qemu/tests/test-aio-multithread.c

463 lines
11 KiB
C

/*
* AioContext multithreading tests
*
* Copyright Red Hat, Inc. 2016
*
* Authors:
* Paolo Bonzini <pbonzini@redhat.com>
*
* This work is licensed under the terms of the GNU LGPL, version 2 or later.
* See the COPYING.LIB file in the top-level directory.
*/
#include "qemu/osdep.h"
#include <glib.h>
#include "block/aio.h"
#include "qapi/error.h"
#include "qemu/coroutine.h"
#include "qemu/thread.h"
#include "qemu/error-report.h"
#include "iothread.h"
/* AioContext management */
#define NUM_CONTEXTS 5
static IOThread *threads[NUM_CONTEXTS];
static AioContext *ctx[NUM_CONTEXTS];
static __thread int id = -1;
static QemuEvent done_event;
/* Run a function synchronously on a remote iothread. */
typedef struct CtxRunData {
QEMUBHFunc *cb;
void *arg;
} CtxRunData;
static void ctx_run_bh_cb(void *opaque)
{
CtxRunData *data = opaque;
data->cb(data->arg);
qemu_event_set(&done_event);
}
static void ctx_run(int i, QEMUBHFunc *cb, void *opaque)
{
CtxRunData data = {
.cb = cb,
.arg = opaque
};
qemu_event_reset(&done_event);
aio_bh_schedule_oneshot(ctx[i], ctx_run_bh_cb, &data);
qemu_event_wait(&done_event);
}
/* Starting the iothreads. */
static void set_id_cb(void *opaque)
{
int *i = opaque;
id = *i;
}
static void create_aio_contexts(void)
{
int i;
for (i = 0; i < NUM_CONTEXTS; i++) {
threads[i] = iothread_new();
ctx[i] = iothread_get_aio_context(threads[i]);
}
qemu_event_init(&done_event, false);
for (i = 0; i < NUM_CONTEXTS; i++) {
ctx_run(i, set_id_cb, &i);
}
}
/* Stopping the iothreads. */
static void join_aio_contexts(void)
{
int i;
for (i = 0; i < NUM_CONTEXTS; i++) {
aio_context_ref(ctx[i]);
}
for (i = 0; i < NUM_CONTEXTS; i++) {
iothread_join(threads[i]);
}
for (i = 0; i < NUM_CONTEXTS; i++) {
aio_context_unref(ctx[i]);
}
qemu_event_destroy(&done_event);
}
/* Basic test for the stuff above. */
static void test_lifecycle(void)
{
create_aio_contexts();
join_aio_contexts();
}
/* aio_co_schedule test. */
static Coroutine *to_schedule[NUM_CONTEXTS];
static bool now_stopping;
static int count_retry;
static int count_here;
static int count_other;
static bool schedule_next(int n)
{
Coroutine *co;
co = atomic_xchg(&to_schedule[n], NULL);
if (!co) {
atomic_inc(&count_retry);
return false;
}
if (n == id) {
atomic_inc(&count_here);
} else {
atomic_inc(&count_other);
}
aio_co_schedule(ctx[n], co);
return true;
}
static void finish_cb(void *opaque)
{
schedule_next(id);
}
static coroutine_fn void test_multi_co_schedule_entry(void *opaque)
{
g_assert(to_schedule[id] == NULL);
while (!atomic_mb_read(&now_stopping)) {
int n;
n = g_test_rand_int_range(0, NUM_CONTEXTS);
schedule_next(n);
atomic_mb_set(&to_schedule[id], qemu_coroutine_self());
qemu_coroutine_yield();
g_assert(to_schedule[id] == NULL);
}
}
static void test_multi_co_schedule(int seconds)
{
int i;
count_here = count_other = count_retry = 0;
now_stopping = false;
create_aio_contexts();
for (i = 0; i < NUM_CONTEXTS; i++) {
Coroutine *co1 = qemu_coroutine_create(test_multi_co_schedule_entry, NULL);
aio_co_schedule(ctx[i], co1);
}
g_usleep(seconds * 1000000);
atomic_mb_set(&now_stopping, true);
for (i = 0; i < NUM_CONTEXTS; i++) {
ctx_run(i, finish_cb, NULL);
to_schedule[i] = NULL;
}
join_aio_contexts();
g_test_message("scheduled %d, queued %d, retry %d, total %d\n",
count_other, count_here, count_retry,
count_here + count_other + count_retry);
}
static void test_multi_co_schedule_1(void)
{
test_multi_co_schedule(1);
}
static void test_multi_co_schedule_10(void)
{
test_multi_co_schedule(10);
}
/* CoMutex thread-safety. */
static uint32_t atomic_counter;
static uint32_t running;
static uint32_t counter;
static CoMutex comutex;
static void coroutine_fn test_multi_co_mutex_entry(void *opaque)
{
while (!atomic_mb_read(&now_stopping)) {
qemu_co_mutex_lock(&comutex);
counter++;
qemu_co_mutex_unlock(&comutex);
/* Increase atomic_counter *after* releasing the mutex. Otherwise
* there is a chance (it happens about 1 in 3 runs) that the iothread
* exits before the coroutine is woken up, causing a spurious
* assertion failure.
*/
atomic_inc(&atomic_counter);
}
atomic_dec(&running);
}
static void test_multi_co_mutex(int threads, int seconds)
{
int i;
qemu_co_mutex_init(&comutex);
counter = 0;
atomic_counter = 0;
now_stopping = false;
create_aio_contexts();
assert(threads <= NUM_CONTEXTS);
running = threads;
for (i = 0; i < threads; i++) {
Coroutine *co1 = qemu_coroutine_create(test_multi_co_mutex_entry, NULL);
aio_co_schedule(ctx[i], co1);
}
g_usleep(seconds * 1000000);
atomic_mb_set(&now_stopping, true);
while (running > 0) {
g_usleep(100000);
}
join_aio_contexts();
g_test_message("%d iterations/second\n", counter / seconds);
g_assert_cmpint(counter, ==, atomic_counter);
}
/* Testing with NUM_CONTEXTS threads focuses on the queue. The mutex however
* is too contended (and the threads spend too much time in aio_poll)
* to actually stress the handoff protocol.
*/
static void test_multi_co_mutex_1(void)
{
test_multi_co_mutex(NUM_CONTEXTS, 1);
}
static void test_multi_co_mutex_10(void)
{
test_multi_co_mutex(NUM_CONTEXTS, 10);
}
/* Testing with fewer threads stresses the handoff protocol too. Still, the
* case where the locker _can_ pick up a handoff is very rare, happening
* about 10 times in 1 million, so increase the runtime a bit compared to
* other "quick" testcases that only run for 1 second.
*/
static void test_multi_co_mutex_2_3(void)
{
test_multi_co_mutex(2, 3);
}
static void test_multi_co_mutex_2_30(void)
{
test_multi_co_mutex(2, 30);
}
/* Same test with fair mutexes, for performance comparison. */
#ifdef CONFIG_LINUX
#include "qemu/futex.h"
/* The nodes for the mutex reside in this structure (on which we try to avoid
* false sharing). The head of the mutex is in the "mutex_head" variable.
*/
static struct {
int next, locked;
int padding[14];
} nodes[NUM_CONTEXTS] __attribute__((__aligned__(64)));
static int mutex_head = -1;
static void mcs_mutex_lock(void)
{
int prev;
nodes[id].next = -1;
nodes[id].locked = 1;
prev = atomic_xchg(&mutex_head, id);
if (prev != -1) {
atomic_set(&nodes[prev].next, id);
qemu_futex_wait(&nodes[id].locked, 1);
}
}
static void mcs_mutex_unlock(void)
{
int next;
if (atomic_read(&nodes[id].next) == -1) {
if (atomic_read(&mutex_head) == id &&
atomic_cmpxchg(&mutex_head, id, -1) == id) {
/* Last item in the list, exit. */
return;
}
while (atomic_read(&nodes[id].next) == -1) {
/* mcs_mutex_lock did the xchg, but has not updated
* nodes[prev].next yet.
*/
}
}
/* Wake up the next in line. */
next = atomic_read(&nodes[id].next);
nodes[next].locked = 0;
qemu_futex_wake(&nodes[next].locked, 1);
}
static void test_multi_fair_mutex_entry(void *opaque)
{
while (!atomic_mb_read(&now_stopping)) {
mcs_mutex_lock();
counter++;
mcs_mutex_unlock();
atomic_inc(&atomic_counter);
}
atomic_dec(&running);
}
static void test_multi_fair_mutex(int threads, int seconds)
{
int i;
assert(mutex_head == -1);
counter = 0;
atomic_counter = 0;
now_stopping = false;
create_aio_contexts();
assert(threads <= NUM_CONTEXTS);
running = threads;
for (i = 0; i < threads; i++) {
Coroutine *co1 = qemu_coroutine_create(test_multi_fair_mutex_entry, NULL);
aio_co_schedule(ctx[i], co1);
}
g_usleep(seconds * 1000000);
atomic_mb_set(&now_stopping, true);
while (running > 0) {
g_usleep(100000);
}
join_aio_contexts();
g_test_message("%d iterations/second\n", counter / seconds);
g_assert_cmpint(counter, ==, atomic_counter);
}
static void test_multi_fair_mutex_1(void)
{
test_multi_fair_mutex(NUM_CONTEXTS, 1);
}
static void test_multi_fair_mutex_10(void)
{
test_multi_fair_mutex(NUM_CONTEXTS, 10);
}
#endif
/* Same test with pthread mutexes, for performance comparison and
* portability. */
static QemuMutex mutex;
static void test_multi_mutex_entry(void *opaque)
{
while (!atomic_mb_read(&now_stopping)) {
qemu_mutex_lock(&mutex);
counter++;
qemu_mutex_unlock(&mutex);
atomic_inc(&atomic_counter);
}
atomic_dec(&running);
}
static void test_multi_mutex(int threads, int seconds)
{
int i;
qemu_mutex_init(&mutex);
counter = 0;
atomic_counter = 0;
now_stopping = false;
create_aio_contexts();
assert(threads <= NUM_CONTEXTS);
running = threads;
for (i = 0; i < threads; i++) {
Coroutine *co1 = qemu_coroutine_create(test_multi_mutex_entry, NULL);
aio_co_schedule(ctx[i], co1);
}
g_usleep(seconds * 1000000);
atomic_mb_set(&now_stopping, true);
while (running > 0) {
g_usleep(100000);
}
join_aio_contexts();
g_test_message("%d iterations/second\n", counter / seconds);
g_assert_cmpint(counter, ==, atomic_counter);
}
static void test_multi_mutex_1(void)
{
test_multi_mutex(NUM_CONTEXTS, 1);
}
static void test_multi_mutex_10(void)
{
test_multi_mutex(NUM_CONTEXTS, 10);
}
/* End of tests. */
int main(int argc, char **argv)
{
init_clocks(NULL);
g_test_init(&argc, &argv, NULL);
g_test_add_func("/aio/multi/lifecycle", test_lifecycle);
if (g_test_quick()) {
g_test_add_func("/aio/multi/schedule", test_multi_co_schedule_1);
g_test_add_func("/aio/multi/mutex/contended", test_multi_co_mutex_1);
g_test_add_func("/aio/multi/mutex/handoff", test_multi_co_mutex_2_3);
#ifdef CONFIG_LINUX
g_test_add_func("/aio/multi/mutex/mcs", test_multi_fair_mutex_1);
#endif
g_test_add_func("/aio/multi/mutex/pthread", test_multi_mutex_1);
} else {
g_test_add_func("/aio/multi/schedule", test_multi_co_schedule_10);
g_test_add_func("/aio/multi/mutex/contended", test_multi_co_mutex_10);
g_test_add_func("/aio/multi/mutex/handoff", test_multi_co_mutex_2_30);
#ifdef CONFIG_LINUX
g_test_add_func("/aio/multi/mutex/mcs", test_multi_fair_mutex_10);
#endif
g_test_add_func("/aio/multi/mutex/pthread", test_multi_mutex_10);
}
return g_test_run();
}