mirror of https://gitee.com/openkylin/qemu.git
525 lines
16 KiB
C
525 lines
16 KiB
C
/*
|
|
* ARM implementation of KVM hooks, 32 bit specific code.
|
|
*
|
|
* Copyright Christoffer Dall 2009-2010
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include <sys/ioctl.h>
|
|
#include <sys/mman.h>
|
|
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "cpu.h"
|
|
#include "qemu/timer.h"
|
|
#include "sysemu/sysemu.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "kvm_arm.h"
|
|
#include "internals.h"
|
|
#include "hw/arm/arm.h"
|
|
#include "qemu/log.h"
|
|
|
|
static inline void set_feature(uint64_t *features, int feature)
|
|
{
|
|
*features |= 1ULL << feature;
|
|
}
|
|
|
|
bool kvm_arm_get_host_cpu_features(ARMHostCPUClass *ahcc)
|
|
{
|
|
/* Identify the feature bits corresponding to the host CPU, and
|
|
* fill out the ARMHostCPUClass fields accordingly. To do this
|
|
* we have to create a scratch VM, create a single CPU inside it,
|
|
* and then query that CPU for the relevant ID registers.
|
|
*/
|
|
int i, ret, fdarray[3];
|
|
uint32_t midr, id_pfr0, id_isar0, mvfr1;
|
|
uint64_t features = 0;
|
|
/* Old kernels may not know about the PREFERRED_TARGET ioctl: however
|
|
* we know these will only support creating one kind of guest CPU,
|
|
* which is its preferred CPU type.
|
|
*/
|
|
static const uint32_t cpus_to_try[] = {
|
|
QEMU_KVM_ARM_TARGET_CORTEX_A15,
|
|
QEMU_KVM_ARM_TARGET_NONE
|
|
};
|
|
struct kvm_vcpu_init init;
|
|
struct kvm_one_reg idregs[] = {
|
|
{
|
|
.id = KVM_REG_ARM | KVM_REG_SIZE_U32
|
|
| ENCODE_CP_REG(15, 0, 0, 0, 0, 0, 0),
|
|
.addr = (uintptr_t)&midr,
|
|
},
|
|
{
|
|
.id = KVM_REG_ARM | KVM_REG_SIZE_U32
|
|
| ENCODE_CP_REG(15, 0, 0, 0, 1, 0, 0),
|
|
.addr = (uintptr_t)&id_pfr0,
|
|
},
|
|
{
|
|
.id = KVM_REG_ARM | KVM_REG_SIZE_U32
|
|
| ENCODE_CP_REG(15, 0, 0, 0, 2, 0, 0),
|
|
.addr = (uintptr_t)&id_isar0,
|
|
},
|
|
{
|
|
.id = KVM_REG_ARM | KVM_REG_SIZE_U32
|
|
| KVM_REG_ARM_VFP | KVM_REG_ARM_VFP_MVFR1,
|
|
.addr = (uintptr_t)&mvfr1,
|
|
},
|
|
};
|
|
|
|
if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
|
|
return false;
|
|
}
|
|
|
|
ahcc->target = init.target;
|
|
|
|
/* This is not strictly blessed by the device tree binding docs yet,
|
|
* but in practice the kernel does not care about this string so
|
|
* there is no point maintaining an KVM_ARM_TARGET_* -> string table.
|
|
*/
|
|
ahcc->dtb_compatible = "arm,arm-v7";
|
|
|
|
for (i = 0; i < ARRAY_SIZE(idregs); i++) {
|
|
ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &idregs[i]);
|
|
if (ret) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
kvm_arm_destroy_scratch_host_vcpu(fdarray);
|
|
|
|
if (ret) {
|
|
return false;
|
|
}
|
|
|
|
/* Now we've retrieved all the register information we can
|
|
* set the feature bits based on the ID register fields.
|
|
* We can assume any KVM supporting CPU is at least a v7
|
|
* with VFPv3, LPAE and the generic timers; this in turn implies
|
|
* most of the other feature bits, but a few must be tested.
|
|
*/
|
|
set_feature(&features, ARM_FEATURE_V7);
|
|
set_feature(&features, ARM_FEATURE_VFP3);
|
|
set_feature(&features, ARM_FEATURE_LPAE);
|
|
set_feature(&features, ARM_FEATURE_GENERIC_TIMER);
|
|
|
|
switch (extract32(id_isar0, 24, 4)) {
|
|
case 1:
|
|
set_feature(&features, ARM_FEATURE_THUMB_DIV);
|
|
break;
|
|
case 2:
|
|
set_feature(&features, ARM_FEATURE_ARM_DIV);
|
|
set_feature(&features, ARM_FEATURE_THUMB_DIV);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (extract32(id_pfr0, 12, 4) == 1) {
|
|
set_feature(&features, ARM_FEATURE_THUMB2EE);
|
|
}
|
|
if (extract32(mvfr1, 20, 4) == 1) {
|
|
set_feature(&features, ARM_FEATURE_VFP_FP16);
|
|
}
|
|
if (extract32(mvfr1, 12, 4) == 1) {
|
|
set_feature(&features, ARM_FEATURE_NEON);
|
|
}
|
|
if (extract32(mvfr1, 28, 4) == 1) {
|
|
/* FMAC support implies VFPv4 */
|
|
set_feature(&features, ARM_FEATURE_VFP4);
|
|
}
|
|
|
|
ahcc->features = features;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
|
|
{
|
|
/* Return true if the regidx is a register we should synchronize
|
|
* via the cpreg_tuples array (ie is not a core reg we sync by
|
|
* hand in kvm_arch_get/put_registers())
|
|
*/
|
|
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
|
|
case KVM_REG_ARM_CORE:
|
|
case KVM_REG_ARM_VFP:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
typedef struct CPRegStateLevel {
|
|
uint64_t regidx;
|
|
int level;
|
|
} CPRegStateLevel;
|
|
|
|
/* All coprocessor registers not listed in the following table are assumed to
|
|
* be of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
|
|
* often, you must add it to this table with a state of either
|
|
* KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
|
|
*/
|
|
static const CPRegStateLevel non_runtime_cpregs[] = {
|
|
{ KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
|
|
};
|
|
|
|
int kvm_arm_cpreg_level(uint64_t regidx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
|
|
const CPRegStateLevel *l = &non_runtime_cpregs[i];
|
|
if (l->regidx == regidx) {
|
|
return l->level;
|
|
}
|
|
}
|
|
|
|
return KVM_PUT_RUNTIME_STATE;
|
|
}
|
|
|
|
#define ARM_CPU_ID_MPIDR 0, 0, 0, 5
|
|
|
|
int kvm_arch_init_vcpu(CPUState *cs)
|
|
{
|
|
int ret;
|
|
uint64_t v;
|
|
uint32_t mpidr;
|
|
struct kvm_one_reg r;
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
|
|
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE) {
|
|
fprintf(stderr, "KVM is not supported for this guest CPU type\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Determine init features for this CPU */
|
|
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
|
|
if (cpu->start_powered_off) {
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
|
|
}
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
|
|
cpu->psci_version = 2;
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
|
|
}
|
|
|
|
/* Do KVM_ARM_VCPU_INIT ioctl */
|
|
ret = kvm_arm_vcpu_init(cs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Query the kernel to make sure it supports 32 VFP
|
|
* registers: QEMU's "cortex-a15" CPU is always a
|
|
* VFP-D32 core. The simplest way to do this is just
|
|
* to attempt to read register d31.
|
|
*/
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
|
|
r.addr = (uintptr_t)(&v);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret == -ENOENT) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
|
|
* Currently KVM has its own idea about MPIDR assignment, so we
|
|
* override our defaults with what we get from KVM.
|
|
*/
|
|
ret = kvm_get_one_reg(cs, ARM_CP15_REG32(ARM_CPU_ID_MPIDR), &mpidr);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
cpu->mp_affinity = mpidr & ARM32_AFFINITY_MASK;
|
|
|
|
return kvm_arm_init_cpreg_list(cpu);
|
|
}
|
|
|
|
typedef struct Reg {
|
|
uint64_t id;
|
|
int offset;
|
|
} Reg;
|
|
|
|
#define COREREG(KERNELNAME, QEMUFIELD) \
|
|
{ \
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
|
|
offsetof(CPUARMState, QEMUFIELD) \
|
|
}
|
|
|
|
#define VFPSYSREG(R) \
|
|
{ \
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
|
|
KVM_REG_ARM_VFP_##R, \
|
|
offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
|
|
}
|
|
|
|
/* Like COREREG, but handle fields which are in a uint64_t in CPUARMState. */
|
|
#define COREREG64(KERNELNAME, QEMUFIELD) \
|
|
{ \
|
|
KVM_REG_ARM | KVM_REG_SIZE_U32 | \
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
|
|
offsetoflow32(CPUARMState, QEMUFIELD) \
|
|
}
|
|
|
|
static const Reg regs[] = {
|
|
/* R0_usr .. R14_usr */
|
|
COREREG(usr_regs.uregs[0], regs[0]),
|
|
COREREG(usr_regs.uregs[1], regs[1]),
|
|
COREREG(usr_regs.uregs[2], regs[2]),
|
|
COREREG(usr_regs.uregs[3], regs[3]),
|
|
COREREG(usr_regs.uregs[4], regs[4]),
|
|
COREREG(usr_regs.uregs[5], regs[5]),
|
|
COREREG(usr_regs.uregs[6], regs[6]),
|
|
COREREG(usr_regs.uregs[7], regs[7]),
|
|
COREREG(usr_regs.uregs[8], usr_regs[0]),
|
|
COREREG(usr_regs.uregs[9], usr_regs[1]),
|
|
COREREG(usr_regs.uregs[10], usr_regs[2]),
|
|
COREREG(usr_regs.uregs[11], usr_regs[3]),
|
|
COREREG(usr_regs.uregs[12], usr_regs[4]),
|
|
COREREG(usr_regs.uregs[13], banked_r13[BANK_USRSYS]),
|
|
COREREG(usr_regs.uregs[14], banked_r14[BANK_USRSYS]),
|
|
/* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
|
|
COREREG(svc_regs[0], banked_r13[BANK_SVC]),
|
|
COREREG(svc_regs[1], banked_r14[BANK_SVC]),
|
|
COREREG64(svc_regs[2], banked_spsr[BANK_SVC]),
|
|
COREREG(abt_regs[0], banked_r13[BANK_ABT]),
|
|
COREREG(abt_regs[1], banked_r14[BANK_ABT]),
|
|
COREREG64(abt_regs[2], banked_spsr[BANK_ABT]),
|
|
COREREG(und_regs[0], banked_r13[BANK_UND]),
|
|
COREREG(und_regs[1], banked_r14[BANK_UND]),
|
|
COREREG64(und_regs[2], banked_spsr[BANK_UND]),
|
|
COREREG(irq_regs[0], banked_r13[BANK_IRQ]),
|
|
COREREG(irq_regs[1], banked_r14[BANK_IRQ]),
|
|
COREREG64(irq_regs[2], banked_spsr[BANK_IRQ]),
|
|
/* R8_fiq .. R14_fiq and SPSR_fiq */
|
|
COREREG(fiq_regs[0], fiq_regs[0]),
|
|
COREREG(fiq_regs[1], fiq_regs[1]),
|
|
COREREG(fiq_regs[2], fiq_regs[2]),
|
|
COREREG(fiq_regs[3], fiq_regs[3]),
|
|
COREREG(fiq_regs[4], fiq_regs[4]),
|
|
COREREG(fiq_regs[5], banked_r13[BANK_FIQ]),
|
|
COREREG(fiq_regs[6], banked_r14[BANK_FIQ]),
|
|
COREREG64(fiq_regs[7], banked_spsr[BANK_FIQ]),
|
|
/* R15 */
|
|
COREREG(usr_regs.uregs[15], regs[15]),
|
|
/* VFP system registers */
|
|
VFPSYSREG(FPSID),
|
|
VFPSYSREG(MVFR1),
|
|
VFPSYSREG(MVFR0),
|
|
VFPSYSREG(FPEXC),
|
|
VFPSYSREG(FPINST),
|
|
VFPSYSREG(FPINST2),
|
|
};
|
|
|
|
int kvm_arch_put_registers(CPUState *cs, int level)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
struct kvm_one_reg r;
|
|
int mode, bn;
|
|
int ret, i;
|
|
uint32_t cpsr, fpscr;
|
|
|
|
/* Make sure the banked regs are properly set */
|
|
mode = env->uncached_cpsr & CPSR_M;
|
|
bn = bank_number(mode);
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
} else {
|
|
memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
|
|
}
|
|
env->banked_r13[bn] = env->regs[13];
|
|
env->banked_r14[bn] = env->regs[14];
|
|
env->banked_spsr[bn] = env->spsr;
|
|
|
|
/* Now we can safely copy stuff down to the kernel */
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
r.id = regs[i].id;
|
|
r.addr = (uintptr_t)(env) + regs[i].offset;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Special cases which aren't a single CPUARMState field */
|
|
cpsr = cpsr_read(env);
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
|
|
r.addr = (uintptr_t)(&cpsr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* VFP registers */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
|
for (i = 0; i < 32; i++) {
|
|
r.addr = (uintptr_t)(&env->vfp.regs[i]);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
r.id++;
|
|
}
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
|
|
KVM_REG_ARM_VFP_FPSCR;
|
|
fpscr = vfp_get_fpscr(env);
|
|
r.addr = (uintptr_t)&fpscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Note that we do not call write_cpustate_to_list()
|
|
* here, so we are only writing the tuple list back to
|
|
* KVM. This is safe because nothing can change the
|
|
* CPUARMState cp15 fields (in particular gdb accesses cannot)
|
|
* and so there are no changes to sync. In fact syncing would
|
|
* be wrong at this point: for a constant register where TCG and
|
|
* KVM disagree about its value, the preceding write_list_to_cpustate()
|
|
* would not have had any effect on the CPUARMState value (since the
|
|
* register is read-only), and a write_cpustate_to_list() here would
|
|
* then try to write the TCG value back into KVM -- this would either
|
|
* fail or incorrectly change the value the guest sees.
|
|
*
|
|
* If we ever want to allow the user to modify cp15 registers via
|
|
* the gdb stub, we would need to be more clever here (for instance
|
|
* tracking the set of registers kvm_arch_get_registers() successfully
|
|
* managed to update the CPUARMState with, and only allowing those
|
|
* to be written back up into the kernel).
|
|
*/
|
|
if (!write_list_to_kvmstate(cpu, level)) {
|
|
return EINVAL;
|
|
}
|
|
|
|
kvm_arm_sync_mpstate_to_kvm(cpu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int kvm_arch_get_registers(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
struct kvm_one_reg r;
|
|
int mode, bn;
|
|
int ret, i;
|
|
uint32_t cpsr, fpscr;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(regs); i++) {
|
|
r.id = regs[i].id;
|
|
r.addr = (uintptr_t)(env) + regs[i].offset;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* Special cases which aren't a single CPUARMState field */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
|
|
r.addr = (uintptr_t)(&cpsr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
cpsr_write(env, cpsr, 0xffffffff, CPSRWriteRaw);
|
|
|
|
/* Make sure the current mode regs are properly set */
|
|
mode = env->uncached_cpsr & CPSR_M;
|
|
bn = bank_number(mode);
|
|
if (mode == ARM_CPU_MODE_FIQ) {
|
|
memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
|
|
} else {
|
|
memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
|
|
}
|
|
env->regs[13] = env->banked_r13[bn];
|
|
env->regs[14] = env->banked_r14[bn];
|
|
env->spsr = env->banked_spsr[bn];
|
|
|
|
/* VFP registers */
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
|
|
for (i = 0; i < 32; i++) {
|
|
r.addr = (uintptr_t)(&env->vfp.regs[i]);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
r.id++;
|
|
}
|
|
|
|
r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
|
|
KVM_REG_ARM_VFP_FPSCR;
|
|
r.addr = (uintptr_t)&fpscr;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
vfp_set_fpscr(env, fpscr);
|
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
return EINVAL;
|
|
}
|
|
/* Note that it's OK to have registers which aren't in CPUState,
|
|
* so we can ignore a failure return here.
|
|
*/
|
|
write_list_to_cpustate(cpu);
|
|
|
|
kvm_arm_sync_mpstate_to_qemu(cpu);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: guest debug not yet implemented\n", __func__);
|
|
return false;
|
|
}
|
|
|
|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|
|
|
|
void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
|
|
{
|
|
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
|
|
}
|
|
|
|
bool kvm_arm_hw_debug_active(CPUState *cs)
|
|
{
|
|
return false;
|
|
}
|