mirror of https://gitee.com/openkylin/qemu.git
3044 lines
106 KiB
C
3044 lines
106 KiB
C
/*
|
|
* ARM virtual CPU header
|
|
*
|
|
* Copyright (c) 2003 Fabrice Bellard
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef ARM_CPU_H
|
|
#define ARM_CPU_H
|
|
|
|
#include "kvm-consts.h"
|
|
#include "hw/registerfields.h"
|
|
|
|
#if defined(TARGET_AARCH64)
|
|
/* AArch64 definitions */
|
|
# define TARGET_LONG_BITS 64
|
|
#else
|
|
# define TARGET_LONG_BITS 32
|
|
#endif
|
|
|
|
/* ARM processors have a weak memory model */
|
|
#define TCG_GUEST_DEFAULT_MO (0)
|
|
|
|
#define CPUArchState struct CPUARMState
|
|
|
|
#include "qemu-common.h"
|
|
#include "cpu-qom.h"
|
|
#include "exec/cpu-defs.h"
|
|
|
|
#define EXCP_UDEF 1 /* undefined instruction */
|
|
#define EXCP_SWI 2 /* software interrupt */
|
|
#define EXCP_PREFETCH_ABORT 3
|
|
#define EXCP_DATA_ABORT 4
|
|
#define EXCP_IRQ 5
|
|
#define EXCP_FIQ 6
|
|
#define EXCP_BKPT 7
|
|
#define EXCP_EXCEPTION_EXIT 8 /* Return from v7M exception. */
|
|
#define EXCP_KERNEL_TRAP 9 /* Jumped to kernel code page. */
|
|
#define EXCP_HVC 11 /* HyperVisor Call */
|
|
#define EXCP_HYP_TRAP 12
|
|
#define EXCP_SMC 13 /* Secure Monitor Call */
|
|
#define EXCP_VIRQ 14
|
|
#define EXCP_VFIQ 15
|
|
#define EXCP_SEMIHOST 16 /* semihosting call */
|
|
#define EXCP_NOCP 17 /* v7M NOCP UsageFault */
|
|
#define EXCP_INVSTATE 18 /* v7M INVSTATE UsageFault */
|
|
/* NB: add new EXCP_ defines to the array in arm_log_exception() too */
|
|
|
|
#define ARMV7M_EXCP_RESET 1
|
|
#define ARMV7M_EXCP_NMI 2
|
|
#define ARMV7M_EXCP_HARD 3
|
|
#define ARMV7M_EXCP_MEM 4
|
|
#define ARMV7M_EXCP_BUS 5
|
|
#define ARMV7M_EXCP_USAGE 6
|
|
#define ARMV7M_EXCP_SECURE 7
|
|
#define ARMV7M_EXCP_SVC 11
|
|
#define ARMV7M_EXCP_DEBUG 12
|
|
#define ARMV7M_EXCP_PENDSV 14
|
|
#define ARMV7M_EXCP_SYSTICK 15
|
|
|
|
/* For M profile, some registers are banked secure vs non-secure;
|
|
* these are represented as a 2-element array where the first element
|
|
* is the non-secure copy and the second is the secure copy.
|
|
* When the CPU does not have implement the security extension then
|
|
* only the first element is used.
|
|
* This means that the copy for the current security state can be
|
|
* accessed via env->registerfield[env->v7m.secure] (whether the security
|
|
* extension is implemented or not).
|
|
*/
|
|
enum {
|
|
M_REG_NS = 0,
|
|
M_REG_S = 1,
|
|
M_REG_NUM_BANKS = 2,
|
|
};
|
|
|
|
/* ARM-specific interrupt pending bits. */
|
|
#define CPU_INTERRUPT_FIQ CPU_INTERRUPT_TGT_EXT_1
|
|
#define CPU_INTERRUPT_VIRQ CPU_INTERRUPT_TGT_EXT_2
|
|
#define CPU_INTERRUPT_VFIQ CPU_INTERRUPT_TGT_EXT_3
|
|
|
|
/* The usual mapping for an AArch64 system register to its AArch32
|
|
* counterpart is for the 32 bit world to have access to the lower
|
|
* half only (with writes leaving the upper half untouched). It's
|
|
* therefore useful to be able to pass TCG the offset of the least
|
|
* significant half of a uint64_t struct member.
|
|
*/
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
|
|
#define offsetofhigh32(S, M) offsetof(S, M)
|
|
#else
|
|
#define offsetoflow32(S, M) offsetof(S, M)
|
|
#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
|
|
#endif
|
|
|
|
/* Meanings of the ARMCPU object's four inbound GPIO lines */
|
|
#define ARM_CPU_IRQ 0
|
|
#define ARM_CPU_FIQ 1
|
|
#define ARM_CPU_VIRQ 2
|
|
#define ARM_CPU_VFIQ 3
|
|
|
|
#define NB_MMU_MODES 8
|
|
/* ARM-specific extra insn start words:
|
|
* 1: Conditional execution bits
|
|
* 2: Partial exception syndrome for data aborts
|
|
*/
|
|
#define TARGET_INSN_START_EXTRA_WORDS 2
|
|
|
|
/* The 2nd extra word holding syndrome info for data aborts does not use
|
|
* the upper 6 bits nor the lower 14 bits. We mask and shift it down to
|
|
* help the sleb128 encoder do a better job.
|
|
* When restoring the CPU state, we shift it back up.
|
|
*/
|
|
#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
|
|
#define ARM_INSN_START_WORD2_SHIFT 14
|
|
|
|
/* We currently assume float and double are IEEE single and double
|
|
precision respectively.
|
|
Doing runtime conversions is tricky because VFP registers may contain
|
|
integer values (eg. as the result of a FTOSI instruction).
|
|
s<2n> maps to the least significant half of d<n>
|
|
s<2n+1> maps to the most significant half of d<n>
|
|
*/
|
|
|
|
/**
|
|
* DynamicGDBXMLInfo:
|
|
* @desc: Contains the XML descriptions.
|
|
* @num_cpregs: Number of the Coprocessor registers seen by GDB.
|
|
* @cpregs_keys: Array that contains the corresponding Key of
|
|
* a given cpreg with the same order of the cpreg in the XML description.
|
|
*/
|
|
typedef struct DynamicGDBXMLInfo {
|
|
char *desc;
|
|
int num_cpregs;
|
|
uint32_t *cpregs_keys;
|
|
} DynamicGDBXMLInfo;
|
|
|
|
/* CPU state for each instance of a generic timer (in cp15 c14) */
|
|
typedef struct ARMGenericTimer {
|
|
uint64_t cval; /* Timer CompareValue register */
|
|
uint64_t ctl; /* Timer Control register */
|
|
} ARMGenericTimer;
|
|
|
|
#define GTIMER_PHYS 0
|
|
#define GTIMER_VIRT 1
|
|
#define GTIMER_HYP 2
|
|
#define GTIMER_SEC 3
|
|
#define NUM_GTIMERS 4
|
|
|
|
typedef struct {
|
|
uint64_t raw_tcr;
|
|
uint32_t mask;
|
|
uint32_t base_mask;
|
|
} TCR;
|
|
|
|
/* Define a maximum sized vector register.
|
|
* For 32-bit, this is a 128-bit NEON/AdvSIMD register.
|
|
* For 64-bit, this is a 2048-bit SVE register.
|
|
*
|
|
* Note that the mapping between S, D, and Q views of the register bank
|
|
* differs between AArch64 and AArch32.
|
|
* In AArch32:
|
|
* Qn = regs[n].d[1]:regs[n].d[0]
|
|
* Dn = regs[n / 2].d[n & 1]
|
|
* Sn = regs[n / 4].d[n % 4 / 2],
|
|
* bits 31..0 for even n, and bits 63..32 for odd n
|
|
* (and regs[16] to regs[31] are inaccessible)
|
|
* In AArch64:
|
|
* Zn = regs[n].d[*]
|
|
* Qn = regs[n].d[1]:regs[n].d[0]
|
|
* Dn = regs[n].d[0]
|
|
* Sn = regs[n].d[0] bits 31..0
|
|
* Hn = regs[n].d[0] bits 15..0
|
|
*
|
|
* This corresponds to the architecturally defined mapping between
|
|
* the two execution states, and means we do not need to explicitly
|
|
* map these registers when changing states.
|
|
*
|
|
* Align the data for use with TCG host vector operations.
|
|
*/
|
|
|
|
#ifdef TARGET_AARCH64
|
|
# define ARM_MAX_VQ 16
|
|
#else
|
|
# define ARM_MAX_VQ 1
|
|
#endif
|
|
|
|
typedef struct ARMVectorReg {
|
|
uint64_t d[2 * ARM_MAX_VQ] QEMU_ALIGNED(16);
|
|
} ARMVectorReg;
|
|
|
|
/* In AArch32 mode, predicate registers do not exist at all. */
|
|
#ifdef TARGET_AARCH64
|
|
typedef struct ARMPredicateReg {
|
|
uint64_t p[2 * ARM_MAX_VQ / 8] QEMU_ALIGNED(16);
|
|
} ARMPredicateReg;
|
|
#endif
|
|
|
|
|
|
typedef struct CPUARMState {
|
|
/* Regs for current mode. */
|
|
uint32_t regs[16];
|
|
|
|
/* 32/64 switch only happens when taking and returning from
|
|
* exceptions so the overlap semantics are taken care of then
|
|
* instead of having a complicated union.
|
|
*/
|
|
/* Regs for A64 mode. */
|
|
uint64_t xregs[32];
|
|
uint64_t pc;
|
|
/* PSTATE isn't an architectural register for ARMv8. However, it is
|
|
* convenient for us to assemble the underlying state into a 32 bit format
|
|
* identical to the architectural format used for the SPSR. (This is also
|
|
* what the Linux kernel's 'pstate' field in signal handlers and KVM's
|
|
* 'pstate' register are.) Of the PSTATE bits:
|
|
* NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
|
|
* semantics as for AArch32, as described in the comments on each field)
|
|
* nRW (also known as M[4]) is kept, inverted, in env->aarch64
|
|
* DAIF (exception masks) are kept in env->daif
|
|
* all other bits are stored in their correct places in env->pstate
|
|
*/
|
|
uint32_t pstate;
|
|
uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
|
|
|
|
/* Frequently accessed CPSR bits are stored separately for efficiency.
|
|
This contains all the other bits. Use cpsr_{read,write} to access
|
|
the whole CPSR. */
|
|
uint32_t uncached_cpsr;
|
|
uint32_t spsr;
|
|
|
|
/* Banked registers. */
|
|
uint64_t banked_spsr[8];
|
|
uint32_t banked_r13[8];
|
|
uint32_t banked_r14[8];
|
|
|
|
/* These hold r8-r12. */
|
|
uint32_t usr_regs[5];
|
|
uint32_t fiq_regs[5];
|
|
|
|
/* cpsr flag cache for faster execution */
|
|
uint32_t CF; /* 0 or 1 */
|
|
uint32_t VF; /* V is the bit 31. All other bits are undefined */
|
|
uint32_t NF; /* N is bit 31. All other bits are undefined. */
|
|
uint32_t ZF; /* Z set if zero. */
|
|
uint32_t QF; /* 0 or 1 */
|
|
uint32_t GE; /* cpsr[19:16] */
|
|
uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
|
|
uint32_t condexec_bits; /* IT bits. cpsr[15:10,26:25]. */
|
|
uint64_t daif; /* exception masks, in the bits they are in PSTATE */
|
|
|
|
uint64_t elr_el[4]; /* AArch64 exception link regs */
|
|
uint64_t sp_el[4]; /* AArch64 banked stack pointers */
|
|
|
|
/* System control coprocessor (cp15) */
|
|
struct {
|
|
uint32_t c0_cpuid;
|
|
union { /* Cache size selection */
|
|
struct {
|
|
uint64_t _unused_csselr0;
|
|
uint64_t csselr_ns;
|
|
uint64_t _unused_csselr1;
|
|
uint64_t csselr_s;
|
|
};
|
|
uint64_t csselr_el[4];
|
|
};
|
|
union { /* System control register. */
|
|
struct {
|
|
uint64_t _unused_sctlr;
|
|
uint64_t sctlr_ns;
|
|
uint64_t hsctlr;
|
|
uint64_t sctlr_s;
|
|
};
|
|
uint64_t sctlr_el[4];
|
|
};
|
|
uint64_t cpacr_el1; /* Architectural feature access control register */
|
|
uint64_t cptr_el[4]; /* ARMv8 feature trap registers */
|
|
uint32_t c1_xscaleauxcr; /* XScale auxiliary control register. */
|
|
uint64_t sder; /* Secure debug enable register. */
|
|
uint32_t nsacr; /* Non-secure access control register. */
|
|
union { /* MMU translation table base 0. */
|
|
struct {
|
|
uint64_t _unused_ttbr0_0;
|
|
uint64_t ttbr0_ns;
|
|
uint64_t _unused_ttbr0_1;
|
|
uint64_t ttbr0_s;
|
|
};
|
|
uint64_t ttbr0_el[4];
|
|
};
|
|
union { /* MMU translation table base 1. */
|
|
struct {
|
|
uint64_t _unused_ttbr1_0;
|
|
uint64_t ttbr1_ns;
|
|
uint64_t _unused_ttbr1_1;
|
|
uint64_t ttbr1_s;
|
|
};
|
|
uint64_t ttbr1_el[4];
|
|
};
|
|
uint64_t vttbr_el2; /* Virtualization Translation Table Base. */
|
|
/* MMU translation table base control. */
|
|
TCR tcr_el[4];
|
|
TCR vtcr_el2; /* Virtualization Translation Control. */
|
|
uint32_t c2_data; /* MPU data cacheable bits. */
|
|
uint32_t c2_insn; /* MPU instruction cacheable bits. */
|
|
union { /* MMU domain access control register
|
|
* MPU write buffer control.
|
|
*/
|
|
struct {
|
|
uint64_t dacr_ns;
|
|
uint64_t dacr_s;
|
|
};
|
|
struct {
|
|
uint64_t dacr32_el2;
|
|
};
|
|
};
|
|
uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
|
|
uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
|
|
uint64_t hcr_el2; /* Hypervisor configuration register */
|
|
uint64_t scr_el3; /* Secure configuration register. */
|
|
union { /* Fault status registers. */
|
|
struct {
|
|
uint64_t ifsr_ns;
|
|
uint64_t ifsr_s;
|
|
};
|
|
struct {
|
|
uint64_t ifsr32_el2;
|
|
};
|
|
};
|
|
union {
|
|
struct {
|
|
uint64_t _unused_dfsr;
|
|
uint64_t dfsr_ns;
|
|
uint64_t hsr;
|
|
uint64_t dfsr_s;
|
|
};
|
|
uint64_t esr_el[4];
|
|
};
|
|
uint32_t c6_region[8]; /* MPU base/size registers. */
|
|
union { /* Fault address registers. */
|
|
struct {
|
|
uint64_t _unused_far0;
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
uint32_t ifar_ns;
|
|
uint32_t dfar_ns;
|
|
uint32_t ifar_s;
|
|
uint32_t dfar_s;
|
|
#else
|
|
uint32_t dfar_ns;
|
|
uint32_t ifar_ns;
|
|
uint32_t dfar_s;
|
|
uint32_t ifar_s;
|
|
#endif
|
|
uint64_t _unused_far3;
|
|
};
|
|
uint64_t far_el[4];
|
|
};
|
|
uint64_t hpfar_el2;
|
|
uint64_t hstr_el2;
|
|
union { /* Translation result. */
|
|
struct {
|
|
uint64_t _unused_par_0;
|
|
uint64_t par_ns;
|
|
uint64_t _unused_par_1;
|
|
uint64_t par_s;
|
|
};
|
|
uint64_t par_el[4];
|
|
};
|
|
|
|
uint32_t c9_insn; /* Cache lockdown registers. */
|
|
uint32_t c9_data;
|
|
uint64_t c9_pmcr; /* performance monitor control register */
|
|
uint64_t c9_pmcnten; /* perf monitor counter enables */
|
|
uint64_t c9_pmovsr; /* perf monitor overflow status */
|
|
uint64_t c9_pmuserenr; /* perf monitor user enable */
|
|
uint64_t c9_pmselr; /* perf monitor counter selection register */
|
|
uint64_t c9_pminten; /* perf monitor interrupt enables */
|
|
union { /* Memory attribute redirection */
|
|
struct {
|
|
#ifdef HOST_WORDS_BIGENDIAN
|
|
uint64_t _unused_mair_0;
|
|
uint32_t mair1_ns;
|
|
uint32_t mair0_ns;
|
|
uint64_t _unused_mair_1;
|
|
uint32_t mair1_s;
|
|
uint32_t mair0_s;
|
|
#else
|
|
uint64_t _unused_mair_0;
|
|
uint32_t mair0_ns;
|
|
uint32_t mair1_ns;
|
|
uint64_t _unused_mair_1;
|
|
uint32_t mair0_s;
|
|
uint32_t mair1_s;
|
|
#endif
|
|
};
|
|
uint64_t mair_el[4];
|
|
};
|
|
union { /* vector base address register */
|
|
struct {
|
|
uint64_t _unused_vbar;
|
|
uint64_t vbar_ns;
|
|
uint64_t hvbar;
|
|
uint64_t vbar_s;
|
|
};
|
|
uint64_t vbar_el[4];
|
|
};
|
|
uint32_t mvbar; /* (monitor) vector base address register */
|
|
struct { /* FCSE PID. */
|
|
uint32_t fcseidr_ns;
|
|
uint32_t fcseidr_s;
|
|
};
|
|
union { /* Context ID. */
|
|
struct {
|
|
uint64_t _unused_contextidr_0;
|
|
uint64_t contextidr_ns;
|
|
uint64_t _unused_contextidr_1;
|
|
uint64_t contextidr_s;
|
|
};
|
|
uint64_t contextidr_el[4];
|
|
};
|
|
union { /* User RW Thread register. */
|
|
struct {
|
|
uint64_t tpidrurw_ns;
|
|
uint64_t tpidrprw_ns;
|
|
uint64_t htpidr;
|
|
uint64_t _tpidr_el3;
|
|
};
|
|
uint64_t tpidr_el[4];
|
|
};
|
|
/* The secure banks of these registers don't map anywhere */
|
|
uint64_t tpidrurw_s;
|
|
uint64_t tpidrprw_s;
|
|
uint64_t tpidruro_s;
|
|
|
|
union { /* User RO Thread register. */
|
|
uint64_t tpidruro_ns;
|
|
uint64_t tpidrro_el[1];
|
|
};
|
|
uint64_t c14_cntfrq; /* Counter Frequency register */
|
|
uint64_t c14_cntkctl; /* Timer Control register */
|
|
uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
|
|
uint64_t cntvoff_el2; /* Counter Virtual Offset register */
|
|
ARMGenericTimer c14_timer[NUM_GTIMERS];
|
|
uint32_t c15_cpar; /* XScale Coprocessor Access Register */
|
|
uint32_t c15_ticonfig; /* TI925T configuration byte. */
|
|
uint32_t c15_i_max; /* Maximum D-cache dirty line index. */
|
|
uint32_t c15_i_min; /* Minimum D-cache dirty line index. */
|
|
uint32_t c15_threadid; /* TI debugger thread-ID. */
|
|
uint32_t c15_config_base_address; /* SCU base address. */
|
|
uint32_t c15_diagnostic; /* diagnostic register */
|
|
uint32_t c15_power_diagnostic;
|
|
uint32_t c15_power_control; /* power control */
|
|
uint64_t dbgbvr[16]; /* breakpoint value registers */
|
|
uint64_t dbgbcr[16]; /* breakpoint control registers */
|
|
uint64_t dbgwvr[16]; /* watchpoint value registers */
|
|
uint64_t dbgwcr[16]; /* watchpoint control registers */
|
|
uint64_t mdscr_el1;
|
|
uint64_t oslsr_el1; /* OS Lock Status */
|
|
uint64_t mdcr_el2;
|
|
uint64_t mdcr_el3;
|
|
/* If the counter is enabled, this stores the last time the counter
|
|
* was reset. Otherwise it stores the counter value
|
|
*/
|
|
uint64_t c15_ccnt;
|
|
uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
|
|
uint64_t vpidr_el2; /* Virtualization Processor ID Register */
|
|
uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
|
|
} cp15;
|
|
|
|
struct {
|
|
/* M profile has up to 4 stack pointers:
|
|
* a Main Stack Pointer and a Process Stack Pointer for each
|
|
* of the Secure and Non-Secure states. (If the CPU doesn't support
|
|
* the security extension then it has only two SPs.)
|
|
* In QEMU we always store the currently active SP in regs[13],
|
|
* and the non-active SP for the current security state in
|
|
* v7m.other_sp. The stack pointers for the inactive security state
|
|
* are stored in other_ss_msp and other_ss_psp.
|
|
* switch_v7m_security_state() is responsible for rearranging them
|
|
* when we change security state.
|
|
*/
|
|
uint32_t other_sp;
|
|
uint32_t other_ss_msp;
|
|
uint32_t other_ss_psp;
|
|
uint32_t vecbase[M_REG_NUM_BANKS];
|
|
uint32_t basepri[M_REG_NUM_BANKS];
|
|
uint32_t control[M_REG_NUM_BANKS];
|
|
uint32_t ccr[M_REG_NUM_BANKS]; /* Configuration and Control */
|
|
uint32_t cfsr[M_REG_NUM_BANKS]; /* Configurable Fault Status */
|
|
uint32_t hfsr; /* HardFault Status */
|
|
uint32_t dfsr; /* Debug Fault Status Register */
|
|
uint32_t sfsr; /* Secure Fault Status Register */
|
|
uint32_t mmfar[M_REG_NUM_BANKS]; /* MemManage Fault Address */
|
|
uint32_t bfar; /* BusFault Address */
|
|
uint32_t sfar; /* Secure Fault Address Register */
|
|
unsigned mpu_ctrl[M_REG_NUM_BANKS]; /* MPU_CTRL */
|
|
int exception;
|
|
uint32_t primask[M_REG_NUM_BANKS];
|
|
uint32_t faultmask[M_REG_NUM_BANKS];
|
|
uint32_t aircr; /* only holds r/w state if security extn implemented */
|
|
uint32_t secure; /* Is CPU in Secure state? (not guest visible) */
|
|
uint32_t csselr[M_REG_NUM_BANKS];
|
|
uint32_t scr[M_REG_NUM_BANKS];
|
|
uint32_t msplim[M_REG_NUM_BANKS];
|
|
uint32_t psplim[M_REG_NUM_BANKS];
|
|
} v7m;
|
|
|
|
/* Information associated with an exception about to be taken:
|
|
* code which raises an exception must set cs->exception_index and
|
|
* the relevant parts of this structure; the cpu_do_interrupt function
|
|
* will then set the guest-visible registers as part of the exception
|
|
* entry process.
|
|
*/
|
|
struct {
|
|
uint32_t syndrome; /* AArch64 format syndrome register */
|
|
uint32_t fsr; /* AArch32 format fault status register info */
|
|
uint64_t vaddress; /* virtual addr associated with exception, if any */
|
|
uint32_t target_el; /* EL the exception should be targeted for */
|
|
/* If we implement EL2 we will also need to store information
|
|
* about the intermediate physical address for stage 2 faults.
|
|
*/
|
|
} exception;
|
|
|
|
/* Thumb-2 EE state. */
|
|
uint32_t teecr;
|
|
uint32_t teehbr;
|
|
|
|
/* VFP coprocessor state. */
|
|
struct {
|
|
ARMVectorReg zregs[32];
|
|
|
|
#ifdef TARGET_AARCH64
|
|
/* Store FFR as pregs[16] to make it easier to treat as any other. */
|
|
#define FFR_PRED_NUM 16
|
|
ARMPredicateReg pregs[17];
|
|
/* Scratch space for aa64 sve predicate temporary. */
|
|
ARMPredicateReg preg_tmp;
|
|
#endif
|
|
|
|
uint32_t xregs[16];
|
|
/* We store these fpcsr fields separately for convenience. */
|
|
int vec_len;
|
|
int vec_stride;
|
|
|
|
/* Scratch space for aa32 neon expansion. */
|
|
uint32_t scratch[8];
|
|
|
|
/* There are a number of distinct float control structures:
|
|
*
|
|
* fp_status: is the "normal" fp status.
|
|
* fp_status_fp16: used for half-precision calculations
|
|
* standard_fp_status : the ARM "Standard FPSCR Value"
|
|
*
|
|
* Half-precision operations are governed by a separate
|
|
* flush-to-zero control bit in FPSCR:FZ16. We pass a separate
|
|
* status structure to control this.
|
|
*
|
|
* The "Standard FPSCR", ie default-NaN, flush-to-zero,
|
|
* round-to-nearest and is used by any operations (generally
|
|
* Neon) which the architecture defines as controlled by the
|
|
* standard FPSCR value rather than the FPSCR.
|
|
*
|
|
* To avoid having to transfer exception bits around, we simply
|
|
* say that the FPSCR cumulative exception flags are the logical
|
|
* OR of the flags in the three fp statuses. This relies on the
|
|
* only thing which needs to read the exception flags being
|
|
* an explicit FPSCR read.
|
|
*/
|
|
float_status fp_status;
|
|
float_status fp_status_f16;
|
|
float_status standard_fp_status;
|
|
|
|
/* ZCR_EL[1-3] */
|
|
uint64_t zcr_el[4];
|
|
} vfp;
|
|
uint64_t exclusive_addr;
|
|
uint64_t exclusive_val;
|
|
uint64_t exclusive_high;
|
|
|
|
/* iwMMXt coprocessor state. */
|
|
struct {
|
|
uint64_t regs[16];
|
|
uint64_t val;
|
|
|
|
uint32_t cregs[16];
|
|
} iwmmxt;
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
/* For usermode syscall translation. */
|
|
int eabi;
|
|
#endif
|
|
|
|
struct CPUBreakpoint *cpu_breakpoint[16];
|
|
struct CPUWatchpoint *cpu_watchpoint[16];
|
|
|
|
/* Fields up to this point are cleared by a CPU reset */
|
|
struct {} end_reset_fields;
|
|
|
|
CPU_COMMON
|
|
|
|
/* Fields after CPU_COMMON are preserved across CPU reset. */
|
|
|
|
/* Internal CPU feature flags. */
|
|
uint64_t features;
|
|
|
|
/* PMSAv7 MPU */
|
|
struct {
|
|
uint32_t *drbar;
|
|
uint32_t *drsr;
|
|
uint32_t *dracr;
|
|
uint32_t rnr[M_REG_NUM_BANKS];
|
|
} pmsav7;
|
|
|
|
/* PMSAv8 MPU */
|
|
struct {
|
|
/* The PMSAv8 implementation also shares some PMSAv7 config
|
|
* and state:
|
|
* pmsav7.rnr (region number register)
|
|
* pmsav7_dregion (number of configured regions)
|
|
*/
|
|
uint32_t *rbar[M_REG_NUM_BANKS];
|
|
uint32_t *rlar[M_REG_NUM_BANKS];
|
|
uint32_t mair0[M_REG_NUM_BANKS];
|
|
uint32_t mair1[M_REG_NUM_BANKS];
|
|
} pmsav8;
|
|
|
|
/* v8M SAU */
|
|
struct {
|
|
uint32_t *rbar;
|
|
uint32_t *rlar;
|
|
uint32_t rnr;
|
|
uint32_t ctrl;
|
|
} sau;
|
|
|
|
void *nvic;
|
|
const struct arm_boot_info *boot_info;
|
|
/* Store GICv3CPUState to access from this struct */
|
|
void *gicv3state;
|
|
} CPUARMState;
|
|
|
|
/**
|
|
* ARMELChangeHookFn:
|
|
* type of a function which can be registered via arm_register_el_change_hook()
|
|
* to get callbacks when the CPU changes its exception level or mode.
|
|
*/
|
|
typedef void ARMELChangeHookFn(ARMCPU *cpu, void *opaque);
|
|
typedef struct ARMELChangeHook ARMELChangeHook;
|
|
struct ARMELChangeHook {
|
|
ARMELChangeHookFn *hook;
|
|
void *opaque;
|
|
QLIST_ENTRY(ARMELChangeHook) node;
|
|
};
|
|
|
|
/* These values map onto the return values for
|
|
* QEMU_PSCI_0_2_FN_AFFINITY_INFO */
|
|
typedef enum ARMPSCIState {
|
|
PSCI_ON = 0,
|
|
PSCI_OFF = 1,
|
|
PSCI_ON_PENDING = 2
|
|
} ARMPSCIState;
|
|
|
|
/**
|
|
* ARMCPU:
|
|
* @env: #CPUARMState
|
|
*
|
|
* An ARM CPU core.
|
|
*/
|
|
struct ARMCPU {
|
|
/*< private >*/
|
|
CPUState parent_obj;
|
|
/*< public >*/
|
|
|
|
CPUARMState env;
|
|
|
|
/* Coprocessor information */
|
|
GHashTable *cp_regs;
|
|
/* For marshalling (mostly coprocessor) register state between the
|
|
* kernel and QEMU (for KVM) and between two QEMUs (for migration),
|
|
* we use these arrays.
|
|
*/
|
|
/* List of register indexes managed via these arrays; (full KVM style
|
|
* 64 bit indexes, not CPRegInfo 32 bit indexes)
|
|
*/
|
|
uint64_t *cpreg_indexes;
|
|
/* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
|
|
uint64_t *cpreg_values;
|
|
/* Length of the indexes, values, reset_values arrays */
|
|
int32_t cpreg_array_len;
|
|
/* These are used only for migration: incoming data arrives in
|
|
* these fields and is sanity checked in post_load before copying
|
|
* to the working data structures above.
|
|
*/
|
|
uint64_t *cpreg_vmstate_indexes;
|
|
uint64_t *cpreg_vmstate_values;
|
|
int32_t cpreg_vmstate_array_len;
|
|
|
|
DynamicGDBXMLInfo dyn_xml;
|
|
|
|
/* Timers used by the generic (architected) timer */
|
|
QEMUTimer *gt_timer[NUM_GTIMERS];
|
|
/* GPIO outputs for generic timer */
|
|
qemu_irq gt_timer_outputs[NUM_GTIMERS];
|
|
/* GPIO output for GICv3 maintenance interrupt signal */
|
|
qemu_irq gicv3_maintenance_interrupt;
|
|
/* GPIO output for the PMU interrupt */
|
|
qemu_irq pmu_interrupt;
|
|
|
|
/* MemoryRegion to use for secure physical accesses */
|
|
MemoryRegion *secure_memory;
|
|
|
|
/* For v8M, pointer to the IDAU interface provided by board/SoC */
|
|
Object *idau;
|
|
|
|
/* 'compatible' string for this CPU for Linux device trees */
|
|
const char *dtb_compatible;
|
|
|
|
/* PSCI version for this CPU
|
|
* Bits[31:16] = Major Version
|
|
* Bits[15:0] = Minor Version
|
|
*/
|
|
uint32_t psci_version;
|
|
|
|
/* Should CPU start in PSCI powered-off state? */
|
|
bool start_powered_off;
|
|
|
|
/* Current power state, access guarded by BQL */
|
|
ARMPSCIState power_state;
|
|
|
|
/* CPU has virtualization extension */
|
|
bool has_el2;
|
|
/* CPU has security extension */
|
|
bool has_el3;
|
|
/* CPU has PMU (Performance Monitor Unit) */
|
|
bool has_pmu;
|
|
|
|
/* CPU has memory protection unit */
|
|
bool has_mpu;
|
|
/* PMSAv7 MPU number of supported regions */
|
|
uint32_t pmsav7_dregion;
|
|
/* v8M SAU number of supported regions */
|
|
uint32_t sau_sregion;
|
|
|
|
/* PSCI conduit used to invoke PSCI methods
|
|
* 0 - disabled, 1 - smc, 2 - hvc
|
|
*/
|
|
uint32_t psci_conduit;
|
|
|
|
/* For v8M, initial value of the Secure VTOR */
|
|
uint32_t init_svtor;
|
|
|
|
/* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
|
|
* QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
|
|
*/
|
|
uint32_t kvm_target;
|
|
|
|
/* KVM init features for this CPU */
|
|
uint32_t kvm_init_features[7];
|
|
|
|
/* Uniprocessor system with MP extensions */
|
|
bool mp_is_up;
|
|
|
|
/* True if we tried kvm_arm_host_cpu_features() during CPU instance_init
|
|
* and the probe failed (so we need to report the error in realize)
|
|
*/
|
|
bool host_cpu_probe_failed;
|
|
|
|
/* Specify the number of cores in this CPU cluster. Used for the L2CTLR
|
|
* register.
|
|
*/
|
|
int32_t core_count;
|
|
|
|
/* The instance init functions for implementation-specific subclasses
|
|
* set these fields to specify the implementation-dependent values of
|
|
* various constant registers and reset values of non-constant
|
|
* registers.
|
|
* Some of these might become QOM properties eventually.
|
|
* Field names match the official register names as defined in the
|
|
* ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
|
|
* is used for reset values of non-constant registers; no reset_
|
|
* prefix means a constant register.
|
|
*/
|
|
uint32_t midr;
|
|
uint32_t revidr;
|
|
uint32_t reset_fpsid;
|
|
uint32_t mvfr0;
|
|
uint32_t mvfr1;
|
|
uint32_t mvfr2;
|
|
uint32_t ctr;
|
|
uint32_t reset_sctlr;
|
|
uint32_t id_pfr0;
|
|
uint32_t id_pfr1;
|
|
uint32_t id_dfr0;
|
|
uint32_t pmceid0;
|
|
uint32_t pmceid1;
|
|
uint32_t id_afr0;
|
|
uint32_t id_mmfr0;
|
|
uint32_t id_mmfr1;
|
|
uint32_t id_mmfr2;
|
|
uint32_t id_mmfr3;
|
|
uint32_t id_mmfr4;
|
|
uint32_t id_isar0;
|
|
uint32_t id_isar1;
|
|
uint32_t id_isar2;
|
|
uint32_t id_isar3;
|
|
uint32_t id_isar4;
|
|
uint32_t id_isar5;
|
|
uint32_t id_isar6;
|
|
uint64_t id_aa64pfr0;
|
|
uint64_t id_aa64pfr1;
|
|
uint64_t id_aa64dfr0;
|
|
uint64_t id_aa64dfr1;
|
|
uint64_t id_aa64afr0;
|
|
uint64_t id_aa64afr1;
|
|
uint64_t id_aa64isar0;
|
|
uint64_t id_aa64isar1;
|
|
uint64_t id_aa64mmfr0;
|
|
uint64_t id_aa64mmfr1;
|
|
uint32_t dbgdidr;
|
|
uint32_t clidr;
|
|
uint64_t mp_affinity; /* MP ID without feature bits */
|
|
/* The elements of this array are the CCSIDR values for each cache,
|
|
* in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
|
|
*/
|
|
uint32_t ccsidr[16];
|
|
uint64_t reset_cbar;
|
|
uint32_t reset_auxcr;
|
|
bool reset_hivecs;
|
|
/* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
|
|
uint32_t dcz_blocksize;
|
|
uint64_t rvbar;
|
|
|
|
/* Configurable aspects of GIC cpu interface (which is part of the CPU) */
|
|
int gic_num_lrs; /* number of list registers */
|
|
int gic_vpribits; /* number of virtual priority bits */
|
|
int gic_vprebits; /* number of virtual preemption bits */
|
|
|
|
/* Whether the cfgend input is high (i.e. this CPU should reset into
|
|
* big-endian mode). This setting isn't used directly: instead it modifies
|
|
* the reset_sctlr value to have SCTLR_B or SCTLR_EE set, depending on the
|
|
* architecture version.
|
|
*/
|
|
bool cfgend;
|
|
|
|
QLIST_HEAD(, ARMELChangeHook) pre_el_change_hooks;
|
|
QLIST_HEAD(, ARMELChangeHook) el_change_hooks;
|
|
|
|
int32_t node_id; /* NUMA node this CPU belongs to */
|
|
|
|
/* Used to synchronize KVM and QEMU in-kernel device levels */
|
|
uint8_t device_irq_level;
|
|
|
|
/* Used to set the maximum vector length the cpu will support. */
|
|
uint32_t sve_max_vq;
|
|
};
|
|
|
|
static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
|
|
{
|
|
return container_of(env, ARMCPU, env);
|
|
}
|
|
|
|
uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz);
|
|
|
|
#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
|
|
|
|
#define ENV_OFFSET offsetof(ARMCPU, env)
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
extern const struct VMStateDescription vmstate_arm_cpu;
|
|
#endif
|
|
|
|
void arm_cpu_do_interrupt(CPUState *cpu);
|
|
void arm_v7m_cpu_do_interrupt(CPUState *cpu);
|
|
bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
|
|
|
|
void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
|
|
int flags);
|
|
|
|
hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
|
|
MemTxAttrs *attrs);
|
|
|
|
int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
|
|
int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
|
|
|
|
/* Dynamically generates for gdb stub an XML description of the sysregs from
|
|
* the cp_regs hashtable. Returns the registered sysregs number.
|
|
*/
|
|
int arm_gen_dynamic_xml(CPUState *cpu);
|
|
|
|
/* Returns the dynamically generated XML for the gdb stub.
|
|
* Returns a pointer to the XML contents for the specified XML file or NULL
|
|
* if the XML name doesn't match the predefined one.
|
|
*/
|
|
const char *arm_gdb_get_dynamic_xml(CPUState *cpu, const char *xmlname);
|
|
|
|
int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
|
|
int cpuid, void *opaque);
|
|
int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
|
|
int cpuid, void *opaque);
|
|
|
|
#ifdef TARGET_AARCH64
|
|
int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
|
|
int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
|
|
void aarch64_sve_narrow_vq(CPUARMState *env, unsigned vq);
|
|
#endif
|
|
|
|
target_ulong do_arm_semihosting(CPUARMState *env);
|
|
void aarch64_sync_32_to_64(CPUARMState *env);
|
|
void aarch64_sync_64_to_32(CPUARMState *env);
|
|
|
|
static inline bool is_a64(CPUARMState *env)
|
|
{
|
|
return env->aarch64;
|
|
}
|
|
|
|
/* you can call this signal handler from your SIGBUS and SIGSEGV
|
|
signal handlers to inform the virtual CPU of exceptions. non zero
|
|
is returned if the signal was handled by the virtual CPU. */
|
|
int cpu_arm_signal_handler(int host_signum, void *pinfo,
|
|
void *puc);
|
|
|
|
/**
|
|
* pmccntr_sync
|
|
* @env: CPUARMState
|
|
*
|
|
* Synchronises the counter in the PMCCNTR. This must always be called twice,
|
|
* once before any action that might affect the timer and again afterwards.
|
|
* The function is used to swap the state of the register if required.
|
|
* This only happens when not in user mode (!CONFIG_USER_ONLY)
|
|
*/
|
|
void pmccntr_sync(CPUARMState *env);
|
|
|
|
/* SCTLR bit meanings. Several bits have been reused in newer
|
|
* versions of the architecture; in that case we define constants
|
|
* for both old and new bit meanings. Code which tests against those
|
|
* bits should probably check or otherwise arrange that the CPU
|
|
* is the architectural version it expects.
|
|
*/
|
|
#define SCTLR_M (1U << 0)
|
|
#define SCTLR_A (1U << 1)
|
|
#define SCTLR_C (1U << 2)
|
|
#define SCTLR_W (1U << 3) /* up to v6; RAO in v7 */
|
|
#define SCTLR_SA (1U << 3)
|
|
#define SCTLR_P (1U << 4) /* up to v5; RAO in v6 and v7 */
|
|
#define SCTLR_SA0 (1U << 4) /* v8 onward, AArch64 only */
|
|
#define SCTLR_D (1U << 5) /* up to v5; RAO in v6 */
|
|
#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
|
|
#define SCTLR_L (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
|
|
#define SCTLR_B (1U << 7) /* up to v6; RAZ in v7 */
|
|
#define SCTLR_ITD (1U << 7) /* v8 onward */
|
|
#define SCTLR_S (1U << 8) /* up to v6; RAZ in v7 */
|
|
#define SCTLR_SED (1U << 8) /* v8 onward */
|
|
#define SCTLR_R (1U << 9) /* up to v6; RAZ in v7 */
|
|
#define SCTLR_UMA (1U << 9) /* v8 onward, AArch64 only */
|
|
#define SCTLR_F (1U << 10) /* up to v6 */
|
|
#define SCTLR_SW (1U << 10) /* v7 onward */
|
|
#define SCTLR_Z (1U << 11)
|
|
#define SCTLR_I (1U << 12)
|
|
#define SCTLR_V (1U << 13)
|
|
#define SCTLR_RR (1U << 14) /* up to v7 */
|
|
#define SCTLR_DZE (1U << 14) /* v8 onward, AArch64 only */
|
|
#define SCTLR_L4 (1U << 15) /* up to v6; RAZ in v7 */
|
|
#define SCTLR_UCT (1U << 15) /* v8 onward, AArch64 only */
|
|
#define SCTLR_DT (1U << 16) /* up to ??, RAO in v6 and v7 */
|
|
#define SCTLR_nTWI (1U << 16) /* v8 onward */
|
|
#define SCTLR_HA (1U << 17)
|
|
#define SCTLR_BR (1U << 17) /* PMSA only */
|
|
#define SCTLR_IT (1U << 18) /* up to ??, RAO in v6 and v7 */
|
|
#define SCTLR_nTWE (1U << 18) /* v8 onward */
|
|
#define SCTLR_WXN (1U << 19)
|
|
#define SCTLR_ST (1U << 20) /* up to ??, RAZ in v6 */
|
|
#define SCTLR_UWXN (1U << 20) /* v7 onward */
|
|
#define SCTLR_FI (1U << 21)
|
|
#define SCTLR_U (1U << 22)
|
|
#define SCTLR_XP (1U << 23) /* up to v6; v7 onward RAO */
|
|
#define SCTLR_VE (1U << 24) /* up to v7 */
|
|
#define SCTLR_E0E (1U << 24) /* v8 onward, AArch64 only */
|
|
#define SCTLR_EE (1U << 25)
|
|
#define SCTLR_L2 (1U << 26) /* up to v6, RAZ in v7 */
|
|
#define SCTLR_UCI (1U << 26) /* v8 onward, AArch64 only */
|
|
#define SCTLR_NMFI (1U << 27)
|
|
#define SCTLR_TRE (1U << 28)
|
|
#define SCTLR_AFE (1U << 29)
|
|
#define SCTLR_TE (1U << 30)
|
|
|
|
#define CPTR_TCPAC (1U << 31)
|
|
#define CPTR_TTA (1U << 20)
|
|
#define CPTR_TFP (1U << 10)
|
|
#define CPTR_TZ (1U << 8) /* CPTR_EL2 */
|
|
#define CPTR_EZ (1U << 8) /* CPTR_EL3 */
|
|
|
|
#define MDCR_EPMAD (1U << 21)
|
|
#define MDCR_EDAD (1U << 20)
|
|
#define MDCR_SPME (1U << 17)
|
|
#define MDCR_SDD (1U << 16)
|
|
#define MDCR_SPD (3U << 14)
|
|
#define MDCR_TDRA (1U << 11)
|
|
#define MDCR_TDOSA (1U << 10)
|
|
#define MDCR_TDA (1U << 9)
|
|
#define MDCR_TDE (1U << 8)
|
|
#define MDCR_HPME (1U << 7)
|
|
#define MDCR_TPM (1U << 6)
|
|
#define MDCR_TPMCR (1U << 5)
|
|
|
|
/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
|
|
#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
|
|
|
|
#define CPSR_M (0x1fU)
|
|
#define CPSR_T (1U << 5)
|
|
#define CPSR_F (1U << 6)
|
|
#define CPSR_I (1U << 7)
|
|
#define CPSR_A (1U << 8)
|
|
#define CPSR_E (1U << 9)
|
|
#define CPSR_IT_2_7 (0xfc00U)
|
|
#define CPSR_GE (0xfU << 16)
|
|
#define CPSR_IL (1U << 20)
|
|
/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
|
|
* an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
|
|
* env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
|
|
* where it is live state but not accessible to the AArch32 code.
|
|
*/
|
|
#define CPSR_RESERVED (0x7U << 21)
|
|
#define CPSR_J (1U << 24)
|
|
#define CPSR_IT_0_1 (3U << 25)
|
|
#define CPSR_Q (1U << 27)
|
|
#define CPSR_V (1U << 28)
|
|
#define CPSR_C (1U << 29)
|
|
#define CPSR_Z (1U << 30)
|
|
#define CPSR_N (1U << 31)
|
|
#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
|
|
#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
|
|
|
|
#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
|
|
#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
|
|
| CPSR_NZCV)
|
|
/* Bits writable in user mode. */
|
|
#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
|
|
/* Execution state bits. MRS read as zero, MSR writes ignored. */
|
|
#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
|
|
/* Mask of bits which may be set by exception return copying them from SPSR */
|
|
#define CPSR_ERET_MASK (~CPSR_RESERVED)
|
|
|
|
/* Bit definitions for M profile XPSR. Most are the same as CPSR. */
|
|
#define XPSR_EXCP 0x1ffU
|
|
#define XPSR_SPREALIGN (1U << 9) /* Only set in exception stack frames */
|
|
#define XPSR_IT_2_7 CPSR_IT_2_7
|
|
#define XPSR_GE CPSR_GE
|
|
#define XPSR_SFPA (1U << 20) /* Only set in exception stack frames */
|
|
#define XPSR_T (1U << 24) /* Not the same as CPSR_T ! */
|
|
#define XPSR_IT_0_1 CPSR_IT_0_1
|
|
#define XPSR_Q CPSR_Q
|
|
#define XPSR_V CPSR_V
|
|
#define XPSR_C CPSR_C
|
|
#define XPSR_Z CPSR_Z
|
|
#define XPSR_N CPSR_N
|
|
#define XPSR_NZCV CPSR_NZCV
|
|
#define XPSR_IT CPSR_IT
|
|
|
|
#define TTBCR_N (7U << 0) /* TTBCR.EAE==0 */
|
|
#define TTBCR_T0SZ (7U << 0) /* TTBCR.EAE==1 */
|
|
#define TTBCR_PD0 (1U << 4)
|
|
#define TTBCR_PD1 (1U << 5)
|
|
#define TTBCR_EPD0 (1U << 7)
|
|
#define TTBCR_IRGN0 (3U << 8)
|
|
#define TTBCR_ORGN0 (3U << 10)
|
|
#define TTBCR_SH0 (3U << 12)
|
|
#define TTBCR_T1SZ (3U << 16)
|
|
#define TTBCR_A1 (1U << 22)
|
|
#define TTBCR_EPD1 (1U << 23)
|
|
#define TTBCR_IRGN1 (3U << 24)
|
|
#define TTBCR_ORGN1 (3U << 26)
|
|
#define TTBCR_SH1 (1U << 28)
|
|
#define TTBCR_EAE (1U << 31)
|
|
|
|
/* Bit definitions for ARMv8 SPSR (PSTATE) format.
|
|
* Only these are valid when in AArch64 mode; in
|
|
* AArch32 mode SPSRs are basically CPSR-format.
|
|
*/
|
|
#define PSTATE_SP (1U)
|
|
#define PSTATE_M (0xFU)
|
|
#define PSTATE_nRW (1U << 4)
|
|
#define PSTATE_F (1U << 6)
|
|
#define PSTATE_I (1U << 7)
|
|
#define PSTATE_A (1U << 8)
|
|
#define PSTATE_D (1U << 9)
|
|
#define PSTATE_IL (1U << 20)
|
|
#define PSTATE_SS (1U << 21)
|
|
#define PSTATE_V (1U << 28)
|
|
#define PSTATE_C (1U << 29)
|
|
#define PSTATE_Z (1U << 30)
|
|
#define PSTATE_N (1U << 31)
|
|
#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
|
|
#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
|
|
#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
|
|
/* Mode values for AArch64 */
|
|
#define PSTATE_MODE_EL3h 13
|
|
#define PSTATE_MODE_EL3t 12
|
|
#define PSTATE_MODE_EL2h 9
|
|
#define PSTATE_MODE_EL2t 8
|
|
#define PSTATE_MODE_EL1h 5
|
|
#define PSTATE_MODE_EL1t 4
|
|
#define PSTATE_MODE_EL0t 0
|
|
|
|
/* Write a new value to v7m.exception, thus transitioning into or out
|
|
* of Handler mode; this may result in a change of active stack pointer.
|
|
*/
|
|
void write_v7m_exception(CPUARMState *env, uint32_t new_exc);
|
|
|
|
/* Map EL and handler into a PSTATE_MODE. */
|
|
static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
|
|
{
|
|
return (el << 2) | handler;
|
|
}
|
|
|
|
/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
|
|
* interprocessing, so we don't attempt to sync with the cpsr state used by
|
|
* the 32 bit decoder.
|
|
*/
|
|
static inline uint32_t pstate_read(CPUARMState *env)
|
|
{
|
|
int ZF;
|
|
|
|
ZF = (env->ZF == 0);
|
|
return (env->NF & 0x80000000) | (ZF << 30)
|
|
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
|
|
| env->pstate | env->daif;
|
|
}
|
|
|
|
static inline void pstate_write(CPUARMState *env, uint32_t val)
|
|
{
|
|
env->ZF = (~val) & PSTATE_Z;
|
|
env->NF = val;
|
|
env->CF = (val >> 29) & 1;
|
|
env->VF = (val << 3) & 0x80000000;
|
|
env->daif = val & PSTATE_DAIF;
|
|
env->pstate = val & ~CACHED_PSTATE_BITS;
|
|
}
|
|
|
|
/* Return the current CPSR value. */
|
|
uint32_t cpsr_read(CPUARMState *env);
|
|
|
|
typedef enum CPSRWriteType {
|
|
CPSRWriteByInstr = 0, /* from guest MSR or CPS */
|
|
CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
|
|
CPSRWriteRaw = 2, /* trust values, do not switch reg banks */
|
|
CPSRWriteByGDBStub = 3, /* from the GDB stub */
|
|
} CPSRWriteType;
|
|
|
|
/* Set the CPSR. Note that some bits of mask must be all-set or all-clear.*/
|
|
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
|
|
CPSRWriteType write_type);
|
|
|
|
/* Return the current xPSR value. */
|
|
static inline uint32_t xpsr_read(CPUARMState *env)
|
|
{
|
|
int ZF;
|
|
ZF = (env->ZF == 0);
|
|
return (env->NF & 0x80000000) | (ZF << 30)
|
|
| (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
|
|
| (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
|
|
| ((env->condexec_bits & 0xfc) << 8)
|
|
| env->v7m.exception;
|
|
}
|
|
|
|
/* Set the xPSR. Note that some bits of mask must be all-set or all-clear. */
|
|
static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
|
|
{
|
|
if (mask & XPSR_NZCV) {
|
|
env->ZF = (~val) & XPSR_Z;
|
|
env->NF = val;
|
|
env->CF = (val >> 29) & 1;
|
|
env->VF = (val << 3) & 0x80000000;
|
|
}
|
|
if (mask & XPSR_Q) {
|
|
env->QF = ((val & XPSR_Q) != 0);
|
|
}
|
|
if (mask & XPSR_T) {
|
|
env->thumb = ((val & XPSR_T) != 0);
|
|
}
|
|
if (mask & XPSR_IT_0_1) {
|
|
env->condexec_bits &= ~3;
|
|
env->condexec_bits |= (val >> 25) & 3;
|
|
}
|
|
if (mask & XPSR_IT_2_7) {
|
|
env->condexec_bits &= 3;
|
|
env->condexec_bits |= (val >> 8) & 0xfc;
|
|
}
|
|
if (mask & XPSR_EXCP) {
|
|
/* Note that this only happens on exception exit */
|
|
write_v7m_exception(env, val & XPSR_EXCP);
|
|
}
|
|
}
|
|
|
|
#define HCR_VM (1ULL << 0)
|
|
#define HCR_SWIO (1ULL << 1)
|
|
#define HCR_PTW (1ULL << 2)
|
|
#define HCR_FMO (1ULL << 3)
|
|
#define HCR_IMO (1ULL << 4)
|
|
#define HCR_AMO (1ULL << 5)
|
|
#define HCR_VF (1ULL << 6)
|
|
#define HCR_VI (1ULL << 7)
|
|
#define HCR_VSE (1ULL << 8)
|
|
#define HCR_FB (1ULL << 9)
|
|
#define HCR_BSU_MASK (3ULL << 10)
|
|
#define HCR_DC (1ULL << 12)
|
|
#define HCR_TWI (1ULL << 13)
|
|
#define HCR_TWE (1ULL << 14)
|
|
#define HCR_TID0 (1ULL << 15)
|
|
#define HCR_TID1 (1ULL << 16)
|
|
#define HCR_TID2 (1ULL << 17)
|
|
#define HCR_TID3 (1ULL << 18)
|
|
#define HCR_TSC (1ULL << 19)
|
|
#define HCR_TIDCP (1ULL << 20)
|
|
#define HCR_TACR (1ULL << 21)
|
|
#define HCR_TSW (1ULL << 22)
|
|
#define HCR_TPC (1ULL << 23)
|
|
#define HCR_TPU (1ULL << 24)
|
|
#define HCR_TTLB (1ULL << 25)
|
|
#define HCR_TVM (1ULL << 26)
|
|
#define HCR_TGE (1ULL << 27)
|
|
#define HCR_TDZ (1ULL << 28)
|
|
#define HCR_HCD (1ULL << 29)
|
|
#define HCR_TRVM (1ULL << 30)
|
|
#define HCR_RW (1ULL << 31)
|
|
#define HCR_CD (1ULL << 32)
|
|
#define HCR_ID (1ULL << 33)
|
|
#define HCR_E2H (1ULL << 34)
|
|
/*
|
|
* When we actually implement ARMv8.1-VHE we should add HCR_E2H to
|
|
* HCR_MASK and then clear it again if the feature bit is not set in
|
|
* hcr_write().
|
|
*/
|
|
#define HCR_MASK ((1ULL << 34) - 1)
|
|
|
|
#define SCR_NS (1U << 0)
|
|
#define SCR_IRQ (1U << 1)
|
|
#define SCR_FIQ (1U << 2)
|
|
#define SCR_EA (1U << 3)
|
|
#define SCR_FW (1U << 4)
|
|
#define SCR_AW (1U << 5)
|
|
#define SCR_NET (1U << 6)
|
|
#define SCR_SMD (1U << 7)
|
|
#define SCR_HCE (1U << 8)
|
|
#define SCR_SIF (1U << 9)
|
|
#define SCR_RW (1U << 10)
|
|
#define SCR_ST (1U << 11)
|
|
#define SCR_TWI (1U << 12)
|
|
#define SCR_TWE (1U << 13)
|
|
#define SCR_AARCH32_MASK (0x3fff & ~(SCR_RW | SCR_ST))
|
|
#define SCR_AARCH64_MASK (0x3fff & ~SCR_NET)
|
|
|
|
/* Return the current FPSCR value. */
|
|
uint32_t vfp_get_fpscr(CPUARMState *env);
|
|
void vfp_set_fpscr(CPUARMState *env, uint32_t val);
|
|
|
|
/* FPCR, Floating Point Control Register
|
|
* FPSR, Floating Poiht Status Register
|
|
*
|
|
* For A64 the FPSCR is split into two logically distinct registers,
|
|
* FPCR and FPSR. However since they still use non-overlapping bits
|
|
* we store the underlying state in fpscr and just mask on read/write.
|
|
*/
|
|
#define FPSR_MASK 0xf800009f
|
|
#define FPCR_MASK 0x07ff9f00
|
|
|
|
#define FPCR_FZ16 (1 << 19) /* ARMv8.2+, FP16 flush-to-zero */
|
|
#define FPCR_FZ (1 << 24) /* Flush-to-zero enable bit */
|
|
#define FPCR_DN (1 << 25) /* Default NaN enable bit */
|
|
|
|
static inline uint32_t vfp_get_fpsr(CPUARMState *env)
|
|
{
|
|
return vfp_get_fpscr(env) & FPSR_MASK;
|
|
}
|
|
|
|
static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
|
|
{
|
|
uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
|
|
vfp_set_fpscr(env, new_fpscr);
|
|
}
|
|
|
|
static inline uint32_t vfp_get_fpcr(CPUARMState *env)
|
|
{
|
|
return vfp_get_fpscr(env) & FPCR_MASK;
|
|
}
|
|
|
|
static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
|
|
{
|
|
uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
|
|
vfp_set_fpscr(env, new_fpscr);
|
|
}
|
|
|
|
enum arm_cpu_mode {
|
|
ARM_CPU_MODE_USR = 0x10,
|
|
ARM_CPU_MODE_FIQ = 0x11,
|
|
ARM_CPU_MODE_IRQ = 0x12,
|
|
ARM_CPU_MODE_SVC = 0x13,
|
|
ARM_CPU_MODE_MON = 0x16,
|
|
ARM_CPU_MODE_ABT = 0x17,
|
|
ARM_CPU_MODE_HYP = 0x1a,
|
|
ARM_CPU_MODE_UND = 0x1b,
|
|
ARM_CPU_MODE_SYS = 0x1f
|
|
};
|
|
|
|
/* VFP system registers. */
|
|
#define ARM_VFP_FPSID 0
|
|
#define ARM_VFP_FPSCR 1
|
|
#define ARM_VFP_MVFR2 5
|
|
#define ARM_VFP_MVFR1 6
|
|
#define ARM_VFP_MVFR0 7
|
|
#define ARM_VFP_FPEXC 8
|
|
#define ARM_VFP_FPINST 9
|
|
#define ARM_VFP_FPINST2 10
|
|
|
|
/* iwMMXt coprocessor control registers. */
|
|
#define ARM_IWMMXT_wCID 0
|
|
#define ARM_IWMMXT_wCon 1
|
|
#define ARM_IWMMXT_wCSSF 2
|
|
#define ARM_IWMMXT_wCASF 3
|
|
#define ARM_IWMMXT_wCGR0 8
|
|
#define ARM_IWMMXT_wCGR1 9
|
|
#define ARM_IWMMXT_wCGR2 10
|
|
#define ARM_IWMMXT_wCGR3 11
|
|
|
|
/* V7M CCR bits */
|
|
FIELD(V7M_CCR, NONBASETHRDENA, 0, 1)
|
|
FIELD(V7M_CCR, USERSETMPEND, 1, 1)
|
|
FIELD(V7M_CCR, UNALIGN_TRP, 3, 1)
|
|
FIELD(V7M_CCR, DIV_0_TRP, 4, 1)
|
|
FIELD(V7M_CCR, BFHFNMIGN, 8, 1)
|
|
FIELD(V7M_CCR, STKALIGN, 9, 1)
|
|
FIELD(V7M_CCR, DC, 16, 1)
|
|
FIELD(V7M_CCR, IC, 17, 1)
|
|
|
|
/* V7M SCR bits */
|
|
FIELD(V7M_SCR, SLEEPONEXIT, 1, 1)
|
|
FIELD(V7M_SCR, SLEEPDEEP, 2, 1)
|
|
FIELD(V7M_SCR, SLEEPDEEPS, 3, 1)
|
|
FIELD(V7M_SCR, SEVONPEND, 4, 1)
|
|
|
|
/* V7M AIRCR bits */
|
|
FIELD(V7M_AIRCR, VECTRESET, 0, 1)
|
|
FIELD(V7M_AIRCR, VECTCLRACTIVE, 1, 1)
|
|
FIELD(V7M_AIRCR, SYSRESETREQ, 2, 1)
|
|
FIELD(V7M_AIRCR, SYSRESETREQS, 3, 1)
|
|
FIELD(V7M_AIRCR, PRIGROUP, 8, 3)
|
|
FIELD(V7M_AIRCR, BFHFNMINS, 13, 1)
|
|
FIELD(V7M_AIRCR, PRIS, 14, 1)
|
|
FIELD(V7M_AIRCR, ENDIANNESS, 15, 1)
|
|
FIELD(V7M_AIRCR, VECTKEY, 16, 16)
|
|
|
|
/* V7M CFSR bits for MMFSR */
|
|
FIELD(V7M_CFSR, IACCVIOL, 0, 1)
|
|
FIELD(V7M_CFSR, DACCVIOL, 1, 1)
|
|
FIELD(V7M_CFSR, MUNSTKERR, 3, 1)
|
|
FIELD(V7M_CFSR, MSTKERR, 4, 1)
|
|
FIELD(V7M_CFSR, MLSPERR, 5, 1)
|
|
FIELD(V7M_CFSR, MMARVALID, 7, 1)
|
|
|
|
/* V7M CFSR bits for BFSR */
|
|
FIELD(V7M_CFSR, IBUSERR, 8 + 0, 1)
|
|
FIELD(V7M_CFSR, PRECISERR, 8 + 1, 1)
|
|
FIELD(V7M_CFSR, IMPRECISERR, 8 + 2, 1)
|
|
FIELD(V7M_CFSR, UNSTKERR, 8 + 3, 1)
|
|
FIELD(V7M_CFSR, STKERR, 8 + 4, 1)
|
|
FIELD(V7M_CFSR, LSPERR, 8 + 5, 1)
|
|
FIELD(V7M_CFSR, BFARVALID, 8 + 7, 1)
|
|
|
|
/* V7M CFSR bits for UFSR */
|
|
FIELD(V7M_CFSR, UNDEFINSTR, 16 + 0, 1)
|
|
FIELD(V7M_CFSR, INVSTATE, 16 + 1, 1)
|
|
FIELD(V7M_CFSR, INVPC, 16 + 2, 1)
|
|
FIELD(V7M_CFSR, NOCP, 16 + 3, 1)
|
|
FIELD(V7M_CFSR, UNALIGNED, 16 + 8, 1)
|
|
FIELD(V7M_CFSR, DIVBYZERO, 16 + 9, 1)
|
|
|
|
/* V7M CFSR bit masks covering all of the subregister bits */
|
|
FIELD(V7M_CFSR, MMFSR, 0, 8)
|
|
FIELD(V7M_CFSR, BFSR, 8, 8)
|
|
FIELD(V7M_CFSR, UFSR, 16, 16)
|
|
|
|
/* V7M HFSR bits */
|
|
FIELD(V7M_HFSR, VECTTBL, 1, 1)
|
|
FIELD(V7M_HFSR, FORCED, 30, 1)
|
|
FIELD(V7M_HFSR, DEBUGEVT, 31, 1)
|
|
|
|
/* V7M DFSR bits */
|
|
FIELD(V7M_DFSR, HALTED, 0, 1)
|
|
FIELD(V7M_DFSR, BKPT, 1, 1)
|
|
FIELD(V7M_DFSR, DWTTRAP, 2, 1)
|
|
FIELD(V7M_DFSR, VCATCH, 3, 1)
|
|
FIELD(V7M_DFSR, EXTERNAL, 4, 1)
|
|
|
|
/* V7M SFSR bits */
|
|
FIELD(V7M_SFSR, INVEP, 0, 1)
|
|
FIELD(V7M_SFSR, INVIS, 1, 1)
|
|
FIELD(V7M_SFSR, INVER, 2, 1)
|
|
FIELD(V7M_SFSR, AUVIOL, 3, 1)
|
|
FIELD(V7M_SFSR, INVTRAN, 4, 1)
|
|
FIELD(V7M_SFSR, LSPERR, 5, 1)
|
|
FIELD(V7M_SFSR, SFARVALID, 6, 1)
|
|
FIELD(V7M_SFSR, LSERR, 7, 1)
|
|
|
|
/* v7M MPU_CTRL bits */
|
|
FIELD(V7M_MPU_CTRL, ENABLE, 0, 1)
|
|
FIELD(V7M_MPU_CTRL, HFNMIENA, 1, 1)
|
|
FIELD(V7M_MPU_CTRL, PRIVDEFENA, 2, 1)
|
|
|
|
/* v7M CLIDR bits */
|
|
FIELD(V7M_CLIDR, CTYPE_ALL, 0, 21)
|
|
FIELD(V7M_CLIDR, LOUIS, 21, 3)
|
|
FIELD(V7M_CLIDR, LOC, 24, 3)
|
|
FIELD(V7M_CLIDR, LOUU, 27, 3)
|
|
FIELD(V7M_CLIDR, ICB, 30, 2)
|
|
|
|
FIELD(V7M_CSSELR, IND, 0, 1)
|
|
FIELD(V7M_CSSELR, LEVEL, 1, 3)
|
|
/* We use the combination of InD and Level to index into cpu->ccsidr[];
|
|
* define a mask for this and check that it doesn't permit running off
|
|
* the end of the array.
|
|
*/
|
|
FIELD(V7M_CSSELR, INDEX, 0, 4)
|
|
|
|
QEMU_BUILD_BUG_ON(ARRAY_SIZE(((ARMCPU *)0)->ccsidr) <= R_V7M_CSSELR_INDEX_MASK);
|
|
|
|
/* If adding a feature bit which corresponds to a Linux ELF
|
|
* HWCAP bit, remember to update the feature-bit-to-hwcap
|
|
* mapping in linux-user/elfload.c:get_elf_hwcap().
|
|
*/
|
|
enum arm_features {
|
|
ARM_FEATURE_VFP,
|
|
ARM_FEATURE_AUXCR, /* ARM1026 Auxiliary control register. */
|
|
ARM_FEATURE_XSCALE, /* Intel XScale extensions. */
|
|
ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension. */
|
|
ARM_FEATURE_V6,
|
|
ARM_FEATURE_V6K,
|
|
ARM_FEATURE_V7,
|
|
ARM_FEATURE_THUMB2,
|
|
ARM_FEATURE_PMSA, /* no MMU; may have Memory Protection Unit */
|
|
ARM_FEATURE_VFP3,
|
|
ARM_FEATURE_VFP_FP16,
|
|
ARM_FEATURE_NEON,
|
|
ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
|
|
ARM_FEATURE_M, /* Microcontroller profile. */
|
|
ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
|
|
ARM_FEATURE_THUMB2EE,
|
|
ARM_FEATURE_V7MP, /* v7 Multiprocessing Extensions */
|
|
ARM_FEATURE_V7VE, /* v7 Virtualization Extensions (non-EL2 parts) */
|
|
ARM_FEATURE_V4T,
|
|
ARM_FEATURE_V5,
|
|
ARM_FEATURE_STRONGARM,
|
|
ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
|
|
ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
|
|
ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
|
|
ARM_FEATURE_GENERIC_TIMER,
|
|
ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
|
|
ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
|
|
ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
|
|
ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
|
|
ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
|
|
ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
|
|
ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
|
|
ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
|
|
ARM_FEATURE_V8,
|
|
ARM_FEATURE_AARCH64, /* supports 64 bit mode */
|
|
ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
|
|
ARM_FEATURE_CBAR, /* has cp15 CBAR */
|
|
ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
|
|
ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
|
|
ARM_FEATURE_EL2, /* has EL2 Virtualization support */
|
|
ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
|
|
ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
|
|
ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
|
|
ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
|
|
ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
|
|
ARM_FEATURE_PMU, /* has PMU support */
|
|
ARM_FEATURE_VBAR, /* has cp15 VBAR */
|
|
ARM_FEATURE_M_SECURITY, /* M profile Security Extension */
|
|
ARM_FEATURE_JAZELLE, /* has (trivial) Jazelle implementation */
|
|
ARM_FEATURE_SVE, /* has Scalable Vector Extension */
|
|
ARM_FEATURE_V8_SHA512, /* implements SHA512 part of v8 Crypto Extensions */
|
|
ARM_FEATURE_V8_SHA3, /* implements SHA3 part of v8 Crypto Extensions */
|
|
ARM_FEATURE_V8_SM3, /* implements SM3 part of v8 Crypto Extensions */
|
|
ARM_FEATURE_V8_SM4, /* implements SM4 part of v8 Crypto Extensions */
|
|
ARM_FEATURE_V8_ATOMICS, /* ARMv8.1-Atomics feature */
|
|
ARM_FEATURE_V8_RDM, /* implements v8.1 simd round multiply */
|
|
ARM_FEATURE_V8_DOTPROD, /* implements v8.2 simd dot product */
|
|
ARM_FEATURE_V8_FP16, /* implements v8.2 half-precision float */
|
|
ARM_FEATURE_V8_FCMA, /* has complex number part of v8.3 extensions. */
|
|
ARM_FEATURE_M_MAIN, /* M profile Main Extension */
|
|
};
|
|
|
|
static inline int arm_feature(CPUARMState *env, int feature)
|
|
{
|
|
return (env->features & (1ULL << feature)) != 0;
|
|
}
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
/* Return true if exception levels below EL3 are in secure state,
|
|
* or would be following an exception return to that level.
|
|
* Unlike arm_is_secure() (which is always a question about the
|
|
* _current_ state of the CPU) this doesn't care about the current
|
|
* EL or mode.
|
|
*/
|
|
static inline bool arm_is_secure_below_el3(CPUARMState *env)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
return !(env->cp15.scr_el3 & SCR_NS);
|
|
} else {
|
|
/* If EL3 is not supported then the secure state is implementation
|
|
* defined, in which case QEMU defaults to non-secure.
|
|
*/
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
|
|
static inline bool arm_is_el3_or_mon(CPUARMState *env)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
|
|
/* CPU currently in AArch64 state and EL3 */
|
|
return true;
|
|
} else if (!is_a64(env) &&
|
|
(env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
|
|
/* CPU currently in AArch32 state and monitor mode */
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/* Return true if the processor is in secure state */
|
|
static inline bool arm_is_secure(CPUARMState *env)
|
|
{
|
|
if (arm_is_el3_or_mon(env)) {
|
|
return true;
|
|
}
|
|
return arm_is_secure_below_el3(env);
|
|
}
|
|
|
|
#else
|
|
static inline bool arm_is_secure_below_el3(CPUARMState *env)
|
|
{
|
|
return false;
|
|
}
|
|
|
|
static inline bool arm_is_secure(CPUARMState *env)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/* Return true if the specified exception level is running in AArch64 state. */
|
|
static inline bool arm_el_is_aa64(CPUARMState *env, int el)
|
|
{
|
|
/* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
|
|
* and if we're not in EL0 then the state of EL0 isn't well defined.)
|
|
*/
|
|
assert(el >= 1 && el <= 3);
|
|
bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
|
|
|
|
/* The highest exception level is always at the maximum supported
|
|
* register width, and then lower levels have a register width controlled
|
|
* by bits in the SCR or HCR registers.
|
|
*/
|
|
if (el == 3) {
|
|
return aa64;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
|
|
}
|
|
|
|
if (el == 2) {
|
|
return aa64;
|
|
}
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
|
|
aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
|
|
}
|
|
|
|
return aa64;
|
|
}
|
|
|
|
/* Function for determing whether guest cp register reads and writes should
|
|
* access the secure or non-secure bank of a cp register. When EL3 is
|
|
* operating in AArch32 state, the NS-bit determines whether the secure
|
|
* instance of a cp register should be used. When EL3 is AArch64 (or if
|
|
* it doesn't exist at all) then there is no register banking, and all
|
|
* accesses are to the non-secure version.
|
|
*/
|
|
static inline bool access_secure_reg(CPUARMState *env)
|
|
{
|
|
bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_el_is_aa64(env, 3) &&
|
|
!(env->cp15.scr_el3 & SCR_NS));
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Macros for accessing a specified CP register bank */
|
|
#define A32_BANKED_REG_GET(_env, _regname, _secure) \
|
|
((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
|
|
|
|
#define A32_BANKED_REG_SET(_env, _regname, _secure, _val) \
|
|
do { \
|
|
if (_secure) { \
|
|
(_env)->cp15._regname##_s = (_val); \
|
|
} else { \
|
|
(_env)->cp15._regname##_ns = (_val); \
|
|
} \
|
|
} while (0)
|
|
|
|
/* Macros for automatically accessing a specific CP register bank depending on
|
|
* the current secure state of the system. These macros are not intended for
|
|
* supporting instruction translation reads/writes as these are dependent
|
|
* solely on the SCR.NS bit and not the mode.
|
|
*/
|
|
#define A32_BANKED_CURRENT_REG_GET(_env, _regname) \
|
|
A32_BANKED_REG_GET((_env), _regname, \
|
|
(arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
|
|
|
|
#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val) \
|
|
A32_BANKED_REG_SET((_env), _regname, \
|
|
(arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
|
|
(_val))
|
|
|
|
void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
|
|
uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
|
|
uint32_t cur_el, bool secure);
|
|
|
|
/* Interface between CPU and Interrupt controller. */
|
|
#ifndef CONFIG_USER_ONLY
|
|
bool armv7m_nvic_can_take_pending_exception(void *opaque);
|
|
#else
|
|
static inline bool armv7m_nvic_can_take_pending_exception(void *opaque)
|
|
{
|
|
return true;
|
|
}
|
|
#endif
|
|
/**
|
|
* armv7m_nvic_set_pending: mark the specified exception as pending
|
|
* @opaque: the NVIC
|
|
* @irq: the exception number to mark pending
|
|
* @secure: false for non-banked exceptions or for the nonsecure
|
|
* version of a banked exception, true for the secure version of a banked
|
|
* exception.
|
|
*
|
|
* Marks the specified exception as pending. Note that we will assert()
|
|
* if @secure is true and @irq does not specify one of the fixed set
|
|
* of architecturally banked exceptions.
|
|
*/
|
|
void armv7m_nvic_set_pending(void *opaque, int irq, bool secure);
|
|
/**
|
|
* armv7m_nvic_set_pending_derived: mark this derived exception as pending
|
|
* @opaque: the NVIC
|
|
* @irq: the exception number to mark pending
|
|
* @secure: false for non-banked exceptions or for the nonsecure
|
|
* version of a banked exception, true for the secure version of a banked
|
|
* exception.
|
|
*
|
|
* Similar to armv7m_nvic_set_pending(), but specifically for derived
|
|
* exceptions (exceptions generated in the course of trying to take
|
|
* a different exception).
|
|
*/
|
|
void armv7m_nvic_set_pending_derived(void *opaque, int irq, bool secure);
|
|
/**
|
|
* armv7m_nvic_get_pending_irq_info: return highest priority pending
|
|
* exception, and whether it targets Secure state
|
|
* @opaque: the NVIC
|
|
* @pirq: set to pending exception number
|
|
* @ptargets_secure: set to whether pending exception targets Secure
|
|
*
|
|
* This function writes the number of the highest priority pending
|
|
* exception (the one which would be made active by
|
|
* armv7m_nvic_acknowledge_irq()) to @pirq, and sets @ptargets_secure
|
|
* to true if the current highest priority pending exception should
|
|
* be taken to Secure state, false for NS.
|
|
*/
|
|
void armv7m_nvic_get_pending_irq_info(void *opaque, int *pirq,
|
|
bool *ptargets_secure);
|
|
/**
|
|
* armv7m_nvic_acknowledge_irq: make highest priority pending exception active
|
|
* @opaque: the NVIC
|
|
*
|
|
* Move the current highest priority pending exception from the pending
|
|
* state to the active state, and update v7m.exception to indicate that
|
|
* it is the exception currently being handled.
|
|
*/
|
|
void armv7m_nvic_acknowledge_irq(void *opaque);
|
|
/**
|
|
* armv7m_nvic_complete_irq: complete specified interrupt or exception
|
|
* @opaque: the NVIC
|
|
* @irq: the exception number to complete
|
|
* @secure: true if this exception was secure
|
|
*
|
|
* Returns: -1 if the irq was not active
|
|
* 1 if completing this irq brought us back to base (no active irqs)
|
|
* 0 if there is still an irq active after this one was completed
|
|
* (Ignoring -1, this is the same as the RETTOBASE value before completion.)
|
|
*/
|
|
int armv7m_nvic_complete_irq(void *opaque, int irq, bool secure);
|
|
/**
|
|
* armv7m_nvic_raw_execution_priority: return the raw execution priority
|
|
* @opaque: the NVIC
|
|
*
|
|
* Returns: the raw execution priority as defined by the v8M architecture.
|
|
* This is the execution priority minus the effects of AIRCR.PRIS,
|
|
* and minus any PRIMASK/FAULTMASK/BASEPRI priority boosting.
|
|
* (v8M ARM ARM I_PKLD.)
|
|
*/
|
|
int armv7m_nvic_raw_execution_priority(void *opaque);
|
|
/**
|
|
* armv7m_nvic_neg_prio_requested: return true if the requested execution
|
|
* priority is negative for the specified security state.
|
|
* @opaque: the NVIC
|
|
* @secure: the security state to test
|
|
* This corresponds to the pseudocode IsReqExecPriNeg().
|
|
*/
|
|
#ifndef CONFIG_USER_ONLY
|
|
bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure);
|
|
#else
|
|
static inline bool armv7m_nvic_neg_prio_requested(void *opaque, bool secure)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/* Interface for defining coprocessor registers.
|
|
* Registers are defined in tables of arm_cp_reginfo structs
|
|
* which are passed to define_arm_cp_regs().
|
|
*/
|
|
|
|
/* When looking up a coprocessor register we look for it
|
|
* via an integer which encodes all of:
|
|
* coprocessor number
|
|
* Crn, Crm, opc1, opc2 fields
|
|
* 32 or 64 bit register (ie is it accessed via MRC/MCR
|
|
* or via MRRC/MCRR?)
|
|
* non-secure/secure bank (AArch32 only)
|
|
* We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
|
|
* (In this case crn and opc2 should be zero.)
|
|
* For AArch64, there is no 32/64 bit size distinction;
|
|
* instead all registers have a 2 bit op0, 3 bit op1 and op2,
|
|
* and 4 bit CRn and CRm. The encoding patterns are chosen
|
|
* to be easy to convert to and from the KVM encodings, and also
|
|
* so that the hashtable can contain both AArch32 and AArch64
|
|
* registers (to allow for interprocessing where we might run
|
|
* 32 bit code on a 64 bit core).
|
|
*/
|
|
/* This bit is private to our hashtable cpreg; in KVM register
|
|
* IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
|
|
* in the upper bits of the 64 bit ID.
|
|
*/
|
|
#define CP_REG_AA64_SHIFT 28
|
|
#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
|
|
|
|
/* To enable banking of coprocessor registers depending on ns-bit we
|
|
* add a bit to distinguish between secure and non-secure cpregs in the
|
|
* hashtable.
|
|
*/
|
|
#define CP_REG_NS_SHIFT 29
|
|
#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
|
|
|
|
#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2) \
|
|
((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) | \
|
|
((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
|
|
|
|
#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
|
|
(CP_REG_AA64_MASK | \
|
|
((cp) << CP_REG_ARM_COPROC_SHIFT) | \
|
|
((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) | \
|
|
((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) | \
|
|
((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) | \
|
|
((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) | \
|
|
((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
|
|
|
|
/* Convert a full 64 bit KVM register ID to the truncated 32 bit
|
|
* version used as a key for the coprocessor register hashtable
|
|
*/
|
|
static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
|
|
{
|
|
uint32_t cpregid = kvmid;
|
|
if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
|
|
cpregid |= CP_REG_AA64_MASK;
|
|
} else {
|
|
if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
|
|
cpregid |= (1 << 15);
|
|
}
|
|
|
|
/* KVM is always non-secure so add the NS flag on AArch32 register
|
|
* entries.
|
|
*/
|
|
cpregid |= 1 << CP_REG_NS_SHIFT;
|
|
}
|
|
return cpregid;
|
|
}
|
|
|
|
/* Convert a truncated 32 bit hashtable key into the full
|
|
* 64 bit KVM register ID.
|
|
*/
|
|
static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
|
|
{
|
|
uint64_t kvmid;
|
|
|
|
if (cpregid & CP_REG_AA64_MASK) {
|
|
kvmid = cpregid & ~CP_REG_AA64_MASK;
|
|
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
|
|
} else {
|
|
kvmid = cpregid & ~(1 << 15);
|
|
if (cpregid & (1 << 15)) {
|
|
kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
|
|
} else {
|
|
kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
|
|
}
|
|
}
|
|
return kvmid;
|
|
}
|
|
|
|
/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
|
|
* special-behaviour cp reg and bits [11..8] indicate what behaviour
|
|
* it has. Otherwise it is a simple cp reg, where CONST indicates that
|
|
* TCG can assume the value to be constant (ie load at translate time)
|
|
* and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
|
|
* indicates that the TB should not be ended after a write to this register
|
|
* (the default is that the TB ends after cp writes). OVERRIDE permits
|
|
* a register definition to override a previous definition for the
|
|
* same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
|
|
* old must have the OVERRIDE bit set.
|
|
* ALIAS indicates that this register is an alias view of some underlying
|
|
* state which is also visible via another register, and that the other
|
|
* register is handling migration and reset; registers marked ALIAS will not be
|
|
* migrated but may have their state set by syncing of register state from KVM.
|
|
* NO_RAW indicates that this register has no underlying state and does not
|
|
* support raw access for state saving/loading; it will not be used for either
|
|
* migration or KVM state synchronization. (Typically this is for "registers"
|
|
* which are actually used as instructions for cache maintenance and so on.)
|
|
* IO indicates that this register does I/O and therefore its accesses
|
|
* need to be surrounded by gen_io_start()/gen_io_end(). In particular,
|
|
* registers which implement clocks or timers require this.
|
|
*/
|
|
#define ARM_CP_SPECIAL 0x0001
|
|
#define ARM_CP_CONST 0x0002
|
|
#define ARM_CP_64BIT 0x0004
|
|
#define ARM_CP_SUPPRESS_TB_END 0x0008
|
|
#define ARM_CP_OVERRIDE 0x0010
|
|
#define ARM_CP_ALIAS 0x0020
|
|
#define ARM_CP_IO 0x0040
|
|
#define ARM_CP_NO_RAW 0x0080
|
|
#define ARM_CP_NOP (ARM_CP_SPECIAL | 0x0100)
|
|
#define ARM_CP_WFI (ARM_CP_SPECIAL | 0x0200)
|
|
#define ARM_CP_NZCV (ARM_CP_SPECIAL | 0x0300)
|
|
#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | 0x0400)
|
|
#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | 0x0500)
|
|
#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
|
|
#define ARM_CP_FPU 0x1000
|
|
#define ARM_CP_SVE 0x2000
|
|
#define ARM_CP_NO_GDB 0x4000
|
|
/* Used only as a terminator for ARMCPRegInfo lists */
|
|
#define ARM_CP_SENTINEL 0xffff
|
|
/* Mask of only the flag bits in a type field */
|
|
#define ARM_CP_FLAG_MASK 0x70ff
|
|
|
|
/* Valid values for ARMCPRegInfo state field, indicating which of
|
|
* the AArch32 and AArch64 execution states this register is visible in.
|
|
* If the reginfo doesn't explicitly specify then it is AArch32 only.
|
|
* If the reginfo is declared to be visible in both states then a second
|
|
* reginfo is synthesised for the AArch32 view of the AArch64 register,
|
|
* such that the AArch32 view is the lower 32 bits of the AArch64 one.
|
|
* Note that we rely on the values of these enums as we iterate through
|
|
* the various states in some places.
|
|
*/
|
|
enum {
|
|
ARM_CP_STATE_AA32 = 0,
|
|
ARM_CP_STATE_AA64 = 1,
|
|
ARM_CP_STATE_BOTH = 2,
|
|
};
|
|
|
|
/* ARM CP register secure state flags. These flags identify security state
|
|
* attributes for a given CP register entry.
|
|
* The existence of both or neither secure and non-secure flags indicates that
|
|
* the register has both a secure and non-secure hash entry. A single one of
|
|
* these flags causes the register to only be hashed for the specified
|
|
* security state.
|
|
* Although definitions may have any combination of the S/NS bits, each
|
|
* registered entry will only have one to identify whether the entry is secure
|
|
* or non-secure.
|
|
*/
|
|
enum {
|
|
ARM_CP_SECSTATE_S = (1 << 0), /* bit[0]: Secure state register */
|
|
ARM_CP_SECSTATE_NS = (1 << 1), /* bit[1]: Non-secure state register */
|
|
};
|
|
|
|
/* Return true if cptype is a valid type field. This is used to try to
|
|
* catch errors where the sentinel has been accidentally left off the end
|
|
* of a list of registers.
|
|
*/
|
|
static inline bool cptype_valid(int cptype)
|
|
{
|
|
return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
|
|
|| ((cptype & ARM_CP_SPECIAL) &&
|
|
((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
|
|
}
|
|
|
|
/* Access rights:
|
|
* We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
|
|
* defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
|
|
* PL2 (hyp). The other level which has Read and Write bits is Secure PL1
|
|
* (ie any of the privileged modes in Secure state, or Monitor mode).
|
|
* If a register is accessible in one privilege level it's always accessible
|
|
* in higher privilege levels too. Since "Secure PL1" also follows this rule
|
|
* (ie anything visible in PL2 is visible in S-PL1, some things are only
|
|
* visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
|
|
* terminology a little and call this PL3.
|
|
* In AArch64 things are somewhat simpler as the PLx bits line up exactly
|
|
* with the ELx exception levels.
|
|
*
|
|
* If access permissions for a register are more complex than can be
|
|
* described with these bits, then use a laxer set of restrictions, and
|
|
* do the more restrictive/complex check inside a helper function.
|
|
*/
|
|
#define PL3_R 0x80
|
|
#define PL3_W 0x40
|
|
#define PL2_R (0x20 | PL3_R)
|
|
#define PL2_W (0x10 | PL3_W)
|
|
#define PL1_R (0x08 | PL2_R)
|
|
#define PL1_W (0x04 | PL2_W)
|
|
#define PL0_R (0x02 | PL1_R)
|
|
#define PL0_W (0x01 | PL1_W)
|
|
|
|
#define PL3_RW (PL3_R | PL3_W)
|
|
#define PL2_RW (PL2_R | PL2_W)
|
|
#define PL1_RW (PL1_R | PL1_W)
|
|
#define PL0_RW (PL0_R | PL0_W)
|
|
|
|
/* Return the highest implemented Exception Level */
|
|
static inline int arm_highest_el(CPUARMState *env)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_EL3)) {
|
|
return 3;
|
|
}
|
|
if (arm_feature(env, ARM_FEATURE_EL2)) {
|
|
return 2;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
/* Return true if a v7M CPU is in Handler mode */
|
|
static inline bool arm_v7m_is_handler_mode(CPUARMState *env)
|
|
{
|
|
return env->v7m.exception != 0;
|
|
}
|
|
|
|
/* Return the current Exception Level (as per ARMv8; note that this differs
|
|
* from the ARMv7 Privilege Level).
|
|
*/
|
|
static inline int arm_current_el(CPUARMState *env)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return arm_v7m_is_handler_mode(env) ||
|
|
!(env->v7m.control[env->v7m.secure] & 1);
|
|
}
|
|
|
|
if (is_a64(env)) {
|
|
return extract32(env->pstate, 2, 2);
|
|
}
|
|
|
|
switch (env->uncached_cpsr & 0x1f) {
|
|
case ARM_CPU_MODE_USR:
|
|
return 0;
|
|
case ARM_CPU_MODE_HYP:
|
|
return 2;
|
|
case ARM_CPU_MODE_MON:
|
|
return 3;
|
|
default:
|
|
if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
|
|
/* If EL3 is 32-bit then all secure privileged modes run in
|
|
* EL3
|
|
*/
|
|
return 3;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
typedef struct ARMCPRegInfo ARMCPRegInfo;
|
|
|
|
typedef enum CPAccessResult {
|
|
/* Access is permitted */
|
|
CP_ACCESS_OK = 0,
|
|
/* Access fails due to a configurable trap or enable which would
|
|
* result in a categorized exception syndrome giving information about
|
|
* the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
|
|
* 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
|
|
* PL1 if in EL0, otherwise to the current EL).
|
|
*/
|
|
CP_ACCESS_TRAP = 1,
|
|
/* Access fails and results in an exception syndrome 0x0 ("uncategorized").
|
|
* Note that this is not a catch-all case -- the set of cases which may
|
|
* result in this failure is specifically defined by the architecture.
|
|
*/
|
|
CP_ACCESS_TRAP_UNCATEGORIZED = 2,
|
|
/* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
|
|
CP_ACCESS_TRAP_EL2 = 3,
|
|
CP_ACCESS_TRAP_EL3 = 4,
|
|
/* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
|
|
CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
|
|
CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
|
|
/* Access fails and results in an exception syndrome for an FP access,
|
|
* trapped directly to EL2 or EL3
|
|
*/
|
|
CP_ACCESS_TRAP_FP_EL2 = 7,
|
|
CP_ACCESS_TRAP_FP_EL3 = 8,
|
|
} CPAccessResult;
|
|
|
|
/* Access functions for coprocessor registers. These cannot fail and
|
|
* may not raise exceptions.
|
|
*/
|
|
typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
|
|
typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
|
|
uint64_t value);
|
|
/* Access permission check functions for coprocessor registers. */
|
|
typedef CPAccessResult CPAccessFn(CPUARMState *env,
|
|
const ARMCPRegInfo *opaque,
|
|
bool isread);
|
|
/* Hook function for register reset */
|
|
typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
|
|
|
|
#define CP_ANY 0xff
|
|
|
|
/* Definition of an ARM coprocessor register */
|
|
struct ARMCPRegInfo {
|
|
/* Name of register (useful mainly for debugging, need not be unique) */
|
|
const char *name;
|
|
/* Location of register: coprocessor number and (crn,crm,opc1,opc2)
|
|
* tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
|
|
* 'wildcard' field -- any value of that field in the MRC/MCR insn
|
|
* will be decoded to this register. The register read and write
|
|
* callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
|
|
* used by the program, so it is possible to register a wildcard and
|
|
* then behave differently on read/write if necessary.
|
|
* For 64 bit registers, only crm and opc1 are relevant; crn and opc2
|
|
* must both be zero.
|
|
* For AArch64-visible registers, opc0 is also used.
|
|
* Since there are no "coprocessors" in AArch64, cp is purely used as a
|
|
* way to distinguish (for KVM's benefit) guest-visible system registers
|
|
* from demuxed ones provided to preserve the "no side effects on
|
|
* KVM register read/write from QEMU" semantics. cp==0x13 is guest
|
|
* visible (to match KVM's encoding); cp==0 will be converted to
|
|
* cp==0x13 when the ARMCPRegInfo is registered, for convenience.
|
|
*/
|
|
uint8_t cp;
|
|
uint8_t crn;
|
|
uint8_t crm;
|
|
uint8_t opc0;
|
|
uint8_t opc1;
|
|
uint8_t opc2;
|
|
/* Execution state in which this register is visible: ARM_CP_STATE_* */
|
|
int state;
|
|
/* Register type: ARM_CP_* bits/values */
|
|
int type;
|
|
/* Access rights: PL*_[RW] */
|
|
int access;
|
|
/* Security state: ARM_CP_SECSTATE_* bits/values */
|
|
int secure;
|
|
/* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
|
|
* this register was defined: can be used to hand data through to the
|
|
* register read/write functions, since they are passed the ARMCPRegInfo*.
|
|
*/
|
|
void *opaque;
|
|
/* Value of this register, if it is ARM_CP_CONST. Otherwise, if
|
|
* fieldoffset is non-zero, the reset value of the register.
|
|
*/
|
|
uint64_t resetvalue;
|
|
/* Offset of the field in CPUARMState for this register.
|
|
*
|
|
* This is not needed if either:
|
|
* 1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
|
|
* 2. both readfn and writefn are specified
|
|
*/
|
|
ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
|
|
|
|
/* Offsets of the secure and non-secure fields in CPUARMState for the
|
|
* register if it is banked. These fields are only used during the static
|
|
* registration of a register. During hashing the bank associated
|
|
* with a given security state is copied to fieldoffset which is used from
|
|
* there on out.
|
|
*
|
|
* It is expected that register definitions use either fieldoffset or
|
|
* bank_fieldoffsets in the definition but not both. It is also expected
|
|
* that both bank offsets are set when defining a banked register. This
|
|
* use indicates that a register is banked.
|
|
*/
|
|
ptrdiff_t bank_fieldoffsets[2];
|
|
|
|
/* Function for making any access checks for this register in addition to
|
|
* those specified by the 'access' permissions bits. If NULL, no extra
|
|
* checks required. The access check is performed at runtime, not at
|
|
* translate time.
|
|
*/
|
|
CPAccessFn *accessfn;
|
|
/* Function for handling reads of this register. If NULL, then reads
|
|
* will be done by loading from the offset into CPUARMState specified
|
|
* by fieldoffset.
|
|
*/
|
|
CPReadFn *readfn;
|
|
/* Function for handling writes of this register. If NULL, then writes
|
|
* will be done by writing to the offset into CPUARMState specified
|
|
* by fieldoffset.
|
|
*/
|
|
CPWriteFn *writefn;
|
|
/* Function for doing a "raw" read; used when we need to copy
|
|
* coprocessor state to the kernel for KVM or out for
|
|
* migration. This only needs to be provided if there is also a
|
|
* readfn and it has side effects (for instance clear-on-read bits).
|
|
*/
|
|
CPReadFn *raw_readfn;
|
|
/* Function for doing a "raw" write; used when we need to copy KVM
|
|
* kernel coprocessor state into userspace, or for inbound
|
|
* migration. This only needs to be provided if there is also a
|
|
* writefn and it masks out "unwritable" bits or has write-one-to-clear
|
|
* or similar behaviour.
|
|
*/
|
|
CPWriteFn *raw_writefn;
|
|
/* Function for resetting the register. If NULL, then reset will be done
|
|
* by writing resetvalue to the field specified in fieldoffset. If
|
|
* fieldoffset is 0 then no reset will be done.
|
|
*/
|
|
CPResetFn *resetfn;
|
|
};
|
|
|
|
/* Macros which are lvalues for the field in CPUARMState for the
|
|
* ARMCPRegInfo *ri.
|
|
*/
|
|
#define CPREG_FIELD32(env, ri) \
|
|
(*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
|
|
#define CPREG_FIELD64(env, ri) \
|
|
(*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
|
|
|
|
#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
|
|
|
|
void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
|
|
const ARMCPRegInfo *regs, void *opaque);
|
|
void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
|
|
const ARMCPRegInfo *regs, void *opaque);
|
|
static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
|
|
{
|
|
define_arm_cp_regs_with_opaque(cpu, regs, 0);
|
|
}
|
|
static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
|
|
{
|
|
define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
|
|
}
|
|
const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
|
|
|
|
/* CPWriteFn that can be used to implement writes-ignored behaviour */
|
|
void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
|
|
uint64_t value);
|
|
/* CPReadFn that can be used for read-as-zero behaviour */
|
|
uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
|
|
|
|
/* CPResetFn that does nothing, for use if no reset is required even
|
|
* if fieldoffset is non zero.
|
|
*/
|
|
void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
|
|
|
|
/* Return true if this reginfo struct's field in the cpu state struct
|
|
* is 64 bits wide.
|
|
*/
|
|
static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
|
|
{
|
|
return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
|
|
}
|
|
|
|
static inline bool cp_access_ok(int current_el,
|
|
const ARMCPRegInfo *ri, int isread)
|
|
{
|
|
return (ri->access >> ((current_el * 2) + isread)) & 1;
|
|
}
|
|
|
|
/* Raw read of a coprocessor register (as needed for migration, etc) */
|
|
uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
|
|
|
|
/**
|
|
* write_list_to_cpustate
|
|
* @cpu: ARMCPU
|
|
*
|
|
* For each register listed in the ARMCPU cpreg_indexes list, write
|
|
* its value from the cpreg_values list into the ARMCPUState structure.
|
|
* This updates TCG's working data structures from KVM data or
|
|
* from incoming migration state.
|
|
*
|
|
* Returns: true if all register values were updated correctly,
|
|
* false if some register was unknown or could not be written.
|
|
* Note that we do not stop early on failure -- we will attempt
|
|
* writing all registers in the list.
|
|
*/
|
|
bool write_list_to_cpustate(ARMCPU *cpu);
|
|
|
|
/**
|
|
* write_cpustate_to_list:
|
|
* @cpu: ARMCPU
|
|
*
|
|
* For each register listed in the ARMCPU cpreg_indexes list, write
|
|
* its value from the ARMCPUState structure into the cpreg_values list.
|
|
* This is used to copy info from TCG's working data structures into
|
|
* KVM or for outbound migration.
|
|
*
|
|
* Returns: true if all register values were read correctly,
|
|
* false if some register was unknown or could not be read.
|
|
* Note that we do not stop early on failure -- we will attempt
|
|
* reading all registers in the list.
|
|
*/
|
|
bool write_cpustate_to_list(ARMCPU *cpu);
|
|
|
|
#define ARM_CPUID_TI915T 0x54029152
|
|
#define ARM_CPUID_TI925T 0x54029252
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
#define TARGET_PAGE_BITS 12
|
|
#else
|
|
/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
|
|
* have to support 1K tiny pages.
|
|
*/
|
|
#define TARGET_PAGE_BITS_VARY
|
|
#define TARGET_PAGE_BITS_MIN 10
|
|
#endif
|
|
|
|
#if defined(TARGET_AARCH64)
|
|
# define TARGET_PHYS_ADDR_SPACE_BITS 48
|
|
# define TARGET_VIRT_ADDR_SPACE_BITS 64
|
|
#else
|
|
# define TARGET_PHYS_ADDR_SPACE_BITS 40
|
|
# define TARGET_VIRT_ADDR_SPACE_BITS 32
|
|
#endif
|
|
|
|
/**
|
|
* arm_hcr_el2_imo(): Return the effective value of HCR_EL2.IMO.
|
|
* Depending on the values of HCR_EL2.E2H and TGE, this may be
|
|
* "behaves as 1 for all purposes other than direct read/write" or
|
|
* "behaves as 0 for all purposes other than direct read/write"
|
|
*/
|
|
static inline bool arm_hcr_el2_imo(CPUARMState *env)
|
|
{
|
|
switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
|
|
case HCR_TGE:
|
|
return true;
|
|
case HCR_TGE | HCR_E2H:
|
|
return false;
|
|
default:
|
|
return env->cp15.hcr_el2 & HCR_IMO;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_hcr_el2_fmo(): Return the effective value of HCR_EL2.FMO.
|
|
*/
|
|
static inline bool arm_hcr_el2_fmo(CPUARMState *env)
|
|
{
|
|
switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
|
|
case HCR_TGE:
|
|
return true;
|
|
case HCR_TGE | HCR_E2H:
|
|
return false;
|
|
default:
|
|
return env->cp15.hcr_el2 & HCR_FMO;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* arm_hcr_el2_amo(): Return the effective value of HCR_EL2.AMO.
|
|
*/
|
|
static inline bool arm_hcr_el2_amo(CPUARMState *env)
|
|
{
|
|
switch (env->cp15.hcr_el2 & (HCR_TGE | HCR_E2H)) {
|
|
case HCR_TGE:
|
|
return true;
|
|
case HCR_TGE | HCR_E2H:
|
|
return false;
|
|
default:
|
|
return env->cp15.hcr_el2 & HCR_AMO;
|
|
}
|
|
}
|
|
|
|
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
|
|
unsigned int target_el)
|
|
{
|
|
CPUARMState *env = cs->env_ptr;
|
|
unsigned int cur_el = arm_current_el(env);
|
|
bool secure = arm_is_secure(env);
|
|
bool pstate_unmasked;
|
|
int8_t unmasked = 0;
|
|
|
|
/* Don't take exceptions if they target a lower EL.
|
|
* This check should catch any exceptions that would not be taken but left
|
|
* pending.
|
|
*/
|
|
if (cur_el > target_el) {
|
|
return false;
|
|
}
|
|
|
|
switch (excp_idx) {
|
|
case EXCP_FIQ:
|
|
pstate_unmasked = !(env->daif & PSTATE_F);
|
|
break;
|
|
|
|
case EXCP_IRQ:
|
|
pstate_unmasked = !(env->daif & PSTATE_I);
|
|
break;
|
|
|
|
case EXCP_VFIQ:
|
|
if (secure || !arm_hcr_el2_fmo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
|
|
/* VFIQs are only taken when hypervized and non-secure. */
|
|
return false;
|
|
}
|
|
return !(env->daif & PSTATE_F);
|
|
case EXCP_VIRQ:
|
|
if (secure || !arm_hcr_el2_imo(env) || (env->cp15.hcr_el2 & HCR_TGE)) {
|
|
/* VIRQs are only taken when hypervized and non-secure. */
|
|
return false;
|
|
}
|
|
return !(env->daif & PSTATE_I);
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
/* Use the target EL, current execution state and SCR/HCR settings to
|
|
* determine whether the corresponding CPSR bit is used to mask the
|
|
* interrupt.
|
|
*/
|
|
if ((target_el > cur_el) && (target_el != 1)) {
|
|
/* Exceptions targeting a higher EL may not be maskable */
|
|
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
|
|
/* 64-bit masking rules are simple: exceptions to EL3
|
|
* can't be masked, and exceptions to EL2 can only be
|
|
* masked from Secure state. The HCR and SCR settings
|
|
* don't affect the masking logic, only the interrupt routing.
|
|
*/
|
|
if (target_el == 3 || !secure) {
|
|
unmasked = 1;
|
|
}
|
|
} else {
|
|
/* The old 32-bit-only environment has a more complicated
|
|
* masking setup. HCR and SCR bits not only affect interrupt
|
|
* routing but also change the behaviour of masking.
|
|
*/
|
|
bool hcr, scr;
|
|
|
|
switch (excp_idx) {
|
|
case EXCP_FIQ:
|
|
/* If FIQs are routed to EL3 or EL2 then there are cases where
|
|
* we override the CPSR.F in determining if the exception is
|
|
* masked or not. If neither of these are set then we fall back
|
|
* to the CPSR.F setting otherwise we further assess the state
|
|
* below.
|
|
*/
|
|
hcr = arm_hcr_el2_fmo(env);
|
|
scr = (env->cp15.scr_el3 & SCR_FIQ);
|
|
|
|
/* When EL3 is 32-bit, the SCR.FW bit controls whether the
|
|
* CPSR.F bit masks FIQ interrupts when taken in non-secure
|
|
* state. If SCR.FW is set then FIQs can be masked by CPSR.F
|
|
* when non-secure but only when FIQs are only routed to EL3.
|
|
*/
|
|
scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
|
|
break;
|
|
case EXCP_IRQ:
|
|
/* When EL3 execution state is 32-bit, if HCR.IMO is set then
|
|
* we may override the CPSR.I masking when in non-secure state.
|
|
* The SCR.IRQ setting has already been taken into consideration
|
|
* when setting the target EL, so it does not have a further
|
|
* affect here.
|
|
*/
|
|
hcr = arm_hcr_el2_imo(env);
|
|
scr = false;
|
|
break;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
|
|
if ((scr || hcr) && !secure) {
|
|
unmasked = 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* The PSTATE bits only mask the interrupt if we have not overriden the
|
|
* ability above.
|
|
*/
|
|
return unmasked || pstate_unmasked;
|
|
}
|
|
|
|
#define ARM_CPU_TYPE_SUFFIX "-" TYPE_ARM_CPU
|
|
#define ARM_CPU_TYPE_NAME(name) (name ARM_CPU_TYPE_SUFFIX)
|
|
#define CPU_RESOLVING_TYPE TYPE_ARM_CPU
|
|
|
|
#define cpu_signal_handler cpu_arm_signal_handler
|
|
#define cpu_list arm_cpu_list
|
|
|
|
/* ARM has the following "translation regimes" (as the ARM ARM calls them):
|
|
*
|
|
* If EL3 is 64-bit:
|
|
* + NonSecure EL1 & 0 stage 1
|
|
* + NonSecure EL1 & 0 stage 2
|
|
* + NonSecure EL2
|
|
* + Secure EL1 & EL0
|
|
* + Secure EL3
|
|
* If EL3 is 32-bit:
|
|
* + NonSecure PL1 & 0 stage 1
|
|
* + NonSecure PL1 & 0 stage 2
|
|
* + NonSecure PL2
|
|
* + Secure PL0 & PL1
|
|
* (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
|
|
*
|
|
* For QEMU, an mmu_idx is not quite the same as a translation regime because:
|
|
* 1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
|
|
* may differ in access permissions even if the VA->PA map is the same
|
|
* 2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
|
|
* translation, which means that we have one mmu_idx that deals with two
|
|
* concatenated translation regimes [this sort of combined s1+2 TLB is
|
|
* architecturally permitted]
|
|
* 3. we don't need to allocate an mmu_idx to translations that we won't be
|
|
* handling via the TLB. The only way to do a stage 1 translation without
|
|
* the immediate stage 2 translation is via the ATS or AT system insns,
|
|
* which can be slow-pathed and always do a page table walk.
|
|
* 4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
|
|
* translation regimes, because they map reasonably well to each other
|
|
* and they can't both be active at the same time.
|
|
* This gives us the following list of mmu_idx values:
|
|
*
|
|
* NS EL0 (aka NS PL0) stage 1+2
|
|
* NS EL1 (aka NS PL1) stage 1+2
|
|
* NS EL2 (aka NS PL2)
|
|
* S EL3 (aka S PL1)
|
|
* S EL0 (aka S PL0)
|
|
* S EL1 (not used if EL3 is 32 bit)
|
|
* NS EL0+1 stage 2
|
|
*
|
|
* (The last of these is an mmu_idx because we want to be able to use the TLB
|
|
* for the accesses done as part of a stage 1 page table walk, rather than
|
|
* having to walk the stage 2 page table over and over.)
|
|
*
|
|
* R profile CPUs have an MPU, but can use the same set of MMU indexes
|
|
* as A profile. They only need to distinguish NS EL0 and NS EL1 (and
|
|
* NS EL2 if we ever model a Cortex-R52).
|
|
*
|
|
* M profile CPUs are rather different as they do not have a true MMU.
|
|
* They have the following different MMU indexes:
|
|
* User
|
|
* Privileged
|
|
* User, execution priority negative (ie the MPU HFNMIENA bit may apply)
|
|
* Privileged, execution priority negative (ditto)
|
|
* If the CPU supports the v8M Security Extension then there are also:
|
|
* Secure User
|
|
* Secure Privileged
|
|
* Secure User, execution priority negative
|
|
* Secure Privileged, execution priority negative
|
|
*
|
|
* The ARMMMUIdx and the mmu index value used by the core QEMU TLB code
|
|
* are not quite the same -- different CPU types (most notably M profile
|
|
* vs A/R profile) would like to use MMU indexes with different semantics,
|
|
* but since we don't ever need to use all of those in a single CPU we
|
|
* can avoid setting NB_MMU_MODES to more than 8. The lower bits of
|
|
* ARMMMUIdx are the core TLB mmu index, and the higher bits are always
|
|
* the same for any particular CPU.
|
|
* Variables of type ARMMUIdx are always full values, and the core
|
|
* index values are in variables of type 'int'.
|
|
*
|
|
* Our enumeration includes at the end some entries which are not "true"
|
|
* mmu_idx values in that they don't have corresponding TLBs and are only
|
|
* valid for doing slow path page table walks.
|
|
*
|
|
* The constant names here are patterned after the general style of the names
|
|
* of the AT/ATS operations.
|
|
* The values used are carefully arranged to make mmu_idx => EL lookup easy.
|
|
* For M profile we arrange them to have a bit for priv, a bit for negpri
|
|
* and a bit for secure.
|
|
*/
|
|
#define ARM_MMU_IDX_A 0x10 /* A profile */
|
|
#define ARM_MMU_IDX_NOTLB 0x20 /* does not have a TLB */
|
|
#define ARM_MMU_IDX_M 0x40 /* M profile */
|
|
|
|
/* meanings of the bits for M profile mmu idx values */
|
|
#define ARM_MMU_IDX_M_PRIV 0x1
|
|
#define ARM_MMU_IDX_M_NEGPRI 0x2
|
|
#define ARM_MMU_IDX_M_S 0x4
|
|
|
|
#define ARM_MMU_IDX_TYPE_MASK (~0x7)
|
|
#define ARM_MMU_IDX_COREIDX_MASK 0x7
|
|
|
|
typedef enum ARMMMUIdx {
|
|
ARMMMUIdx_S12NSE0 = 0 | ARM_MMU_IDX_A,
|
|
ARMMMUIdx_S12NSE1 = 1 | ARM_MMU_IDX_A,
|
|
ARMMMUIdx_S1E2 = 2 | ARM_MMU_IDX_A,
|
|
ARMMMUIdx_S1E3 = 3 | ARM_MMU_IDX_A,
|
|
ARMMMUIdx_S1SE0 = 4 | ARM_MMU_IDX_A,
|
|
ARMMMUIdx_S1SE1 = 5 | ARM_MMU_IDX_A,
|
|
ARMMMUIdx_S2NS = 6 | ARM_MMU_IDX_A,
|
|
ARMMMUIdx_MUser = 0 | ARM_MMU_IDX_M,
|
|
ARMMMUIdx_MPriv = 1 | ARM_MMU_IDX_M,
|
|
ARMMMUIdx_MUserNegPri = 2 | ARM_MMU_IDX_M,
|
|
ARMMMUIdx_MPrivNegPri = 3 | ARM_MMU_IDX_M,
|
|
ARMMMUIdx_MSUser = 4 | ARM_MMU_IDX_M,
|
|
ARMMMUIdx_MSPriv = 5 | ARM_MMU_IDX_M,
|
|
ARMMMUIdx_MSUserNegPri = 6 | ARM_MMU_IDX_M,
|
|
ARMMMUIdx_MSPrivNegPri = 7 | ARM_MMU_IDX_M,
|
|
/* Indexes below here don't have TLBs and are used only for AT system
|
|
* instructions or for the first stage of an S12 page table walk.
|
|
*/
|
|
ARMMMUIdx_S1NSE0 = 0 | ARM_MMU_IDX_NOTLB,
|
|
ARMMMUIdx_S1NSE1 = 1 | ARM_MMU_IDX_NOTLB,
|
|
} ARMMMUIdx;
|
|
|
|
/* Bit macros for the core-mmu-index values for each index,
|
|
* for use when calling tlb_flush_by_mmuidx() and friends.
|
|
*/
|
|
typedef enum ARMMMUIdxBit {
|
|
ARMMMUIdxBit_S12NSE0 = 1 << 0,
|
|
ARMMMUIdxBit_S12NSE1 = 1 << 1,
|
|
ARMMMUIdxBit_S1E2 = 1 << 2,
|
|
ARMMMUIdxBit_S1E3 = 1 << 3,
|
|
ARMMMUIdxBit_S1SE0 = 1 << 4,
|
|
ARMMMUIdxBit_S1SE1 = 1 << 5,
|
|
ARMMMUIdxBit_S2NS = 1 << 6,
|
|
ARMMMUIdxBit_MUser = 1 << 0,
|
|
ARMMMUIdxBit_MPriv = 1 << 1,
|
|
ARMMMUIdxBit_MUserNegPri = 1 << 2,
|
|
ARMMMUIdxBit_MPrivNegPri = 1 << 3,
|
|
ARMMMUIdxBit_MSUser = 1 << 4,
|
|
ARMMMUIdxBit_MSPriv = 1 << 5,
|
|
ARMMMUIdxBit_MSUserNegPri = 1 << 6,
|
|
ARMMMUIdxBit_MSPrivNegPri = 1 << 7,
|
|
} ARMMMUIdxBit;
|
|
|
|
#define MMU_USER_IDX 0
|
|
|
|
static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
|
|
{
|
|
return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
|
|
}
|
|
|
|
static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
|
|
{
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
return mmu_idx | ARM_MMU_IDX_M;
|
|
} else {
|
|
return mmu_idx | ARM_MMU_IDX_A;
|
|
}
|
|
}
|
|
|
|
/* Return the exception level we're running at if this is our mmu_idx */
|
|
static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
|
|
{
|
|
switch (mmu_idx & ARM_MMU_IDX_TYPE_MASK) {
|
|
case ARM_MMU_IDX_A:
|
|
return mmu_idx & 3;
|
|
case ARM_MMU_IDX_M:
|
|
return mmu_idx & ARM_MMU_IDX_M_PRIV;
|
|
default:
|
|
g_assert_not_reached();
|
|
}
|
|
}
|
|
|
|
/* Return the MMU index for a v7M CPU in the specified security and
|
|
* privilege state
|
|
*/
|
|
static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate_and_priv(CPUARMState *env,
|
|
bool secstate,
|
|
bool priv)
|
|
{
|
|
ARMMMUIdx mmu_idx = ARM_MMU_IDX_M;
|
|
|
|
if (priv) {
|
|
mmu_idx |= ARM_MMU_IDX_M_PRIV;
|
|
}
|
|
|
|
if (armv7m_nvic_neg_prio_requested(env->nvic, secstate)) {
|
|
mmu_idx |= ARM_MMU_IDX_M_NEGPRI;
|
|
}
|
|
|
|
if (secstate) {
|
|
mmu_idx |= ARM_MMU_IDX_M_S;
|
|
}
|
|
|
|
return mmu_idx;
|
|
}
|
|
|
|
/* Return the MMU index for a v7M CPU in the specified security state */
|
|
static inline ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env,
|
|
bool secstate)
|
|
{
|
|
bool priv = arm_current_el(env) != 0;
|
|
|
|
return arm_v7m_mmu_idx_for_secstate_and_priv(env, secstate, priv);
|
|
}
|
|
|
|
/* Determine the current mmu_idx to use for normal loads/stores */
|
|
static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (arm_feature(env, ARM_FEATURE_M)) {
|
|
ARMMMUIdx mmu_idx = arm_v7m_mmu_idx_for_secstate(env, env->v7m.secure);
|
|
|
|
return arm_to_core_mmu_idx(mmu_idx);
|
|
}
|
|
|
|
if (el < 2 && arm_is_secure_below_el3(env)) {
|
|
return arm_to_core_mmu_idx(ARMMMUIdx_S1SE0 + el);
|
|
}
|
|
return el;
|
|
}
|
|
|
|
/* Indexes used when registering address spaces with cpu_address_space_init */
|
|
typedef enum ARMASIdx {
|
|
ARMASIdx_NS = 0,
|
|
ARMASIdx_S = 1,
|
|
} ARMASIdx;
|
|
|
|
/* Return the Exception Level targeted by debug exceptions. */
|
|
static inline int arm_debug_target_el(CPUARMState *env)
|
|
{
|
|
bool secure = arm_is_secure(env);
|
|
bool route_to_el2 = false;
|
|
|
|
if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
|
|
route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
|
|
env->cp15.mdcr_el2 & (1 << 8);
|
|
}
|
|
|
|
if (route_to_el2) {
|
|
return 2;
|
|
} else if (arm_feature(env, ARM_FEATURE_EL3) &&
|
|
!arm_el_is_aa64(env, 3) && secure) {
|
|
return 3;
|
|
} else {
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static inline bool arm_v7m_csselr_razwi(ARMCPU *cpu)
|
|
{
|
|
/* If all the CLIDR.Ctypem bits are 0 there are no caches, and
|
|
* CSSELR is RAZ/WI.
|
|
*/
|
|
return (cpu->clidr & R_V7M_CLIDR_CTYPE_ALL_MASK) != 0;
|
|
}
|
|
|
|
static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
|
|
{
|
|
if (arm_is_secure(env)) {
|
|
/* MDCR_EL3.SDD disables debug events from Secure state */
|
|
if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
|
|
|| arm_current_el(env) == 3) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
if (arm_current_el(env) == arm_debug_target_el(env)) {
|
|
if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
|
|
|| (env->daif & PSTATE_D)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
|
|
{
|
|
int el = arm_current_el(env);
|
|
|
|
if (el == 0 && arm_el_is_aa64(env, 1)) {
|
|
return aa64_generate_debug_exceptions(env);
|
|
}
|
|
|
|
if (arm_is_secure(env)) {
|
|
int spd;
|
|
|
|
if (el == 0 && (env->cp15.sder & 1)) {
|
|
/* SDER.SUIDEN means debug exceptions from Secure EL0
|
|
* are always enabled. Otherwise they are controlled by
|
|
* SDCR.SPD like those from other Secure ELs.
|
|
*/
|
|
return true;
|
|
}
|
|
|
|
spd = extract32(env->cp15.mdcr_el3, 14, 2);
|
|
switch (spd) {
|
|
case 1:
|
|
/* SPD == 0b01 is reserved, but behaves as 0b00. */
|
|
case 0:
|
|
/* For 0b00 we return true if external secure invasive debug
|
|
* is enabled. On real hardware this is controlled by external
|
|
* signals to the core. QEMU always permits debug, and behaves
|
|
* as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
|
|
*/
|
|
return true;
|
|
case 2:
|
|
return false;
|
|
case 3:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return el != 2;
|
|
}
|
|
|
|
/* Return true if debugging exceptions are currently enabled.
|
|
* This corresponds to what in ARM ARM pseudocode would be
|
|
* if UsingAArch32() then
|
|
* return AArch32.GenerateDebugExceptions()
|
|
* else
|
|
* return AArch64.GenerateDebugExceptions()
|
|
* We choose to push the if() down into this function for clarity,
|
|
* since the pseudocode has it at all callsites except for the one in
|
|
* CheckSoftwareStep(), where it is elided because both branches would
|
|
* always return the same value.
|
|
*
|
|
* Parts of the pseudocode relating to EL2 and EL3 are omitted because we
|
|
* don't yet implement those exception levels or their associated trap bits.
|
|
*/
|
|
static inline bool arm_generate_debug_exceptions(CPUARMState *env)
|
|
{
|
|
if (env->aarch64) {
|
|
return aa64_generate_debug_exceptions(env);
|
|
} else {
|
|
return aa32_generate_debug_exceptions(env);
|
|
}
|
|
}
|
|
|
|
/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
|
|
* implicitly means this always returns false in pre-v8 CPUs.)
|
|
*/
|
|
static inline bool arm_singlestep_active(CPUARMState *env)
|
|
{
|
|
return extract32(env->cp15.mdscr_el1, 0, 1)
|
|
&& arm_el_is_aa64(env, arm_debug_target_el(env))
|
|
&& arm_generate_debug_exceptions(env);
|
|
}
|
|
|
|
static inline bool arm_sctlr_b(CPUARMState *env)
|
|
{
|
|
return
|
|
/* We need not implement SCTLR.ITD in user-mode emulation, so
|
|
* let linux-user ignore the fact that it conflicts with SCTLR_B.
|
|
* This lets people run BE32 binaries with "-cpu any".
|
|
*/
|
|
#ifndef CONFIG_USER_ONLY
|
|
!arm_feature(env, ARM_FEATURE_V7) &&
|
|
#endif
|
|
(env->cp15.sctlr_el[1] & SCTLR_B) != 0;
|
|
}
|
|
|
|
/* Return true if the processor is in big-endian mode. */
|
|
static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
|
|
{
|
|
int cur_el;
|
|
|
|
/* In 32bit endianness is determined by looking at CPSR's E bit */
|
|
if (!is_a64(env)) {
|
|
return
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* In system mode, BE32 is modelled in line with the
|
|
* architecture (as word-invariant big-endianness), where loads
|
|
* and stores are done little endian but from addresses which
|
|
* are adjusted by XORing with the appropriate constant. So the
|
|
* endianness to use for the raw data access is not affected by
|
|
* SCTLR.B.
|
|
* In user mode, however, we model BE32 as byte-invariant
|
|
* big-endianness (because user-only code cannot tell the
|
|
* difference), and so we need to use a data access endianness
|
|
* that depends on SCTLR.B.
|
|
*/
|
|
arm_sctlr_b(env) ||
|
|
#endif
|
|
((env->uncached_cpsr & CPSR_E) ? 1 : 0);
|
|
}
|
|
|
|
cur_el = arm_current_el(env);
|
|
|
|
if (cur_el == 0) {
|
|
return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
|
|
}
|
|
|
|
return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
|
|
}
|
|
|
|
#include "exec/cpu-all.h"
|
|
|
|
/* Bit usage in the TB flags field: bit 31 indicates whether we are
|
|
* in 32 or 64 bit mode. The meaning of the other bits depends on that.
|
|
* We put flags which are shared between 32 and 64 bit mode at the top
|
|
* of the word, and flags which apply to only one mode at the bottom.
|
|
*/
|
|
#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
|
|
#define ARM_TBFLAG_AARCH64_STATE_MASK (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
|
|
#define ARM_TBFLAG_MMUIDX_SHIFT 28
|
|
#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
|
|
#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
|
|
#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
|
|
#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
|
|
#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
|
|
/* Target EL if we take a floating-point-disabled exception */
|
|
#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
|
|
#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
|
|
|
|
/* Bit usage when in AArch32 state: */
|
|
#define ARM_TBFLAG_THUMB_SHIFT 0
|
|
#define ARM_TBFLAG_THUMB_MASK (1 << ARM_TBFLAG_THUMB_SHIFT)
|
|
#define ARM_TBFLAG_VECLEN_SHIFT 1
|
|
#define ARM_TBFLAG_VECLEN_MASK (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
|
|
#define ARM_TBFLAG_VECSTRIDE_SHIFT 4
|
|
#define ARM_TBFLAG_VECSTRIDE_MASK (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
|
|
#define ARM_TBFLAG_VFPEN_SHIFT 7
|
|
#define ARM_TBFLAG_VFPEN_MASK (1 << ARM_TBFLAG_VFPEN_SHIFT)
|
|
#define ARM_TBFLAG_CONDEXEC_SHIFT 8
|
|
#define ARM_TBFLAG_CONDEXEC_MASK (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
|
|
#define ARM_TBFLAG_SCTLR_B_SHIFT 16
|
|
#define ARM_TBFLAG_SCTLR_B_MASK (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
|
|
/* We store the bottom two bits of the CPAR as TB flags and handle
|
|
* checks on the other bits at runtime
|
|
*/
|
|
#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
|
|
#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
|
|
/* Indicates whether cp register reads and writes by guest code should access
|
|
* the secure or nonsecure bank of banked registers; note that this is not
|
|
* the same thing as the current security state of the processor!
|
|
*/
|
|
#define ARM_TBFLAG_NS_SHIFT 19
|
|
#define ARM_TBFLAG_NS_MASK (1 << ARM_TBFLAG_NS_SHIFT)
|
|
#define ARM_TBFLAG_BE_DATA_SHIFT 20
|
|
#define ARM_TBFLAG_BE_DATA_MASK (1 << ARM_TBFLAG_BE_DATA_SHIFT)
|
|
/* For M profile only, Handler (ie not Thread) mode */
|
|
#define ARM_TBFLAG_HANDLER_SHIFT 21
|
|
#define ARM_TBFLAG_HANDLER_MASK (1 << ARM_TBFLAG_HANDLER_SHIFT)
|
|
|
|
/* Bit usage when in AArch64 state */
|
|
#define ARM_TBFLAG_TBI0_SHIFT 0 /* TBI0 for EL0/1 or TBI for EL2/3 */
|
|
#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
|
|
#define ARM_TBFLAG_TBI1_SHIFT 1 /* TBI1 for EL0/1 */
|
|
#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
|
|
#define ARM_TBFLAG_SVEEXC_EL_SHIFT 2
|
|
#define ARM_TBFLAG_SVEEXC_EL_MASK (0x3 << ARM_TBFLAG_SVEEXC_EL_SHIFT)
|
|
#define ARM_TBFLAG_ZCR_LEN_SHIFT 4
|
|
#define ARM_TBFLAG_ZCR_LEN_MASK (0xf << ARM_TBFLAG_ZCR_LEN_SHIFT)
|
|
|
|
/* some convenience accessor macros */
|
|
#define ARM_TBFLAG_AARCH64_STATE(F) \
|
|
(((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
|
|
#define ARM_TBFLAG_MMUIDX(F) \
|
|
(((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
|
|
#define ARM_TBFLAG_SS_ACTIVE(F) \
|
|
(((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
|
|
#define ARM_TBFLAG_PSTATE_SS(F) \
|
|
(((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
|
|
#define ARM_TBFLAG_FPEXC_EL(F) \
|
|
(((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
|
|
#define ARM_TBFLAG_THUMB(F) \
|
|
(((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
|
|
#define ARM_TBFLAG_VECLEN(F) \
|
|
(((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
|
|
#define ARM_TBFLAG_VECSTRIDE(F) \
|
|
(((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
|
|
#define ARM_TBFLAG_VFPEN(F) \
|
|
(((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
|
|
#define ARM_TBFLAG_CONDEXEC(F) \
|
|
(((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
|
|
#define ARM_TBFLAG_SCTLR_B(F) \
|
|
(((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
|
|
#define ARM_TBFLAG_XSCALE_CPAR(F) \
|
|
(((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
|
|
#define ARM_TBFLAG_NS(F) \
|
|
(((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
|
|
#define ARM_TBFLAG_BE_DATA(F) \
|
|
(((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
|
|
#define ARM_TBFLAG_HANDLER(F) \
|
|
(((F) & ARM_TBFLAG_HANDLER_MASK) >> ARM_TBFLAG_HANDLER_SHIFT)
|
|
#define ARM_TBFLAG_TBI0(F) \
|
|
(((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
|
|
#define ARM_TBFLAG_TBI1(F) \
|
|
(((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
|
|
#define ARM_TBFLAG_SVEEXC_EL(F) \
|
|
(((F) & ARM_TBFLAG_SVEEXC_EL_MASK) >> ARM_TBFLAG_SVEEXC_EL_SHIFT)
|
|
#define ARM_TBFLAG_ZCR_LEN(F) \
|
|
(((F) & ARM_TBFLAG_ZCR_LEN_MASK) >> ARM_TBFLAG_ZCR_LEN_SHIFT)
|
|
|
|
static inline bool bswap_code(bool sctlr_b)
|
|
{
|
|
#ifdef CONFIG_USER_ONLY
|
|
/* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
|
|
* The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
|
|
* would also end up as a mixed-endian mode with BE code, LE data.
|
|
*/
|
|
return
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
1 ^
|
|
#endif
|
|
sctlr_b;
|
|
#else
|
|
/* All code access in ARM is little endian, and there are no loaders
|
|
* doing swaps that need to be reversed
|
|
*/
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CONFIG_USER_ONLY
|
|
static inline bool arm_cpu_bswap_data(CPUARMState *env)
|
|
{
|
|
return
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
1 ^
|
|
#endif
|
|
arm_cpu_data_is_big_endian(env);
|
|
}
|
|
#endif
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/**
|
|
* arm_regime_tbi0:
|
|
* @env: CPUARMState
|
|
* @mmu_idx: MMU index indicating required translation regime
|
|
*
|
|
* Extracts the TBI0 value from the appropriate TCR for the current EL
|
|
*
|
|
* Returns: the TBI0 value.
|
|
*/
|
|
uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
|
|
|
|
/**
|
|
* arm_regime_tbi1:
|
|
* @env: CPUARMState
|
|
* @mmu_idx: MMU index indicating required translation regime
|
|
*
|
|
* Extracts the TBI1 value from the appropriate TCR for the current EL
|
|
*
|
|
* Returns: the TBI1 value.
|
|
*/
|
|
uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
|
|
#else
|
|
/* We can't handle tagged addresses properly in user-only mode */
|
|
static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
|
|
target_ulong *cs_base, uint32_t *flags);
|
|
|
|
enum {
|
|
QEMU_PSCI_CONDUIT_DISABLED = 0,
|
|
QEMU_PSCI_CONDUIT_SMC = 1,
|
|
QEMU_PSCI_CONDUIT_HVC = 2,
|
|
};
|
|
|
|
#ifndef CONFIG_USER_ONLY
|
|
/* Return the address space index to use for a memory access */
|
|
static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
|
|
{
|
|
return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
|
|
}
|
|
|
|
/* Return the AddressSpace to use for a memory access
|
|
* (which depends on whether the access is S or NS, and whether
|
|
* the board gave us a separate AddressSpace for S accesses).
|
|
*/
|
|
static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
|
|
{
|
|
return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* arm_register_pre_el_change_hook:
|
|
* Register a hook function which will be called immediately before this
|
|
* CPU changes exception level or mode. The hook function will be
|
|
* passed a pointer to the ARMCPU and the opaque data pointer passed
|
|
* to this function when the hook was registered.
|
|
*
|
|
* Note that if a pre-change hook is called, any registered post-change hooks
|
|
* are guaranteed to subsequently be called.
|
|
*/
|
|
void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
|
|
void *opaque);
|
|
/**
|
|
* arm_register_el_change_hook:
|
|
* Register a hook function which will be called immediately after this
|
|
* CPU changes exception level or mode. The hook function will be
|
|
* passed a pointer to the ARMCPU and the opaque data pointer passed
|
|
* to this function when the hook was registered.
|
|
*
|
|
* Note that any registered hooks registered here are guaranteed to be called
|
|
* if pre-change hooks have been.
|
|
*/
|
|
void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook, void
|
|
*opaque);
|
|
|
|
/**
|
|
* aa32_vfp_dreg:
|
|
* Return a pointer to the Dn register within env in 32-bit mode.
|
|
*/
|
|
static inline uint64_t *aa32_vfp_dreg(CPUARMState *env, unsigned regno)
|
|
{
|
|
return &env->vfp.zregs[regno >> 1].d[regno & 1];
|
|
}
|
|
|
|
/**
|
|
* aa32_vfp_qreg:
|
|
* Return a pointer to the Qn register within env in 32-bit mode.
|
|
*/
|
|
static inline uint64_t *aa32_vfp_qreg(CPUARMState *env, unsigned regno)
|
|
{
|
|
return &env->vfp.zregs[regno].d[0];
|
|
}
|
|
|
|
/**
|
|
* aa64_vfp_qreg:
|
|
* Return a pointer to the Qn register within env in 64-bit mode.
|
|
*/
|
|
static inline uint64_t *aa64_vfp_qreg(CPUARMState *env, unsigned regno)
|
|
{
|
|
return &env->vfp.zregs[regno].d[0];
|
|
}
|
|
|
|
/* Shared between translate-sve.c and sve_helper.c. */
|
|
extern const uint64_t pred_esz_masks[4];
|
|
|
|
#endif
|