mirror of https://gitee.com/openkylin/qemu.git
1611 lines
48 KiB
C
1611 lines
48 KiB
C
/*
|
|
* ARM implementation of KVM hooks, 64 bit specific code
|
|
*
|
|
* Copyright Mian-M. Hamayun 2013, Virtual Open Systems
|
|
* Copyright Alex Bennée 2014, Linaro
|
|
*
|
|
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
|
* See the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include <sys/ioctl.h>
|
|
#include <sys/ptrace.h>
|
|
|
|
#include <linux/elf.h>
|
|
#include <linux/kvm.h>
|
|
|
|
#include "qemu-common.h"
|
|
#include "qapi/error.h"
|
|
#include "cpu.h"
|
|
#include "qemu/timer.h"
|
|
#include "qemu/error-report.h"
|
|
#include "qemu/host-utils.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "exec/gdbstub.h"
|
|
#include "sysemu/runstate.h"
|
|
#include "sysemu/kvm.h"
|
|
#include "sysemu/kvm_int.h"
|
|
#include "kvm_arm.h"
|
|
#include "internals.h"
|
|
#include "hw/acpi/acpi.h"
|
|
#include "hw/acpi/ghes.h"
|
|
#include "hw/arm/virt.h"
|
|
|
|
static bool have_guest_debug;
|
|
|
|
/*
|
|
* Although the ARM implementation of hardware assisted debugging
|
|
* allows for different breakpoints per-core, the current GDB
|
|
* interface treats them as a global pool of registers (which seems to
|
|
* be the case for x86, ppc and s390). As a result we store one copy
|
|
* of registers which is used for all active cores.
|
|
*
|
|
* Write access is serialised by virtue of the GDB protocol which
|
|
* updates things. Read access (i.e. when the values are copied to the
|
|
* vCPU) is also gated by GDB's run control.
|
|
*
|
|
* This is not unreasonable as most of the time debugging kernels you
|
|
* never know which core will eventually execute your function.
|
|
*/
|
|
|
|
typedef struct {
|
|
uint64_t bcr;
|
|
uint64_t bvr;
|
|
} HWBreakpoint;
|
|
|
|
/* The watchpoint registers can cover more area than the requested
|
|
* watchpoint so we need to store the additional information
|
|
* somewhere. We also need to supply a CPUWatchpoint to the GDB stub
|
|
* when the watchpoint is hit.
|
|
*/
|
|
typedef struct {
|
|
uint64_t wcr;
|
|
uint64_t wvr;
|
|
CPUWatchpoint details;
|
|
} HWWatchpoint;
|
|
|
|
/* Maximum and current break/watch point counts */
|
|
int max_hw_bps, max_hw_wps;
|
|
GArray *hw_breakpoints, *hw_watchpoints;
|
|
|
|
#define cur_hw_wps (hw_watchpoints->len)
|
|
#define cur_hw_bps (hw_breakpoints->len)
|
|
#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
|
|
#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
|
|
|
|
/**
|
|
* kvm_arm_init_debug() - check for guest debug capabilities
|
|
* @cs: CPUState
|
|
*
|
|
* kvm_check_extension returns the number of debug registers we have
|
|
* or 0 if we have none.
|
|
*
|
|
*/
|
|
static void kvm_arm_init_debug(CPUState *cs)
|
|
{
|
|
have_guest_debug = kvm_check_extension(cs->kvm_state,
|
|
KVM_CAP_SET_GUEST_DEBUG);
|
|
|
|
max_hw_wps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_WPS);
|
|
hw_watchpoints = g_array_sized_new(true, true,
|
|
sizeof(HWWatchpoint), max_hw_wps);
|
|
|
|
max_hw_bps = kvm_check_extension(cs->kvm_state, KVM_CAP_GUEST_DEBUG_HW_BPS);
|
|
hw_breakpoints = g_array_sized_new(true, true,
|
|
sizeof(HWBreakpoint), max_hw_bps);
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* insert_hw_breakpoint()
|
|
* @addr: address of breakpoint
|
|
*
|
|
* See ARM ARM D2.9.1 for details but here we are only going to create
|
|
* simple un-linked breakpoints (i.e. we don't chain breakpoints
|
|
* together to match address and context or vmid). The hardware is
|
|
* capable of fancier matching but that will require exposing that
|
|
* fanciness to GDB's interface
|
|
*
|
|
* DBGBCR<n>_EL1, Debug Breakpoint Control Registers
|
|
*
|
|
* 31 24 23 20 19 16 15 14 13 12 9 8 5 4 3 2 1 0
|
|
* +------+------+-------+-----+----+------+-----+------+-----+---+
|
|
* | RES0 | BT | LBN | SSC | HMC| RES0 | BAS | RES0 | PMC | E |
|
|
* +------+------+-------+-----+----+------+-----+------+-----+---+
|
|
*
|
|
* BT: Breakpoint type (0 = unlinked address match)
|
|
* LBN: Linked BP number (0 = unused)
|
|
* SSC/HMC/PMC: Security, Higher and Priv access control (Table D-12)
|
|
* BAS: Byte Address Select (RES1 for AArch64)
|
|
* E: Enable bit
|
|
*
|
|
* DBGBVR<n>_EL1, Debug Breakpoint Value Registers
|
|
*
|
|
* 63 53 52 49 48 2 1 0
|
|
* +------+-----------+----------+-----+
|
|
* | RESS | VA[52:49] | VA[48:2] | 0 0 |
|
|
* +------+-----------+----------+-----+
|
|
*
|
|
* Depending on the addressing mode bits the top bits of the register
|
|
* are a sign extension of the highest applicable VA bit. Some
|
|
* versions of GDB don't do it correctly so we ensure they are correct
|
|
* here so future PC comparisons will work properly.
|
|
*/
|
|
|
|
static int insert_hw_breakpoint(target_ulong addr)
|
|
{
|
|
HWBreakpoint brk = {
|
|
.bcr = 0x1, /* BCR E=1, enable */
|
|
.bvr = sextract64(addr, 0, 53)
|
|
};
|
|
|
|
if (cur_hw_bps >= max_hw_bps) {
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
brk.bcr = deposit32(brk.bcr, 1, 2, 0x3); /* PMC = 11 */
|
|
brk.bcr = deposit32(brk.bcr, 5, 4, 0xf); /* BAS = RES1 */
|
|
|
|
g_array_append_val(hw_breakpoints, brk);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* delete_hw_breakpoint()
|
|
* @pc: address of breakpoint
|
|
*
|
|
* Delete a breakpoint and shuffle any above down
|
|
*/
|
|
|
|
static int delete_hw_breakpoint(target_ulong pc)
|
|
{
|
|
int i;
|
|
for (i = 0; i < hw_breakpoints->len; i++) {
|
|
HWBreakpoint *brk = get_hw_bp(i);
|
|
if (brk->bvr == pc) {
|
|
g_array_remove_index(hw_breakpoints, i);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* insert_hw_watchpoint()
|
|
* @addr: address of watch point
|
|
* @len: size of area
|
|
* @type: type of watch point
|
|
*
|
|
* See ARM ARM D2.10. As with the breakpoints we can do some advanced
|
|
* stuff if we want to. The watch points can be linked with the break
|
|
* points above to make them context aware. However for simplicity
|
|
* currently we only deal with simple read/write watch points.
|
|
*
|
|
* D7.3.11 DBGWCR<n>_EL1, Debug Watchpoint Control Registers
|
|
*
|
|
* 31 29 28 24 23 21 20 19 16 15 14 13 12 5 4 3 2 1 0
|
|
* +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
|
|
* | RES0 | MASK | RES0 | WT | LBN | SSC | HMC | BAS | LSC | PAC | E |
|
|
* +------+-------+------+----+-----+-----+-----+-----+-----+-----+---+
|
|
*
|
|
* MASK: num bits addr mask (0=none,01/10=res,11=3 bits (8 bytes))
|
|
* WT: 0 - unlinked, 1 - linked (not currently used)
|
|
* LBN: Linked BP number (not currently used)
|
|
* SSC/HMC/PAC: Security, Higher and Priv access control (Table D2-11)
|
|
* BAS: Byte Address Select
|
|
* LSC: Load/Store control (01: load, 10: store, 11: both)
|
|
* E: Enable
|
|
*
|
|
* The bottom 2 bits of the value register are masked. Therefore to
|
|
* break on any sizes smaller than an unaligned word you need to set
|
|
* MASK=0, BAS=bit per byte in question. For larger regions (^2) you
|
|
* need to ensure you mask the address as required and set BAS=0xff
|
|
*/
|
|
|
|
static int insert_hw_watchpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
HWWatchpoint wp = {
|
|
.wcr = 1, /* E=1, enable */
|
|
.wvr = addr & (~0x7ULL),
|
|
.details = { .vaddr = addr, .len = len }
|
|
};
|
|
|
|
if (cur_hw_wps >= max_hw_wps) {
|
|
return -ENOBUFS;
|
|
}
|
|
|
|
/*
|
|
* HMC=0 SSC=0 PAC=3 will hit EL0 or EL1, any security state,
|
|
* valid whether EL3 is implemented or not
|
|
*/
|
|
wp.wcr = deposit32(wp.wcr, 1, 2, 3);
|
|
|
|
switch (type) {
|
|
case GDB_WATCHPOINT_READ:
|
|
wp.wcr = deposit32(wp.wcr, 3, 2, 1);
|
|
wp.details.flags = BP_MEM_READ;
|
|
break;
|
|
case GDB_WATCHPOINT_WRITE:
|
|
wp.wcr = deposit32(wp.wcr, 3, 2, 2);
|
|
wp.details.flags = BP_MEM_WRITE;
|
|
break;
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
wp.wcr = deposit32(wp.wcr, 3, 2, 3);
|
|
wp.details.flags = BP_MEM_ACCESS;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
break;
|
|
}
|
|
if (len <= 8) {
|
|
/* we align the address and set the bits in BAS */
|
|
int off = addr & 0x7;
|
|
int bas = (1 << len) - 1;
|
|
|
|
wp.wcr = deposit32(wp.wcr, 5 + off, 8 - off, bas);
|
|
} else {
|
|
/* For ranges above 8 bytes we need to be a power of 2 */
|
|
if (is_power_of_2(len)) {
|
|
int bits = ctz64(len);
|
|
|
|
wp.wvr &= ~((1 << bits) - 1);
|
|
wp.wcr = deposit32(wp.wcr, 24, 4, bits);
|
|
wp.wcr = deposit32(wp.wcr, 5, 8, 0xff);
|
|
} else {
|
|
return -ENOBUFS;
|
|
}
|
|
}
|
|
|
|
g_array_append_val(hw_watchpoints, wp);
|
|
return 0;
|
|
}
|
|
|
|
|
|
static bool check_watchpoint_in_range(int i, target_ulong addr)
|
|
{
|
|
HWWatchpoint *wp = get_hw_wp(i);
|
|
uint64_t addr_top, addr_bottom = wp->wvr;
|
|
int bas = extract32(wp->wcr, 5, 8);
|
|
int mask = extract32(wp->wcr, 24, 4);
|
|
|
|
if (mask) {
|
|
addr_top = addr_bottom + (1 << mask);
|
|
} else {
|
|
/* BAS must be contiguous but can offset against the base
|
|
* address in DBGWVR */
|
|
addr_bottom = addr_bottom + ctz32(bas);
|
|
addr_top = addr_bottom + clo32(bas);
|
|
}
|
|
|
|
if (addr >= addr_bottom && addr <= addr_top) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* delete_hw_watchpoint()
|
|
* @addr: address of breakpoint
|
|
*
|
|
* Delete a breakpoint and shuffle any above down
|
|
*/
|
|
|
|
static int delete_hw_watchpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
int i;
|
|
for (i = 0; i < cur_hw_wps; i++) {
|
|
if (check_watchpoint_in_range(i, addr)) {
|
|
g_array_remove_index(hw_watchpoints, i);
|
|
return 0;
|
|
}
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
|
|
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_HW:
|
|
return insert_hw_breakpoint(addr);
|
|
break;
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
return insert_hw_watchpoint(addr, len, type);
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
|
target_ulong len, int type)
|
|
{
|
|
switch (type) {
|
|
case GDB_BREAKPOINT_HW:
|
|
return delete_hw_breakpoint(addr);
|
|
case GDB_WATCHPOINT_READ:
|
|
case GDB_WATCHPOINT_WRITE:
|
|
case GDB_WATCHPOINT_ACCESS:
|
|
return delete_hw_watchpoint(addr, len, type);
|
|
default:
|
|
return -ENOSYS;
|
|
}
|
|
}
|
|
|
|
|
|
void kvm_arch_remove_all_hw_breakpoints(void)
|
|
{
|
|
if (cur_hw_wps > 0) {
|
|
g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
|
|
}
|
|
if (cur_hw_bps > 0) {
|
|
g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
|
|
}
|
|
}
|
|
|
|
void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
|
|
{
|
|
int i;
|
|
memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
|
|
|
|
for (i = 0; i < max_hw_wps; i++) {
|
|
HWWatchpoint *wp = get_hw_wp(i);
|
|
ptr->dbg_wcr[i] = wp->wcr;
|
|
ptr->dbg_wvr[i] = wp->wvr;
|
|
}
|
|
for (i = 0; i < max_hw_bps; i++) {
|
|
HWBreakpoint *bp = get_hw_bp(i);
|
|
ptr->dbg_bcr[i] = bp->bcr;
|
|
ptr->dbg_bvr[i] = bp->bvr;
|
|
}
|
|
}
|
|
|
|
bool kvm_arm_hw_debug_active(CPUState *cs)
|
|
{
|
|
return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
|
|
}
|
|
|
|
static bool find_hw_breakpoint(CPUState *cpu, target_ulong pc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cur_hw_bps; i++) {
|
|
HWBreakpoint *bp = get_hw_bp(i);
|
|
if (bp->bvr == pc) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < cur_hw_wps; i++) {
|
|
if (check_watchpoint_in_range(i, addr)) {
|
|
return &get_hw_wp(i)->details;
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
|
|
const char *name)
|
|
{
|
|
int err;
|
|
|
|
err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
|
|
if (err != 0) {
|
|
error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
|
|
return false;
|
|
}
|
|
|
|
err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
|
|
if (err != 0) {
|
|
error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void kvm_arm_pmu_init(CPUState *cs)
|
|
{
|
|
struct kvm_device_attr attr = {
|
|
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
|
|
.attr = KVM_ARM_VCPU_PMU_V3_INIT,
|
|
};
|
|
|
|
if (!ARM_CPU(cs)->has_pmu) {
|
|
return;
|
|
}
|
|
if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
|
|
error_report("failed to init PMU");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
|
|
{
|
|
struct kvm_device_attr attr = {
|
|
.group = KVM_ARM_VCPU_PMU_V3_CTRL,
|
|
.addr = (intptr_t)&irq,
|
|
.attr = KVM_ARM_VCPU_PMU_V3_IRQ,
|
|
};
|
|
|
|
if (!ARM_CPU(cs)->has_pmu) {
|
|
return;
|
|
}
|
|
if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
|
|
error_report("failed to set irq for PMU");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
|
|
{
|
|
struct kvm_device_attr attr = {
|
|
.group = KVM_ARM_VCPU_PVTIME_CTRL,
|
|
.attr = KVM_ARM_VCPU_PVTIME_IPA,
|
|
.addr = (uint64_t)&ipa,
|
|
};
|
|
|
|
if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
|
|
return;
|
|
}
|
|
if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
|
|
error_report("failed to init PVTIME IPA");
|
|
abort();
|
|
}
|
|
}
|
|
|
|
static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
|
|
{
|
|
uint64_t ret;
|
|
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
|
|
int err;
|
|
|
|
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
|
|
err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
|
|
if (err < 0) {
|
|
return -1;
|
|
}
|
|
*pret = ret;
|
|
return 0;
|
|
}
|
|
|
|
static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
|
|
{
|
|
struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
|
|
|
|
assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
|
|
return ioctl(fd, KVM_GET_ONE_REG, &idreg);
|
|
}
|
|
|
|
bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
|
|
{
|
|
/* Identify the feature bits corresponding to the host CPU, and
|
|
* fill out the ARMHostCPUClass fields accordingly. To do this
|
|
* we have to create a scratch VM, create a single CPU inside it,
|
|
* and then query that CPU for the relevant ID registers.
|
|
*/
|
|
int fdarray[3];
|
|
bool sve_supported;
|
|
uint64_t features = 0;
|
|
uint64_t t;
|
|
int err;
|
|
|
|
/* Old kernels may not know about the PREFERRED_TARGET ioctl: however
|
|
* we know these will only support creating one kind of guest CPU,
|
|
* which is its preferred CPU type. Fortunately these old kernels
|
|
* support only a very limited number of CPUs.
|
|
*/
|
|
static const uint32_t cpus_to_try[] = {
|
|
KVM_ARM_TARGET_AEM_V8,
|
|
KVM_ARM_TARGET_FOUNDATION_V8,
|
|
KVM_ARM_TARGET_CORTEX_A57,
|
|
QEMU_KVM_ARM_TARGET_NONE
|
|
};
|
|
/*
|
|
* target = -1 informs kvm_arm_create_scratch_host_vcpu()
|
|
* to use the preferred target
|
|
*/
|
|
struct kvm_vcpu_init init = { .target = -1, };
|
|
|
|
if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
|
|
return false;
|
|
}
|
|
|
|
ahcf->target = init.target;
|
|
ahcf->dtb_compatible = "arm,arm-v8";
|
|
|
|
err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
|
|
ARM64_SYS_REG(3, 0, 0, 4, 0));
|
|
if (unlikely(err < 0)) {
|
|
/*
|
|
* Before v4.15, the kernel only exposed a limited number of system
|
|
* registers, not including any of the interesting AArch64 ID regs.
|
|
* For the most part we could leave these fields as zero with minimal
|
|
* effect, since this does not affect the values seen by the guest.
|
|
*
|
|
* However, it could cause problems down the line for QEMU,
|
|
* so provide a minimal v8.0 default.
|
|
*
|
|
* ??? Could read MIDR and use knowledge from cpu64.c.
|
|
* ??? Could map a page of memory into our temp guest and
|
|
* run the tiniest of hand-crafted kernels to extract
|
|
* the values seen by the guest.
|
|
* ??? Either of these sounds like too much effort just
|
|
* to work around running a modern host kernel.
|
|
*/
|
|
ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
|
|
err = 0;
|
|
} else {
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
|
|
ARM64_SYS_REG(3, 0, 0, 4, 1));
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
|
|
ARM64_SYS_REG(3, 0, 0, 5, 0));
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
|
|
ARM64_SYS_REG(3, 0, 0, 5, 1));
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
|
|
ARM64_SYS_REG(3, 0, 0, 6, 0));
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
|
|
ARM64_SYS_REG(3, 0, 0, 6, 1));
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
|
|
ARM64_SYS_REG(3, 0, 0, 7, 0));
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
|
|
ARM64_SYS_REG(3, 0, 0, 7, 1));
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
|
|
ARM64_SYS_REG(3, 0, 0, 7, 2));
|
|
|
|
/*
|
|
* Note that if AArch32 support is not present in the host,
|
|
* the AArch32 sysregs are present to be read, but will
|
|
* return UNKNOWN values. This is neither better nor worse
|
|
* than skipping the reads and leaving 0, as we must avoid
|
|
* considering the values in every case.
|
|
*/
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
|
|
ARM64_SYS_REG(3, 0, 0, 1, 0));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
|
|
ARM64_SYS_REG(3, 0, 0, 1, 1));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
|
|
ARM64_SYS_REG(3, 0, 0, 3, 4));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
|
|
ARM64_SYS_REG(3, 0, 0, 1, 2));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
|
|
ARM64_SYS_REG(3, 0, 0, 1, 4));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
|
|
ARM64_SYS_REG(3, 0, 0, 1, 5));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
|
|
ARM64_SYS_REG(3, 0, 0, 1, 6));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
|
|
ARM64_SYS_REG(3, 0, 0, 1, 7));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
|
|
ARM64_SYS_REG(3, 0, 0, 2, 0));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
|
|
ARM64_SYS_REG(3, 0, 0, 2, 1));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
|
|
ARM64_SYS_REG(3, 0, 0, 2, 2));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
|
|
ARM64_SYS_REG(3, 0, 0, 2, 3));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
|
|
ARM64_SYS_REG(3, 0, 0, 2, 4));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
|
|
ARM64_SYS_REG(3, 0, 0, 2, 5));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
|
|
ARM64_SYS_REG(3, 0, 0, 2, 6));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
|
|
ARM64_SYS_REG(3, 0, 0, 2, 7));
|
|
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
|
|
ARM64_SYS_REG(3, 0, 0, 3, 0));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
|
|
ARM64_SYS_REG(3, 0, 0, 3, 1));
|
|
err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
|
|
ARM64_SYS_REG(3, 0, 0, 3, 2));
|
|
|
|
/*
|
|
* DBGDIDR is a bit complicated because the kernel doesn't
|
|
* provide an accessor for it in 64-bit mode, which is what this
|
|
* scratch VM is in, and there's no architected "64-bit sysreg
|
|
* which reads the same as the 32-bit register" the way there is
|
|
* for other ID registers. Instead we synthesize a value from the
|
|
* AArch64 ID_AA64DFR0, the same way the kernel code in
|
|
* arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
|
|
* We only do this if the CPU supports AArch32 at EL1.
|
|
*/
|
|
if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
|
|
int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
|
|
int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
|
|
int ctx_cmps =
|
|
FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
|
|
int version = 6; /* ARMv8 debug architecture */
|
|
bool has_el3 =
|
|
!!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
|
|
uint32_t dbgdidr = 0;
|
|
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
|
|
dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
|
|
dbgdidr |= (1 << 15); /* RES1 bit */
|
|
ahcf->isar.dbgdidr = dbgdidr;
|
|
}
|
|
}
|
|
|
|
sve_supported = ioctl(fdarray[0], KVM_CHECK_EXTENSION, KVM_CAP_ARM_SVE) > 0;
|
|
|
|
/* Add feature bits that can't appear until after VCPU init. */
|
|
if (sve_supported) {
|
|
t = ahcf->isar.id_aa64pfr0;
|
|
t = FIELD_DP64(t, ID_AA64PFR0, SVE, 1);
|
|
ahcf->isar.id_aa64pfr0 = t;
|
|
|
|
/*
|
|
* Before v5.1, KVM did not support SVE and did not expose
|
|
* ID_AA64ZFR0_EL1 even as RAZ. After v5.1, KVM still does
|
|
* not expose the register to "user" requests like this
|
|
* unless the host supports SVE.
|
|
*/
|
|
err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
|
|
ARM64_SYS_REG(3, 0, 0, 4, 4));
|
|
}
|
|
|
|
kvm_arm_destroy_scratch_host_vcpu(fdarray);
|
|
|
|
if (err < 0) {
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We can assume any KVM supporting CPU is at least a v8
|
|
* with VFPv4+Neon; this in turn implies most of the other
|
|
* feature bits.
|
|
*/
|
|
features |= 1ULL << ARM_FEATURE_V8;
|
|
features |= 1ULL << ARM_FEATURE_NEON;
|
|
features |= 1ULL << ARM_FEATURE_AARCH64;
|
|
features |= 1ULL << ARM_FEATURE_PMU;
|
|
features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
|
|
|
|
ahcf->features = features;
|
|
|
|
return true;
|
|
}
|
|
|
|
void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
|
|
{
|
|
bool has_steal_time = kvm_arm_steal_time_supported();
|
|
|
|
if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
|
|
if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
|
|
} else {
|
|
cpu->kvm_steal_time = ON_OFF_AUTO_ON;
|
|
}
|
|
} else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
|
|
if (!has_steal_time) {
|
|
error_setg(errp, "'kvm-steal-time' cannot be enabled "
|
|
"on this host");
|
|
return;
|
|
} else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
/*
|
|
* DEN0057A chapter 2 says "This specification only covers
|
|
* systems in which the Execution state of the hypervisor
|
|
* as well as EL1 of virtual machines is AArch64.". And,
|
|
* to ensure that, the smc/hvc calls are only specified as
|
|
* smc64/hvc64.
|
|
*/
|
|
error_setg(errp, "'kvm-steal-time' cannot be enabled "
|
|
"for AArch32 guests");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool kvm_arm_aarch32_supported(void)
|
|
{
|
|
return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
|
|
}
|
|
|
|
bool kvm_arm_sve_supported(void)
|
|
{
|
|
return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
|
|
}
|
|
|
|
bool kvm_arm_steal_time_supported(void)
|
|
{
|
|
return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
|
|
}
|
|
|
|
QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
|
|
|
|
void kvm_arm_sve_get_vls(CPUState *cs, unsigned long *map)
|
|
{
|
|
/* Only call this function if kvm_arm_sve_supported() returns true. */
|
|
static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
|
|
static bool probed;
|
|
uint32_t vq = 0;
|
|
int i, j;
|
|
|
|
bitmap_clear(map, 0, ARM_MAX_VQ);
|
|
|
|
/*
|
|
* KVM ensures all host CPUs support the same set of vector lengths.
|
|
* So we only need to create the scratch VCPUs once and then cache
|
|
* the results.
|
|
*/
|
|
if (!probed) {
|
|
struct kvm_vcpu_init init = {
|
|
.target = -1,
|
|
.features[0] = (1 << KVM_ARM_VCPU_SVE),
|
|
};
|
|
struct kvm_one_reg reg = {
|
|
.id = KVM_REG_ARM64_SVE_VLS,
|
|
.addr = (uint64_t)&vls[0],
|
|
};
|
|
int fdarray[3], ret;
|
|
|
|
probed = true;
|
|
|
|
if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
|
|
error_report("failed to create scratch VCPU with SVE enabled");
|
|
abort();
|
|
}
|
|
ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®);
|
|
kvm_arm_destroy_scratch_host_vcpu(fdarray);
|
|
if (ret) {
|
|
error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
|
|
strerror(errno));
|
|
abort();
|
|
}
|
|
|
|
for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
|
|
if (vls[i]) {
|
|
vq = 64 - clz64(vls[i]) + i * 64;
|
|
break;
|
|
}
|
|
}
|
|
if (vq > ARM_MAX_VQ) {
|
|
warn_report("KVM supports vector lengths larger than "
|
|
"QEMU can enable");
|
|
}
|
|
}
|
|
|
|
for (i = 0; i < KVM_ARM64_SVE_VLS_WORDS; ++i) {
|
|
if (!vls[i]) {
|
|
continue;
|
|
}
|
|
for (j = 1; j <= 64; ++j) {
|
|
vq = j + i * 64;
|
|
if (vq > ARM_MAX_VQ) {
|
|
return;
|
|
}
|
|
if (vls[i] & (1UL << (j - 1))) {
|
|
set_bit(vq - 1, map);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static int kvm_arm_sve_set_vls(CPUState *cs)
|
|
{
|
|
uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = {0};
|
|
struct kvm_one_reg reg = {
|
|
.id = KVM_REG_ARM64_SVE_VLS,
|
|
.addr = (uint64_t)&vls[0],
|
|
};
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
uint32_t vq;
|
|
int i, j;
|
|
|
|
assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
|
|
|
|
for (vq = 1; vq <= cpu->sve_max_vq; ++vq) {
|
|
if (test_bit(vq - 1, cpu->sve_vq_map)) {
|
|
i = (vq - 1) / 64;
|
|
j = (vq - 1) % 64;
|
|
vls[i] |= 1UL << j;
|
|
}
|
|
}
|
|
|
|
return kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
}
|
|
|
|
#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5
|
|
|
|
int kvm_arch_init_vcpu(CPUState *cs)
|
|
{
|
|
int ret;
|
|
uint64_t mpidr;
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
|
|
!object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
|
|
error_report("KVM is not supported for this guest CPU type");
|
|
return -EINVAL;
|
|
}
|
|
|
|
qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
|
|
|
|
/* Determine init features for this CPU */
|
|
memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
|
|
if (cs->start_powered_off) {
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
|
|
}
|
|
if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
|
|
cpu->psci_version = 2;
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
|
|
}
|
|
if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
|
|
}
|
|
if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
|
|
cpu->has_pmu = false;
|
|
}
|
|
if (cpu->has_pmu) {
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
|
|
} else {
|
|
env->features &= ~(1ULL << ARM_FEATURE_PMU);
|
|
}
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
assert(kvm_arm_sve_supported());
|
|
cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
|
|
}
|
|
|
|
/* Do KVM_ARM_VCPU_INIT ioctl */
|
|
ret = kvm_arm_vcpu_init(cs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
ret = kvm_arm_sve_set_vls(cs);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* When KVM is in use, PSCI is emulated in-kernel and not by qemu.
|
|
* Currently KVM has its own idea about MPIDR assignment, so we
|
|
* override our defaults with what we get from KVM.
|
|
*/
|
|
ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
|
|
|
|
kvm_arm_init_debug(cs);
|
|
|
|
/* Check whether user space can specify guest syndrome value */
|
|
kvm_arm_init_serror_injection(cs);
|
|
|
|
return kvm_arm_init_cpreg_list(cpu);
|
|
}
|
|
|
|
int kvm_arch_destroy_vcpu(CPUState *cs)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
|
|
{
|
|
/* Return true if the regidx is a register we should synchronize
|
|
* via the cpreg_tuples array (ie is not a core or sve reg that
|
|
* we sync by hand in kvm_arch_get/put_registers())
|
|
*/
|
|
switch (regidx & KVM_REG_ARM_COPROC_MASK) {
|
|
case KVM_REG_ARM_CORE:
|
|
case KVM_REG_ARM64_SVE:
|
|
return false;
|
|
default:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
typedef struct CPRegStateLevel {
|
|
uint64_t regidx;
|
|
int level;
|
|
} CPRegStateLevel;
|
|
|
|
/* All system registers not listed in the following table are assumed to be
|
|
* of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
|
|
* often, you must add it to this table with a state of either
|
|
* KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
|
|
*/
|
|
static const CPRegStateLevel non_runtime_cpregs[] = {
|
|
{ KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
|
|
};
|
|
|
|
int kvm_arm_cpreg_level(uint64_t regidx)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
|
|
const CPRegStateLevel *l = &non_runtime_cpregs[i];
|
|
if (l->regidx == regidx) {
|
|
return l->level;
|
|
}
|
|
}
|
|
|
|
return KVM_PUT_RUNTIME_STATE;
|
|
}
|
|
|
|
/* Callers must hold the iothread mutex lock */
|
|
static void kvm_inject_arm_sea(CPUState *c)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(c);
|
|
CPUARMState *env = &cpu->env;
|
|
uint32_t esr;
|
|
bool same_el;
|
|
|
|
c->exception_index = EXCP_DATA_ABORT;
|
|
env->exception.target_el = 1;
|
|
|
|
/*
|
|
* Set the DFSC to synchronous external abort and set FnV to not valid,
|
|
* this will tell guest the FAR_ELx is UNKNOWN for this abort.
|
|
*/
|
|
same_el = arm_current_el(env) == env->exception.target_el;
|
|
esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
|
|
|
|
env->exception.syndrome = esr;
|
|
|
|
arm_cpu_do_interrupt(c);
|
|
}
|
|
|
|
#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
|
|
|
|
#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
|
|
|
|
#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
|
|
KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
|
|
|
|
static int kvm_arch_put_fpsimd(CPUState *cs)
|
|
{
|
|
CPUARMState *env = &ARM_CPU(cs)->env;
|
|
struct kvm_one_reg reg;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
uint64_t *q = aa64_vfp_qreg(env, i);
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
uint64_t fp_val[2] = { q[1], q[0] };
|
|
reg.addr = (uintptr_t)fp_val;
|
|
#else
|
|
reg.addr = (uintptr_t)q;
|
|
#endif
|
|
reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
|
|
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
|
|
* code the slice index to zero for now as it's unlikely we'll need more than
|
|
* one slice for quite some time.
|
|
*/
|
|
static int kvm_arch_put_sve(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
uint64_t tmp[ARM_MAX_VQ * 2];
|
|
uint64_t *r;
|
|
struct kvm_one_reg reg;
|
|
int n, ret;
|
|
|
|
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
|
|
r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
|
|
reg.addr = (uintptr_t)r;
|
|
reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
|
|
r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
|
|
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
|
reg.addr = (uintptr_t)r;
|
|
reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
|
|
DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
|
reg.addr = (uintptr_t)r;
|
|
reg.id = KVM_REG_ARM64_SVE_FFR(0);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_put_registers(CPUState *cs, int level)
|
|
{
|
|
struct kvm_one_reg reg;
|
|
uint64_t val;
|
|
uint32_t fpr;
|
|
int i, ret;
|
|
unsigned int el;
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
/* If we are in AArch32 mode then we need to copy the AArch32 regs to the
|
|
* AArch64 registers before pushing them out to 64-bit KVM.
|
|
*/
|
|
if (!is_a64(env)) {
|
|
aarch64_sync_32_to_64(env);
|
|
}
|
|
|
|
for (i = 0; i < 31; i++) {
|
|
reg.id = AARCH64_CORE_REG(regs.regs[i]);
|
|
reg.addr = (uintptr_t) &env->xregs[i];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
|
|
* QEMU side we keep the current SP in xregs[31] as well.
|
|
*/
|
|
aarch64_save_sp(env, 1);
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.sp);
|
|
reg.addr = (uintptr_t) &env->sp_el[0];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
reg.id = AARCH64_CORE_REG(sp_el1);
|
|
reg.addr = (uintptr_t) &env->sp_el[1];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
|
|
if (is_a64(env)) {
|
|
val = pstate_read(env);
|
|
} else {
|
|
val = cpsr_read(env);
|
|
}
|
|
reg.id = AARCH64_CORE_REG(regs.pstate);
|
|
reg.addr = (uintptr_t) &val;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.pc);
|
|
reg.addr = (uintptr_t) &env->pc;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
reg.id = AARCH64_CORE_REG(elr_el1);
|
|
reg.addr = (uintptr_t) &env->elr_el[1];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Saved Program State Registers
|
|
*
|
|
* Before we restore from the banked_spsr[] array we need to
|
|
* ensure that any modifications to env->spsr are correctly
|
|
* reflected in the banks.
|
|
*/
|
|
el = arm_current_el(env);
|
|
if (el > 0 && !is_a64(env)) {
|
|
i = bank_number(env->uncached_cpsr & CPSR_M);
|
|
env->banked_spsr[i] = env->spsr;
|
|
}
|
|
|
|
/* KVM 0-4 map to QEMU banks 1-5 */
|
|
for (i = 0; i < KVM_NR_SPSR; i++) {
|
|
reg.id = AARCH64_CORE_REG(spsr[i]);
|
|
reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
ret = kvm_arch_put_sve(cs);
|
|
} else {
|
|
ret = kvm_arch_put_fpsimd(cs);
|
|
}
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
reg.addr = (uintptr_t)(&fpr);
|
|
fpr = vfp_get_fpsr(env);
|
|
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
reg.addr = (uintptr_t)(&fpr);
|
|
fpr = vfp_get_fpcr(env);
|
|
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
write_cpustate_to_list(cpu, true);
|
|
|
|
if (!write_list_to_kvmstate(cpu, level)) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Setting VCPU events should be triggered after syncing the registers
|
|
* to avoid overwriting potential changes made by KVM upon calling
|
|
* KVM_SET_VCPU_EVENTS ioctl
|
|
*/
|
|
ret = kvm_put_vcpu_events(cpu);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
kvm_arm_sync_mpstate_to_kvm(cpu);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int kvm_arch_get_fpsimd(CPUState *cs)
|
|
{
|
|
CPUARMState *env = &ARM_CPU(cs)->env;
|
|
struct kvm_one_reg reg;
|
|
int i, ret;
|
|
|
|
for (i = 0; i < 32; i++) {
|
|
uint64_t *q = aa64_vfp_qreg(env, i);
|
|
reg.id = AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]);
|
|
reg.addr = (uintptr_t)q;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
} else {
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
uint64_t t;
|
|
t = q[0], q[0] = q[1], q[1] = t;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
|
|
* and PREGS and the FFR have a slice size of 256 bits. However we simply hard
|
|
* code the slice index to zero for now as it's unlikely we'll need more than
|
|
* one slice for quite some time.
|
|
*/
|
|
static int kvm_arch_get_sve(CPUState *cs)
|
|
{
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
struct kvm_one_reg reg;
|
|
uint64_t *r;
|
|
int n, ret;
|
|
|
|
for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
|
|
r = &env->vfp.zregs[n].d[0];
|
|
reg.addr = (uintptr_t)r;
|
|
reg.id = KVM_REG_ARM64_SVE_ZREG(n, 0);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
sve_bswap64(r, r, cpu->sve_max_vq * 2);
|
|
}
|
|
|
|
for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
|
|
r = &env->vfp.pregs[n].p[0];
|
|
reg.addr = (uintptr_t)r;
|
|
reg.id = KVM_REG_ARM64_SVE_PREG(n, 0);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
|
}
|
|
|
|
r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
|
|
reg.addr = (uintptr_t)r;
|
|
reg.id = KVM_REG_ARM64_SVE_FFR(0);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
|
|
|
|
return 0;
|
|
}
|
|
|
|
int kvm_arch_get_registers(CPUState *cs)
|
|
{
|
|
struct kvm_one_reg reg;
|
|
uint64_t val;
|
|
unsigned int el;
|
|
uint32_t fpr;
|
|
int i, ret;
|
|
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
for (i = 0; i < 31; i++) {
|
|
reg.id = AARCH64_CORE_REG(regs.regs[i]);
|
|
reg.addr = (uintptr_t) &env->xregs[i];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.sp);
|
|
reg.addr = (uintptr_t) &env->sp_el[0];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
reg.id = AARCH64_CORE_REG(sp_el1);
|
|
reg.addr = (uintptr_t) &env->sp_el[1];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.pstate);
|
|
reg.addr = (uintptr_t) &val;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
env->aarch64 = ((val & PSTATE_nRW) == 0);
|
|
if (is_a64(env)) {
|
|
pstate_write(env, val);
|
|
} else {
|
|
cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
|
|
}
|
|
|
|
/* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
|
|
* QEMU side we keep the current SP in xregs[31] as well.
|
|
*/
|
|
aarch64_restore_sp(env, 1);
|
|
|
|
reg.id = AARCH64_CORE_REG(regs.pc);
|
|
reg.addr = (uintptr_t) &env->pc;
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* If we are in AArch32 mode then we need to sync the AArch32 regs with the
|
|
* incoming AArch64 regs received from 64-bit KVM.
|
|
* We must perform this after all of the registers have been acquired from
|
|
* the kernel.
|
|
*/
|
|
if (!is_a64(env)) {
|
|
aarch64_sync_64_to_32(env);
|
|
}
|
|
|
|
reg.id = AARCH64_CORE_REG(elr_el1);
|
|
reg.addr = (uintptr_t) &env->elr_el[1];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
/* Fetch the SPSR registers
|
|
*
|
|
* KVM SPSRs 0-4 map to QEMU banks 1-5
|
|
*/
|
|
for (i = 0; i < KVM_NR_SPSR; i++) {
|
|
reg.id = AARCH64_CORE_REG(spsr[i]);
|
|
reg.addr = (uintptr_t) &env->banked_spsr[i + 1];
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
el = arm_current_el(env);
|
|
if (el > 0 && !is_a64(env)) {
|
|
i = bank_number(env->uncached_cpsr & CPSR_M);
|
|
env->spsr = env->banked_spsr[i];
|
|
}
|
|
|
|
if (cpu_isar_feature(aa64_sve, cpu)) {
|
|
ret = kvm_arch_get_sve(cs);
|
|
} else {
|
|
ret = kvm_arch_get_fpsimd(cs);
|
|
}
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
reg.addr = (uintptr_t)(&fpr);
|
|
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpsr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
vfp_set_fpsr(env, fpr);
|
|
|
|
reg.addr = (uintptr_t)(&fpr);
|
|
reg.id = AARCH64_SIMD_CTRL_REG(fp_regs.fpcr);
|
|
ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, ®);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
vfp_set_fpcr(env, fpr);
|
|
|
|
ret = kvm_get_vcpu_events(cpu);
|
|
if (ret) {
|
|
return ret;
|
|
}
|
|
|
|
if (!write_kvmstate_to_list(cpu)) {
|
|
return -EINVAL;
|
|
}
|
|
/* Note that it's OK to have registers which aren't in CPUState,
|
|
* so we can ignore a failure return here.
|
|
*/
|
|
write_list_to_cpustate(cpu);
|
|
|
|
kvm_arm_sync_mpstate_to_qemu(cpu);
|
|
|
|
/* TODO: other registers */
|
|
return ret;
|
|
}
|
|
|
|
void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
|
|
{
|
|
ram_addr_t ram_addr;
|
|
hwaddr paddr;
|
|
Object *obj = qdev_get_machine();
|
|
VirtMachineState *vms = VIRT_MACHINE(obj);
|
|
bool acpi_enabled = virt_is_acpi_enabled(vms);
|
|
|
|
assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
|
|
|
|
if (acpi_enabled && addr &&
|
|
object_property_get_bool(obj, "ras", NULL)) {
|
|
ram_addr = qemu_ram_addr_from_host(addr);
|
|
if (ram_addr != RAM_ADDR_INVALID &&
|
|
kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
|
|
kvm_hwpoison_page_add(ram_addr);
|
|
/*
|
|
* If this is a BUS_MCEERR_AR, we know we have been called
|
|
* synchronously from the vCPU thread, so we can easily
|
|
* synchronize the state and inject an error.
|
|
*
|
|
* TODO: we currently don't tell the guest at all about
|
|
* BUS_MCEERR_AO. In that case we might either be being
|
|
* called synchronously from the vCPU thread, or a bit
|
|
* later from the main thread, so doing the injection of
|
|
* the error would be more complicated.
|
|
*/
|
|
if (code == BUS_MCEERR_AR) {
|
|
kvm_cpu_synchronize_state(c);
|
|
if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
|
|
kvm_inject_arm_sea(c);
|
|
} else {
|
|
error_report("failed to record the error");
|
|
abort();
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
if (code == BUS_MCEERR_AO) {
|
|
error_report("Hardware memory error at addr %p for memory used by "
|
|
"QEMU itself instead of guest system!", addr);
|
|
}
|
|
}
|
|
|
|
if (code == BUS_MCEERR_AR) {
|
|
error_report("Hardware memory error!");
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* C6.6.29 BRK instruction */
|
|
static const uint32_t brk_insn = 0xd4200000;
|
|
|
|
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
if (have_guest_debug) {
|
|
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
|
|
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
} else {
|
|
error_report("guest debug not supported on this kernel");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
|
|
{
|
|
static uint32_t brk;
|
|
|
|
if (have_guest_debug) {
|
|
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
|
|
brk != brk_insn ||
|
|
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
} else {
|
|
error_report("guest debug not supported on this kernel");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
|
|
*
|
|
* To minimise translating between kernel and user-space the kernel
|
|
* ABI just provides user-space with the full exception syndrome
|
|
* register value to be decoded in QEMU.
|
|
*/
|
|
|
|
bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
|
|
{
|
|
int hsr_ec = syn_get_ec(debug_exit->hsr);
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
|
|
/* Ensure PC is synchronised */
|
|
kvm_cpu_synchronize_state(cs);
|
|
|
|
switch (hsr_ec) {
|
|
case EC_SOFTWARESTEP:
|
|
if (cs->singlestep_enabled) {
|
|
return true;
|
|
} else {
|
|
/*
|
|
* The kernel should have suppressed the guest's ability to
|
|
* single step at this point so something has gone wrong.
|
|
*/
|
|
error_report("%s: guest single-step while debugging unsupported"
|
|
" (%"PRIx64", %"PRIx32")",
|
|
__func__, env->pc, debug_exit->hsr);
|
|
return false;
|
|
}
|
|
break;
|
|
case EC_AA64_BKPT:
|
|
if (kvm_find_sw_breakpoint(cs, env->pc)) {
|
|
return true;
|
|
}
|
|
break;
|
|
case EC_BREAKPOINT:
|
|
if (find_hw_breakpoint(cs, env->pc)) {
|
|
return true;
|
|
}
|
|
break;
|
|
case EC_WATCHPOINT:
|
|
{
|
|
CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
|
|
if (wp) {
|
|
cs->watchpoint_hit = wp;
|
|
return true;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
|
|
__func__, debug_exit->hsr, env->pc);
|
|
}
|
|
|
|
/* If we are not handling the debug exception it must belong to
|
|
* the guest. Let's re-use the existing TCG interrupt code to set
|
|
* everything up properly.
|
|
*/
|
|
cs->exception_index = EXCP_BKPT;
|
|
env->exception.syndrome = debug_exit->hsr;
|
|
env->exception.vaddress = debug_exit->far;
|
|
env->exception.target_el = 1;
|
|
qemu_mutex_lock_iothread();
|
|
arm_cpu_do_interrupt(cs);
|
|
qemu_mutex_unlock_iothread();
|
|
|
|
return false;
|
|
}
|
|
|
|
#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
|
|
#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
|
|
|
|
/*
|
|
* ESR_EL1
|
|
* ISS encoding
|
|
* AARCH64: DFSC, bits [5:0]
|
|
* AARCH32:
|
|
* TTBCR.EAE == 0
|
|
* FS[4] - DFSR[10]
|
|
* FS[3:0] - DFSR[3:0]
|
|
* TTBCR.EAE == 1
|
|
* FS, bits [5:0]
|
|
*/
|
|
#define ESR_DFSC(aarch64, lpae, v) \
|
|
((aarch64 || (lpae)) ? ((v) & 0x3F) \
|
|
: (((v) >> 6) | ((v) & 0x1F)))
|
|
|
|
#define ESR_DFSC_EXTABT(aarch64, lpae) \
|
|
((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
|
|
|
|
bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
|
|
{
|
|
uint64_t dfsr_val;
|
|
|
|
if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
|
|
ARMCPU *cpu = ARM_CPU(cs);
|
|
CPUARMState *env = &cpu->env;
|
|
int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
|
|
int lpae = 0;
|
|
|
|
if (!aarch64_mode) {
|
|
uint64_t ttbcr;
|
|
|
|
if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
|
|
lpae = arm_feature(env, ARM_FEATURE_LPAE)
|
|
&& (ttbcr & TTBCR_EAE);
|
|
}
|
|
}
|
|
/*
|
|
* The verification here is based on the DFSC bits
|
|
* of the ESR_EL1 reg only
|
|
*/
|
|
return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
|
|
ESR_DFSC_EXTABT(aarch64_mode, lpae));
|
|
}
|
|
return false;
|
|
}
|