, "#interrupt-cells", 0x1));
_FDT(fdt_setprop(fdt, bus_off, "used-by-rtas", NULL, 0));
_FDT(fdt_setprop(fdt, bus_off, "bus-range", &bus_range, sizeof(bus_range)));
_FDT(fdt_setprop(fdt, bus_off, "ranges", &ranges, sizeof(ranges)));
_FDT(fdt_setprop(fdt, bus_off, "reg", &bus_reg, sizeof(bus_reg)));
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map-mask",
&interrupt_map_mask, sizeof(interrupt_map_mask)));
/* Populate PCI devices and allocate IRQs */
devices = 0;
QTAILQ_FOREACH(qdev, &bus->qbus.children, sibling) {
PCIDevice *dev = DO_UPCAST(PCIDevice, qdev, qdev);
int irq_index = pci_spapr_map_irq(dev, 0);
uint32_t *irqmap = interrupt_map[devices];
uint8_t *config = dev->config;
devid = dev->devfn >> 3;
fn = dev->devfn & 7;
sprintf(nodename, "pci@%u,%u", devid, fn);
/* Allocate interrupt from the map */
if (devid > bus->nirq) {
printf("Unexpected behaviour in spapr_populate_pci_devices,"
"wrong devid %u\n", devid);
exit(-1);
}
irqmap[0] = cpu_to_be32(b_ddddd(devid)|b_fff(fn));
irqmap[1] = 0;
irqmap[2] = 0;
irqmap[3] = 0;
irqmap[4] = cpu_to_be32(xics_phandle);
irqmap[5] = cpu_to_be32(phb->lsi_table[irq_index].dt_irq);
irqmap[6] = cpu_to_be32(0x8);
/* Add node to FDT */
node_off = fdt_add_subnode(fdt, bus_off, nodename);
if (node_off < 0) {
return node_off;
}
_FDT(fdt_setprop_cell(fdt, node_off, "vendor-id",
pci_get_word(&config[PCI_VENDOR_ID])));
_FDT(fdt_setprop_cell(fdt, node_off, "device-id",
pci_get_word(&config[PCI_DEVICE_ID])));
_FDT(fdt_setprop_cell(fdt, node_off, "revision-id",
pci_get_byte(&config[PCI_REVISION_ID])));
_FDT(fdt_setprop_cell(fdt, node_off, "class-code",
pci_get_long(&config[PCI_CLASS_REVISION]) >> 8));
_FDT(fdt_setprop_cell(fdt, node_off, "subsystem-id",
pci_get_word(&config[PCI_SUBSYSTEM_ID])));
_FDT(fdt_setprop_cell(fdt, node_off, "subsystem-vendor-id",
pci_get_word(&config[PCI_SUBSYSTEM_VENDOR_ID])));
/* Config space region comes first */
reg[0].hi = cpu_to_be32(
b_n(0) |
b_p(0) |
b_t(0) |
b_ss(0/*config*/) |
b_bbbbbbbb(0) |
b_ddddd(devid) |
b_fff(fn));
reg[0].addr = 0;
reg[0].size = 0;
n = 0;
for (i = 0; i < ARRAY_SIZE(bars); ++i) {
if (0 == dev->io_regions[i].size) {
continue;
}
reg[n+1].hi = cpu_to_be32(
b_n(0) |
b_p(0) |
b_t(0) |
b_ss(regtype_to_ss(dev->io_regions[i].type)) |
b_bbbbbbbb(0) |
b_ddddd(devid) |
b_fff(fn) |
b_rrrrrrrr(bars[i]));
reg[n+1].addr = 0;
reg[n+1].size = cpu_to_be64(dev->io_regions[i].size);
assigned_addresses[n].hi = cpu_to_be32(
b_n(1) |
b_p(0) |
b_t(0) |
b_ss(regtype_to_ss(dev->io_regions[i].type)) |
b_bbbbbbbb(0) |
b_ddddd(devid) |
b_fff(fn) |
b_rrrrrrrr(bars[i]));
/*
* Writing zeroes to assigned_addresses causes the guest kernel to
* reassign BARs
*/
assigned_addresses[n].addr = cpu_to_be64(dev->io_regions[i].addr);
assigned_addresses[n].size = reg[n+1].size;
++n;
}
_FDT(fdt_setprop(fdt, node_off, "reg", reg, sizeof(reg[0])*(n+1)));
_FDT(fdt_setprop(fdt, node_off, "assigned-addresses",
assigned_addresses,
sizeof(assigned_addresses[0])*(n)));
_FDT(fdt_setprop_cell(fdt, node_off, "interrupts",
pci_get_byte(&config[PCI_INTERRUPT_PIN])));
++devices;
}
/* Write interrupt map */
_FDT(fdt_setprop(fdt, bus_off, "interrupt-map", &interrupt_map,
devices * sizeof(interrupt_map[0])));
return 0;
}