qemu/include/net/eth.h

348 lines
11 KiB
C

/*
* QEMU network structures definitions and helper functions
*
* Copyright (c) 2012 Ravello Systems LTD (http://ravellosystems.com)
*
* Developed by Daynix Computing LTD (http://www.daynix.com)
*
* Portions developed by Free Software Foundation, Inc
* Copyright (C) 1991-1997, 2001, 2003, 2006 Free Software Foundation, Inc.
* See netinet/ip6.h and netinet/in.h (GNU C Library)
*
* Portions developed by Igor Kovalenko
* Copyright (c) 2006 Igor Kovalenko
* See hw/rtl8139.c (QEMU)
*
* Authors:
* Dmitry Fleytman <dmitry@daynix.com>
* Tamir Shomer <tamirs@daynix.com>
* Yan Vugenfirer <yan@daynix.com>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*
*/
#ifndef QEMU_ETH_H
#define QEMU_ETH_H
#include "qemu/bswap.h"
#include "qemu/iov.h"
#define ETH_ALEN 6
#define ETH_HLEN 14
struct eth_header {
uint8_t h_dest[ETH_ALEN]; /* destination eth addr */
uint8_t h_source[ETH_ALEN]; /* source ether addr */
uint16_t h_proto; /* packet type ID field */
};
struct vlan_header {
uint16_t h_tci; /* priority and VLAN ID */
uint16_t h_proto; /* encapsulated protocol */
};
struct ip_header {
uint8_t ip_ver_len; /* version and header length */
uint8_t ip_tos; /* type of service */
uint16_t ip_len; /* total length */
uint16_t ip_id; /* identification */
uint16_t ip_off; /* fragment offset field */
uint8_t ip_ttl; /* time to live */
uint8_t ip_p; /* protocol */
uint16_t ip_sum; /* checksum */
uint32_t ip_src, ip_dst; /* source and destination address */
};
typedef struct tcp_header {
uint16_t th_sport; /* source port */
uint16_t th_dport; /* destination port */
uint32_t th_seq; /* sequence number */
uint32_t th_ack; /* acknowledgment number */
uint16_t th_offset_flags; /* data offset, reserved 6 bits, */
/* TCP protocol flags */
uint16_t th_win; /* window */
uint16_t th_sum; /* checksum */
uint16_t th_urp; /* urgent pointer */
} tcp_header;
typedef struct udp_header {
uint16_t uh_sport; /* source port */
uint16_t uh_dport; /* destination port */
uint16_t uh_ulen; /* udp length */
uint16_t uh_sum; /* udp checksum */
} udp_header;
typedef struct ip_pseudo_header {
uint32_t ip_src;
uint32_t ip_dst;
uint8_t zeros;
uint8_t ip_proto;
uint16_t ip_payload;
} ip_pseudo_header;
/* IPv6 address */
struct in6_address {
union {
uint8_t __u6_addr8[16];
} __in6_u;
};
struct ip6_header {
union {
struct ip6_hdrctl {
uint32_t ip6_un1_flow; /* 4 bits version, 8 bits TC,
20 bits flow-ID */
uint16_t ip6_un1_plen; /* payload length */
uint8_t ip6_un1_nxt; /* next header */
uint8_t ip6_un1_hlim; /* hop limit */
} ip6_un1;
uint8_t ip6_un2_vfc; /* 4 bits version, top 4 bits tclass */
struct ip6_ecn_access {
uint8_t ip6_un3_vfc; /* 4 bits version, top 4 bits tclass */
uint8_t ip6_un3_ecn; /* 2 bits ECN, top 6 bits payload length */
} ip6_un3;
} ip6_ctlun;
struct in6_address ip6_src; /* source address */
struct in6_address ip6_dst; /* destination address */
};
struct ip6_ext_hdr {
uint8_t ip6r_nxt; /* next header */
uint8_t ip6r_len; /* length in units of 8 octets */
};
struct udp_hdr {
uint16_t uh_sport; /* source port */
uint16_t uh_dport; /* destination port */
uint16_t uh_ulen; /* udp length */
uint16_t uh_sum; /* udp checksum */
};
struct tcp_hdr {
u_short th_sport; /* source port */
u_short th_dport; /* destination port */
uint32_t th_seq; /* sequence number */
uint32_t th_ack; /* acknowledgment number */
#ifdef HOST_WORDS_BIGENDIAN
u_char th_off : 4, /* data offset */
th_x2:4; /* (unused) */
#else
u_char th_x2 : 4, /* (unused) */
th_off:4; /* data offset */
#endif
#define TH_ELN 0x1 /* explicit loss notification */
#define TH_ECN 0x2 /* explicit congestion notification */
#define TH_FS 0x4 /* fast start */
u_char th_flags;
#define TH_FIN 0x01
#define TH_SYN 0x02
#define TH_RST 0x04
#define TH_PUSH 0x08
#define TH_ACK 0x10
#define TH_URG 0x20
u_short th_win; /* window */
u_short th_sum; /* checksum */
u_short th_urp; /* urgent pointer */
};
#define ip6_nxt ip6_ctlun.ip6_un1.ip6_un1_nxt
#define ip6_ecn_acc ip6_ctlun.ip6_un3.ip6_un3_ecn
#define PKT_GET_ETH_HDR(p) \
((struct eth_header *)(p))
#define PKT_GET_VLAN_HDR(p) \
((struct vlan_header *) (((uint8_t *)(p)) + sizeof(struct eth_header)))
#define PKT_GET_DVLAN_HDR(p) \
(PKT_GET_VLAN_HDR(p) + 1)
#define PKT_GET_IP_HDR(p) \
((struct ip_header *)(((uint8_t *)(p)) + eth_get_l2_hdr_length(p)))
#define IP_HDR_GET_LEN(p) \
((((struct ip_header *)p)->ip_ver_len & 0x0F) << 2)
#define PKT_GET_IP_HDR_LEN(p) \
(IP_HDR_GET_LEN(PKT_GET_IP_HDR(p)))
#define PKT_GET_IP6_HDR(p) \
((struct ip6_header *) (((uint8_t *)(p)) + eth_get_l2_hdr_length(p)))
#define IP_HEADER_VERSION(ip) \
((ip->ip_ver_len >> 4)&0xf)
#define ETH_P_IP (0x0800) /* Internet Protocol packet */
#define ETH_P_ARP (0x0806) /* Address Resolution packet */
#define ETH_P_IPV6 (0x86dd)
#define ETH_P_VLAN (0x8100)
#define ETH_P_DVLAN (0x88a8)
#define VLAN_VID_MASK 0x0fff
#define IP_HEADER_VERSION_4 (4)
#define IP_HEADER_VERSION_6 (6)
#define IP_PROTO_TCP (6)
#define IP_PROTO_UDP (17)
#define IPTOS_ECN_MASK 0x03
#define IPTOS_ECN(x) ((x) & IPTOS_ECN_MASK)
#define IPTOS_ECN_CE 0x03
#define IP6_ECN_MASK 0xC0
#define IP6_ECN(x) ((x) & IP6_ECN_MASK)
#define IP6_ECN_CE 0xC0
#define IP4_DONT_FRAGMENT_FLAG (1 << 14)
#define IS_SPECIAL_VLAN_ID(x) \
(((x) == 0) || ((x) == 0xFFF))
#define ETH_MAX_L2_HDR_LEN \
(sizeof(struct eth_header) + 2 * sizeof(struct vlan_header))
#define ETH_MAX_IP4_HDR_LEN (60)
#define ETH_MAX_IP_DGRAM_LEN (0xFFFF)
#define IP_FRAG_UNIT_SIZE (8)
#define IP_FRAG_ALIGN_SIZE(x) ((x) & ~0x7)
#define IP_RF 0x8000 /* reserved fragment flag */
#define IP_DF 0x4000 /* don't fragment flag */
#define IP_MF 0x2000 /* more fragments flag */
#define IP_OFFMASK 0x1fff /* mask for fragmenting bits */
#define IP6_EXT_GRANULARITY (8) /* Size granularity for
IPv6 extension headers */
/* IP6 extension header types */
#define IP6_HOP_BY_HOP (0)
#define IP6_ROUTING (43)
#define IP6_FRAGMENT (44)
#define IP6_ESP (50)
#define IP6_AUTHENTICATION (51)
#define IP6_NONE (59)
#define IP6_DESTINATON (60)
#define IP6_MOBILITY (135)
static inline int is_multicast_ether_addr(const uint8_t *addr)
{
return 0x01 & addr[0];
}
static inline int is_broadcast_ether_addr(const uint8_t *addr)
{
return (addr[0] & addr[1] & addr[2] & addr[3] & addr[4] & addr[5]) == 0xff;
}
static inline int is_unicast_ether_addr(const uint8_t *addr)
{
return !is_multicast_ether_addr(addr);
}
typedef enum {
ETH_PKT_UCAST = 0xAABBCC00,
ETH_PKT_BCAST,
ETH_PKT_MCAST
} eth_pkt_types_e;
static inline eth_pkt_types_e
get_eth_packet_type(const struct eth_header *ehdr)
{
if (is_broadcast_ether_addr(ehdr->h_dest)) {
return ETH_PKT_BCAST;
} else if (is_multicast_ether_addr(ehdr->h_dest)) {
return ETH_PKT_MCAST;
} else { /* unicast */
return ETH_PKT_UCAST;
}
}
static inline uint32_t
eth_get_l2_hdr_length(const void *p)
{
uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(p)->h_proto);
struct vlan_header *hvlan = PKT_GET_VLAN_HDR(p);
switch (proto) {
case ETH_P_VLAN:
return sizeof(struct eth_header) + sizeof(struct vlan_header);
case ETH_P_DVLAN:
if (hvlan->h_proto == ETH_P_VLAN) {
return sizeof(struct eth_header) + 2 * sizeof(struct vlan_header);
} else {
return sizeof(struct eth_header) + sizeof(struct vlan_header);
}
default:
return sizeof(struct eth_header);
}
}
static inline uint16_t
eth_get_pkt_tci(const void *p)
{
uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(p)->h_proto);
struct vlan_header *hvlan = PKT_GET_VLAN_HDR(p);
switch (proto) {
case ETH_P_VLAN:
case ETH_P_DVLAN:
return be16_to_cpu(hvlan->h_tci);
default:
return 0;
}
}
static inline bool
eth_strip_vlan(const void *p, uint8_t *new_ehdr_buf,
uint16_t *payload_offset, uint16_t *tci)
{
uint16_t proto = be16_to_cpu(PKT_GET_ETH_HDR(p)->h_proto);
struct vlan_header *hvlan = PKT_GET_VLAN_HDR(p);
struct eth_header *new_ehdr = (struct eth_header *) new_ehdr_buf;
switch (proto) {
case ETH_P_VLAN:
case ETH_P_DVLAN:
memcpy(new_ehdr->h_source, PKT_GET_ETH_HDR(p)->h_source, ETH_ALEN);
memcpy(new_ehdr->h_dest, PKT_GET_ETH_HDR(p)->h_dest, ETH_ALEN);
new_ehdr->h_proto = hvlan->h_proto;
*tci = be16_to_cpu(hvlan->h_tci);
*payload_offset =
sizeof(struct eth_header) + sizeof(struct vlan_header);
if (be16_to_cpu(new_ehdr->h_proto) == ETH_P_VLAN) {
memcpy(PKT_GET_VLAN_HDR(new_ehdr),
PKT_GET_DVLAN_HDR(p),
sizeof(struct vlan_header));
*payload_offset += sizeof(struct vlan_header);
}
return true;
default:
return false;
}
}
static inline uint16_t
eth_get_l3_proto(const void *l2hdr, size_t l2hdr_len)
{
uint8_t *proto_ptr = (uint8_t *) l2hdr + l2hdr_len - sizeof(uint16_t);
return be16_to_cpup((uint16_t *)proto_ptr);
}
void eth_setup_vlan_headers(struct eth_header *ehdr, uint16_t vlan_tag,
bool *is_new);
uint8_t eth_get_gso_type(uint16_t l3_proto, uint8_t *l3_hdr, uint8_t l4proto);
void eth_get_protocols(const uint8_t *headers,
uint32_t hdr_length,
bool *isip4, bool *isip6,
bool *isudp, bool *istcp);
void eth_setup_ip4_fragmentation(const void *l2hdr, size_t l2hdr_len,
void *l3hdr, size_t l3hdr_len,
size_t l3payload_len,
size_t frag_offset, bool more_frags);
void
eth_fix_ip4_checksum(void *l3hdr, size_t l3hdr_len);
uint32_t
eth_calc_pseudo_hdr_csum(struct ip_header *iphdr, uint16_t csl);
bool
eth_parse_ipv6_hdr(struct iovec *pkt, int pkt_frags,
size_t ip6hdr_off, uint8_t *l4proto,
size_t *full_hdr_len);
#endif