qemu/target/sparc/cc_helper.c

472 lines
11 KiB
C

/*
* Helpers for lazy condition code handling
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/helper-proto.h"
static uint32_t compute_all_flags(CPUSPARCState *env)
{
return env->psr & PSR_ICC;
}
static uint32_t compute_C_flags(CPUSPARCState *env)
{
return env->psr & PSR_CARRY;
}
static inline uint32_t get_NZ_icc(int32_t dst)
{
uint32_t ret = 0;
if (dst == 0) {
ret = PSR_ZERO;
} else if (dst < 0) {
ret = PSR_NEG;
}
return ret;
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_flags_xcc(CPUSPARCState *env)
{
return env->xcc & PSR_ICC;
}
static uint32_t compute_C_flags_xcc(CPUSPARCState *env)
{
return env->xcc & PSR_CARRY;
}
static inline uint32_t get_NZ_xcc(target_long dst)
{
uint32_t ret = 0;
if (!dst) {
ret = PSR_ZERO;
} else if (dst < 0) {
ret = PSR_NEG;
}
return ret;
}
#endif
static inline uint32_t get_V_div_icc(target_ulong src2)
{
uint32_t ret = 0;
if (src2 != 0) {
ret = PSR_OVF;
}
return ret;
}
static uint32_t compute_all_div(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_V_div_icc(CC_SRC2);
return ret;
}
static uint32_t compute_C_div(CPUSPARCState *env)
{
return 0;
}
static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
{
uint32_t ret = 0;
if (dst < src1) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
uint32_t src2)
{
uint32_t ret = 0;
if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
uint32_t src2)
{
uint32_t ret = 0;
if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
ret = PSR_OVF;
}
return ret;
}
#ifdef TARGET_SPARC64
static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
{
uint32_t ret = 0;
if (dst < src1) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
ret = PSR_OVF;
}
return ret;
}
static uint32_t compute_all_add_xcc(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_add_xcc(CC_DST, CC_SRC);
ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_add_xcc(CPUSPARCState *env)
{
return get_C_add_xcc(CC_DST, CC_SRC);
}
#endif
static uint32_t compute_all_add(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST, CC_SRC);
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_add(CPUSPARCState *env)
{
return get_C_add_icc(CC_DST, CC_SRC);
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_addx_xcc(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_addx_xcc(CPUSPARCState *env)
{
return get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
}
#endif
static uint32_t compute_all_addx(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_addx(CPUSPARCState *env)
{
return get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
}
static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
{
uint32_t ret = 0;
if ((src1 | src2) & 0x3) {
ret = PSR_OVF;
}
return ret;
}
static uint32_t compute_all_tadd(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST, CC_SRC);
ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_all_taddtv(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_add_icc(CC_DST, CC_SRC);
return ret;
}
static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
{
uint32_t ret = 0;
if (src1 < src2) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
uint32_t src2)
{
uint32_t ret = 0;
if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
uint32_t src2)
{
uint32_t ret = 0;
if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
ret = PSR_OVF;
}
return ret;
}
#ifdef TARGET_SPARC64
static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
{
uint32_t ret = 0;
if (src1 < src2) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
ret = PSR_CARRY;
}
return ret;
}
static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
target_ulong src2)
{
uint32_t ret = 0;
if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
ret = PSR_OVF;
}
return ret;
}
static uint32_t compute_all_sub_xcc(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_sub_xcc(CPUSPARCState *env)
{
return get_C_sub_xcc(CC_SRC, CC_SRC2);
}
#endif
static uint32_t compute_all_sub(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_sub(CPUSPARCState *env)
{
return get_C_sub_icc(CC_SRC, CC_SRC2);
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_subx_xcc(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_xcc(CC_DST);
ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_subx_xcc(CPUSPARCState *env)
{
return get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
}
#endif
static uint32_t compute_all_subx(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_C_subx(CPUSPARCState *env)
{
return get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
}
static uint32_t compute_all_tsub(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_all_tsubtv(CPUSPARCState *env)
{
uint32_t ret;
ret = get_NZ_icc(CC_DST);
ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
return ret;
}
static uint32_t compute_all_logic(CPUSPARCState *env)
{
return get_NZ_icc(CC_DST);
}
static uint32_t compute_C_logic(CPUSPARCState *env)
{
return 0;
}
#ifdef TARGET_SPARC64
static uint32_t compute_all_logic_xcc(CPUSPARCState *env)
{
return get_NZ_xcc(CC_DST);
}
#endif
typedef struct CCTable {
uint32_t (*compute_all)(CPUSPARCState *env); /* return all the flags */
uint32_t (*compute_c)(CPUSPARCState *env); /* return the C flag */
} CCTable;
static const CCTable icc_table[CC_OP_NB] = {
/* CC_OP_DYNAMIC should never happen */
[CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
[CC_OP_DIV] = { compute_all_div, compute_C_div },
[CC_OP_ADD] = { compute_all_add, compute_C_add },
[CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
[CC_OP_TADD] = { compute_all_tadd, compute_C_add },
[CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
[CC_OP_SUB] = { compute_all_sub, compute_C_sub },
[CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
[CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
[CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
[CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
};
#ifdef TARGET_SPARC64
static const CCTable xcc_table[CC_OP_NB] = {
/* CC_OP_DYNAMIC should never happen */
[CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
[CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
[CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
[CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
[CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
[CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
[CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
[CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
[CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
[CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
[CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
};
#endif
void helper_compute_psr(CPUSPARCState *env)
{
uint32_t new_psr;
new_psr = icc_table[CC_OP].compute_all(env);
env->psr = new_psr;
#ifdef TARGET_SPARC64
new_psr = xcc_table[CC_OP].compute_all(env);
env->xcc = new_psr;
#endif
CC_OP = CC_OP_FLAGS;
}
uint32_t helper_compute_C_icc(CPUSPARCState *env)
{
return icc_table[CC_OP].compute_c(env) >> PSR_CARRY_SHIFT;
}