mirror of https://gitee.com/openkylin/qemu.git
498 lines
13 KiB
C
498 lines
13 KiB
C
/* Native implementation of soft float functions */
|
|
#include <math.h>
|
|
|
|
#if (defined(CONFIG_BSD) && !defined(__APPLE__)) || defined(CONFIG_SOLARIS)
|
|
#include <ieeefp.h>
|
|
#define fabsf(f) ((float)fabs(f))
|
|
#else
|
|
#include <fenv.h>
|
|
#endif
|
|
|
|
#if defined(__OpenBSD__) || defined(__NetBSD__)
|
|
#include <sys/param.h>
|
|
#endif
|
|
|
|
/*
|
|
* Define some C99-7.12.3 classification macros and
|
|
* some C99-.12.4 for Solaris systems OS less than 10,
|
|
* or Solaris 10 systems running GCC 3.x or less.
|
|
* Solaris 10 with GCC4 does not need these macros as they
|
|
* are defined in <iso/math_c99.h> with a compiler directive
|
|
*/
|
|
#if defined(CONFIG_SOLARIS) && \
|
|
((CONFIG_SOLARIS_VERSION <= 9 ) || \
|
|
((CONFIG_SOLARIS_VERSION >= 10) && (__GNUC__ < 4))) \
|
|
|| (defined(__OpenBSD__) && (OpenBSD < 200811))
|
|
/*
|
|
* C99 7.12.3 classification macros
|
|
* and
|
|
* C99 7.12.14 comparison macros
|
|
*
|
|
* ... do not work on Solaris 10 using GNU CC 3.4.x.
|
|
* Try to workaround the missing / broken C99 math macros.
|
|
*/
|
|
#if defined(__OpenBSD__)
|
|
#define unordered(x, y) (isnan(x) || isnan(y))
|
|
#endif
|
|
|
|
#ifdef __NetBSD__
|
|
#ifndef isgreater
|
|
#define isgreater(x, y) __builtin_isgreater(x, y)
|
|
#endif
|
|
#ifndef isgreaterequal
|
|
#define isgreaterequal(x, y) __builtin_isgreaterequal(x, y)
|
|
#endif
|
|
#ifndef isless
|
|
#define isless(x, y) __builtin_isless(x, y)
|
|
#endif
|
|
#ifndef islessequal
|
|
#define islessequal(x, y) __builtin_islessequal(x, y)
|
|
#endif
|
|
#ifndef isunordered
|
|
#define isunordered(x, y) __builtin_isunordered(x, y)
|
|
#endif
|
|
#endif
|
|
|
|
|
|
#define isnormal(x) (fpclass(x) >= FP_NZERO)
|
|
#define isgreater(x, y) ((!unordered(x, y)) && ((x) > (y)))
|
|
#define isgreaterequal(x, y) ((!unordered(x, y)) && ((x) >= (y)))
|
|
#define isless(x, y) ((!unordered(x, y)) && ((x) < (y)))
|
|
#define islessequal(x, y) ((!unordered(x, y)) && ((x) <= (y)))
|
|
#define isunordered(x,y) unordered(x, y)
|
|
#endif
|
|
|
|
#if defined(__sun__) && !defined(CONFIG_NEEDS_LIBSUNMATH)
|
|
|
|
#ifndef isnan
|
|
# define isnan(x) \
|
|
(sizeof (x) == sizeof (long double) ? isnan_ld (x) \
|
|
: sizeof (x) == sizeof (double) ? isnan_d (x) \
|
|
: isnan_f (x))
|
|
static inline int isnan_f (float x) { return x != x; }
|
|
static inline int isnan_d (double x) { return x != x; }
|
|
static inline int isnan_ld (long double x) { return x != x; }
|
|
#endif
|
|
|
|
#ifndef isinf
|
|
# define isinf(x) \
|
|
(sizeof (x) == sizeof (long double) ? isinf_ld (x) \
|
|
: sizeof (x) == sizeof (double) ? isinf_d (x) \
|
|
: isinf_f (x))
|
|
static inline int isinf_f (float x) { return isnan (x - x); }
|
|
static inline int isinf_d (double x) { return isnan (x - x); }
|
|
static inline int isinf_ld (long double x) { return isnan (x - x); }
|
|
#endif
|
|
#endif
|
|
|
|
typedef float float32;
|
|
typedef double float64;
|
|
#ifdef FLOATX80
|
|
typedef long double floatx80;
|
|
#endif
|
|
|
|
typedef union {
|
|
float32 f;
|
|
uint32_t i;
|
|
} float32u;
|
|
typedef union {
|
|
float64 f;
|
|
uint64_t i;
|
|
} float64u;
|
|
#ifdef FLOATX80
|
|
typedef union {
|
|
floatx80 f;
|
|
struct {
|
|
uint64_t low;
|
|
uint16_t high;
|
|
} i;
|
|
} floatx80u;
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE floating-point rounding mode.
|
|
*----------------------------------------------------------------------------*/
|
|
#if (defined(CONFIG_BSD) && !defined(__APPLE__)) || defined(CONFIG_SOLARIS)
|
|
#if defined(__OpenBSD__)
|
|
#define FE_RM FP_RM
|
|
#define FE_RP FP_RP
|
|
#define FE_RZ FP_RZ
|
|
#endif
|
|
enum {
|
|
float_round_nearest_even = FP_RN,
|
|
float_round_down = FP_RM,
|
|
float_round_up = FP_RP,
|
|
float_round_to_zero = FP_RZ
|
|
};
|
|
#elif defined(__arm__)
|
|
enum {
|
|
float_round_nearest_even = 0,
|
|
float_round_down = 1,
|
|
float_round_up = 2,
|
|
float_round_to_zero = 3
|
|
};
|
|
#else
|
|
enum {
|
|
float_round_nearest_even = FE_TONEAREST,
|
|
float_round_down = FE_DOWNWARD,
|
|
float_round_up = FE_UPWARD,
|
|
float_round_to_zero = FE_TOWARDZERO
|
|
};
|
|
#endif
|
|
|
|
typedef struct float_status {
|
|
int float_rounding_mode;
|
|
#ifdef FLOATX80
|
|
int floatx80_rounding_precision;
|
|
#endif
|
|
} float_status;
|
|
|
|
void set_float_rounding_mode(int val STATUS_PARAM);
|
|
#ifdef FLOATX80
|
|
void set_floatx80_rounding_precision(int val STATUS_PARAM);
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE integer-to-floating-point conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 int32_to_float32( int STATUS_PARAM);
|
|
float32 uint32_to_float32( unsigned int STATUS_PARAM);
|
|
float64 int32_to_float64( int STATUS_PARAM);
|
|
float64 uint32_to_float64( unsigned int STATUS_PARAM);
|
|
#ifdef FLOATX80
|
|
floatx80 int32_to_floatx80( int STATUS_PARAM);
|
|
#endif
|
|
#ifdef FLOAT128
|
|
float128 int32_to_float128( int STATUS_PARAM);
|
|
#endif
|
|
float32 int64_to_float32( int64_t STATUS_PARAM);
|
|
float32 uint64_to_float32( uint64_t STATUS_PARAM);
|
|
float64 int64_to_float64( int64_t STATUS_PARAM);
|
|
float64 uint64_to_float64( uint64_t v STATUS_PARAM);
|
|
#ifdef FLOATX80
|
|
floatx80 int64_to_floatx80( int64_t STATUS_PARAM);
|
|
#endif
|
|
#ifdef FLOAT128
|
|
float128 int64_to_float128( int64_t STATUS_PARAM);
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE single-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int float32_to_int32( float32 STATUS_PARAM);
|
|
int float32_to_int32_round_to_zero( float32 STATUS_PARAM);
|
|
unsigned int float32_to_uint32( float32 a STATUS_PARAM);
|
|
unsigned int float32_to_uint32_round_to_zero( float32 a STATUS_PARAM);
|
|
int64_t float32_to_int64( float32 STATUS_PARAM);
|
|
int64_t float32_to_int64_round_to_zero( float32 STATUS_PARAM);
|
|
float64 float32_to_float64( float32 STATUS_PARAM);
|
|
#ifdef FLOATX80
|
|
floatx80 float32_to_floatx80( float32 STATUS_PARAM);
|
|
#endif
|
|
#ifdef FLOAT128
|
|
float128 float32_to_float128( float32 STATUS_PARAM);
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE single-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
float32 float32_round_to_int( float32 STATUS_PARAM);
|
|
INLINE float32 float32_add( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return a + b;
|
|
}
|
|
INLINE float32 float32_sub( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return a - b;
|
|
}
|
|
INLINE float32 float32_mul( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return a * b;
|
|
}
|
|
INLINE float32 float32_div( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return a / b;
|
|
}
|
|
float32 float32_rem( float32, float32 STATUS_PARAM);
|
|
float32 float32_sqrt( float32 STATUS_PARAM);
|
|
INLINE int float32_eq( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return a == b;
|
|
}
|
|
INLINE int float32_le( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return a <= b;
|
|
}
|
|
INLINE int float32_lt( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return a < b;
|
|
}
|
|
INLINE int float32_eq_signaling( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return a <= b && a >= b;
|
|
}
|
|
INLINE int float32_le_quiet( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return islessequal(a, b);
|
|
}
|
|
INLINE int float32_lt_quiet( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return isless(a, b);
|
|
}
|
|
INLINE int float32_unordered( float32 a, float32 b STATUS_PARAM)
|
|
{
|
|
return isunordered(a, b);
|
|
|
|
}
|
|
int float32_compare( float32, float32 STATUS_PARAM );
|
|
int float32_compare_quiet( float32, float32 STATUS_PARAM );
|
|
int float32_is_signaling_nan( float32 );
|
|
int float32_is_nan( float32 );
|
|
|
|
INLINE float32 float32_abs(float32 a)
|
|
{
|
|
return fabsf(a);
|
|
}
|
|
|
|
INLINE float32 float32_chs(float32 a)
|
|
{
|
|
return -a;
|
|
}
|
|
|
|
INLINE float32 float32_is_infinity(float32 a)
|
|
{
|
|
return fpclassify(a) == FP_INFINITE;
|
|
}
|
|
|
|
INLINE float32 float32_is_neg(float32 a)
|
|
{
|
|
float32u u;
|
|
u.f = a;
|
|
return u.i >> 31;
|
|
}
|
|
|
|
INLINE float32 float32_is_zero(float32 a)
|
|
{
|
|
return fpclassify(a) == FP_ZERO;
|
|
}
|
|
|
|
INLINE float32 float32_scalbn(float32 a, int n)
|
|
{
|
|
return scalbnf(a, n);
|
|
}
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE double-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int float64_to_int32( float64 STATUS_PARAM );
|
|
int float64_to_int32_round_to_zero( float64 STATUS_PARAM );
|
|
unsigned int float64_to_uint32( float64 STATUS_PARAM );
|
|
unsigned int float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
|
|
int64_t float64_to_int64( float64 STATUS_PARAM );
|
|
int64_t float64_to_int64_round_to_zero( float64 STATUS_PARAM );
|
|
uint64_t float64_to_uint64( float64 STATUS_PARAM );
|
|
uint64_t float64_to_uint64_round_to_zero( float64 STATUS_PARAM );
|
|
float32 float64_to_float32( float64 STATUS_PARAM );
|
|
#ifdef FLOATX80
|
|
floatx80 float64_to_floatx80( float64 STATUS_PARAM );
|
|
#endif
|
|
#ifdef FLOAT128
|
|
float128 float64_to_float128( float64 STATUS_PARAM );
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE double-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
float64 float64_round_to_int( float64 STATUS_PARAM );
|
|
float64 float64_trunc_to_int( float64 STATUS_PARAM );
|
|
INLINE float64 float64_add( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return a + b;
|
|
}
|
|
INLINE float64 float64_sub( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return a - b;
|
|
}
|
|
INLINE float64 float64_mul( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return a * b;
|
|
}
|
|
INLINE float64 float64_div( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return a / b;
|
|
}
|
|
float64 float64_rem( float64, float64 STATUS_PARAM );
|
|
float64 float64_sqrt( float64 STATUS_PARAM );
|
|
INLINE int float64_eq( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return a == b;
|
|
}
|
|
INLINE int float64_le( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return a <= b;
|
|
}
|
|
INLINE int float64_lt( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return a < b;
|
|
}
|
|
INLINE int float64_eq_signaling( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return a <= b && a >= b;
|
|
}
|
|
INLINE int float64_le_quiet( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return islessequal(a, b);
|
|
}
|
|
INLINE int float64_lt_quiet( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return isless(a, b);
|
|
|
|
}
|
|
INLINE int float64_unordered( float64 a, float64 b STATUS_PARAM)
|
|
{
|
|
return isunordered(a, b);
|
|
|
|
}
|
|
int float64_compare( float64, float64 STATUS_PARAM );
|
|
int float64_compare_quiet( float64, float64 STATUS_PARAM );
|
|
int float64_is_signaling_nan( float64 );
|
|
int float64_is_nan( float64 );
|
|
|
|
INLINE float64 float64_abs(float64 a)
|
|
{
|
|
return fabs(a);
|
|
}
|
|
|
|
INLINE float64 float64_chs(float64 a)
|
|
{
|
|
return -a;
|
|
}
|
|
|
|
INLINE float64 float64_is_infinity(float64 a)
|
|
{
|
|
return fpclassify(a) == FP_INFINITE;
|
|
}
|
|
|
|
INLINE float64 float64_is_neg(float64 a)
|
|
{
|
|
float64u u;
|
|
u.f = a;
|
|
return u.i >> 63;
|
|
}
|
|
|
|
INLINE float64 float64_is_zero(float64 a)
|
|
{
|
|
return fpclassify(a) == FP_ZERO;
|
|
}
|
|
|
|
INLINE float64 float64_scalbn(float64 a, int n)
|
|
{
|
|
return scalbn(a, n);
|
|
}
|
|
|
|
#ifdef FLOATX80
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE extended double-precision conversion routines.
|
|
*----------------------------------------------------------------------------*/
|
|
int floatx80_to_int32( floatx80 STATUS_PARAM );
|
|
int floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
|
|
int64_t floatx80_to_int64( floatx80 STATUS_PARAM);
|
|
int64_t floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM);
|
|
float32 floatx80_to_float32( floatx80 STATUS_PARAM );
|
|
float64 floatx80_to_float64( floatx80 STATUS_PARAM );
|
|
#ifdef FLOAT128
|
|
float128 floatx80_to_float128( floatx80 STATUS_PARAM );
|
|
#endif
|
|
|
|
/*----------------------------------------------------------------------------
|
|
| Software IEC/IEEE extended double-precision operations.
|
|
*----------------------------------------------------------------------------*/
|
|
floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
|
|
INLINE floatx80 floatx80_add( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return a + b;
|
|
}
|
|
INLINE floatx80 floatx80_sub( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return a - b;
|
|
}
|
|
INLINE floatx80 floatx80_mul( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return a * b;
|
|
}
|
|
INLINE floatx80 floatx80_div( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return a / b;
|
|
}
|
|
floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
|
|
floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
|
|
INLINE int floatx80_eq( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return a == b;
|
|
}
|
|
INLINE int floatx80_le( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return a <= b;
|
|
}
|
|
INLINE int floatx80_lt( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return a < b;
|
|
}
|
|
INLINE int floatx80_eq_signaling( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return a <= b && a >= b;
|
|
}
|
|
INLINE int floatx80_le_quiet( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return islessequal(a, b);
|
|
}
|
|
INLINE int floatx80_lt_quiet( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return isless(a, b);
|
|
|
|
}
|
|
INLINE int floatx80_unordered( floatx80 a, floatx80 b STATUS_PARAM)
|
|
{
|
|
return isunordered(a, b);
|
|
|
|
}
|
|
int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
|
|
int floatx80_is_signaling_nan( floatx80 );
|
|
int floatx80_is_nan( floatx80 );
|
|
|
|
INLINE floatx80 floatx80_abs(floatx80 a)
|
|
{
|
|
return fabsl(a);
|
|
}
|
|
|
|
INLINE floatx80 floatx80_chs(floatx80 a)
|
|
{
|
|
return -a;
|
|
}
|
|
|
|
INLINE floatx80 floatx80_is_infinity(floatx80 a)
|
|
{
|
|
return fpclassify(a) == FP_INFINITE;
|
|
}
|
|
|
|
INLINE floatx80 floatx80_is_neg(floatx80 a)
|
|
{
|
|
floatx80u u;
|
|
u.f = a;
|
|
return u.i.high >> 15;
|
|
}
|
|
|
|
INLINE floatx80 floatx80_is_zero(floatx80 a)
|
|
{
|
|
return fpclassify(a) == FP_ZERO;
|
|
}
|
|
|
|
INLINE floatx80 floatx80_scalbn(floatx80 a, int n)
|
|
{
|
|
return scalbnl(a, n);
|
|
}
|
|
|
|
#endif
|