mirror of https://gitee.com/openkylin/qemu.git
543 lines
14 KiB
C
543 lines
14 KiB
C
/*
|
|
* IMX GPT Timer
|
|
*
|
|
* Copyright (c) 2008 OK Labs
|
|
* Copyright (c) 2011 NICTA Pty Ltd
|
|
* Originally written by Hans Jiang
|
|
* Updated by Peter Chubb
|
|
* Updated by Jean-Christophe Dubois <jcd@tribudubois.net>
|
|
*
|
|
* This code is licensed under GPL version 2 or later. See
|
|
* the COPYING file in the top-level directory.
|
|
*
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
#include "hw/timer/imx_gpt.h"
|
|
#include "qemu/main-loop.h"
|
|
#include "qemu/log.h"
|
|
|
|
#ifndef DEBUG_IMX_GPT
|
|
#define DEBUG_IMX_GPT 0
|
|
#endif
|
|
|
|
#define DPRINTF(fmt, args...) \
|
|
do { \
|
|
if (DEBUG_IMX_GPT) { \
|
|
fprintf(stderr, "[%s]%s: " fmt , TYPE_IMX_GPT, \
|
|
__func__, ##args); \
|
|
} \
|
|
} while (0)
|
|
|
|
static const char *imx_gpt_reg_name(uint32_t reg)
|
|
{
|
|
switch (reg) {
|
|
case 0:
|
|
return "CR";
|
|
case 1:
|
|
return "PR";
|
|
case 2:
|
|
return "SR";
|
|
case 3:
|
|
return "IR";
|
|
case 4:
|
|
return "OCR1";
|
|
case 5:
|
|
return "OCR2";
|
|
case 6:
|
|
return "OCR3";
|
|
case 7:
|
|
return "ICR1";
|
|
case 8:
|
|
return "ICR2";
|
|
case 9:
|
|
return "CNT";
|
|
default:
|
|
return "[?]";
|
|
}
|
|
}
|
|
|
|
static const VMStateDescription vmstate_imx_timer_gpt = {
|
|
.name = TYPE_IMX_GPT,
|
|
.version_id = 3,
|
|
.minimum_version_id = 3,
|
|
.fields = (VMStateField[]) {
|
|
VMSTATE_UINT32(cr, IMXGPTState),
|
|
VMSTATE_UINT32(pr, IMXGPTState),
|
|
VMSTATE_UINT32(sr, IMXGPTState),
|
|
VMSTATE_UINT32(ir, IMXGPTState),
|
|
VMSTATE_UINT32(ocr1, IMXGPTState),
|
|
VMSTATE_UINT32(ocr2, IMXGPTState),
|
|
VMSTATE_UINT32(ocr3, IMXGPTState),
|
|
VMSTATE_UINT32(icr1, IMXGPTState),
|
|
VMSTATE_UINT32(icr2, IMXGPTState),
|
|
VMSTATE_UINT32(cnt, IMXGPTState),
|
|
VMSTATE_UINT32(next_timeout, IMXGPTState),
|
|
VMSTATE_UINT32(next_int, IMXGPTState),
|
|
VMSTATE_UINT32(freq, IMXGPTState),
|
|
VMSTATE_PTIMER(timer, IMXGPTState),
|
|
VMSTATE_END_OF_LIST()
|
|
}
|
|
};
|
|
|
|
static const IMXClk imx25_gpt_clocks[] = {
|
|
CLK_NONE, /* 000 No clock source */
|
|
CLK_IPG, /* 001 ipg_clk, 532MHz*/
|
|
CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */
|
|
CLK_NONE, /* 011 not defined */
|
|
CLK_32k, /* 100 ipg_clk_32k */
|
|
CLK_32k, /* 101 ipg_clk_32k */
|
|
CLK_32k, /* 110 ipg_clk_32k */
|
|
CLK_32k, /* 111 ipg_clk_32k */
|
|
};
|
|
|
|
static const IMXClk imx31_gpt_clocks[] = {
|
|
CLK_NONE, /* 000 No clock source */
|
|
CLK_IPG, /* 001 ipg_clk, 532MHz*/
|
|
CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */
|
|
CLK_NONE, /* 011 not defined */
|
|
CLK_32k, /* 100 ipg_clk_32k */
|
|
CLK_NONE, /* 101 not defined */
|
|
CLK_NONE, /* 110 not defined */
|
|
CLK_NONE, /* 111 not defined */
|
|
};
|
|
|
|
static const IMXClk imx6_gpt_clocks[] = {
|
|
CLK_NONE, /* 000 No clock source */
|
|
CLK_IPG, /* 001 ipg_clk, 532MHz*/
|
|
CLK_IPG_HIGH, /* 010 ipg_clk_highfreq */
|
|
CLK_EXT, /* 011 External clock */
|
|
CLK_32k, /* 100 ipg_clk_32k */
|
|
CLK_HIGH_DIV, /* 101 reference clock / 8 */
|
|
CLK_NONE, /* 110 not defined */
|
|
CLK_HIGH, /* 111 reference clock */
|
|
};
|
|
|
|
static void imx_gpt_set_freq(IMXGPTState *s)
|
|
{
|
|
uint32_t clksrc = extract32(s->cr, GPT_CR_CLKSRC_SHIFT, 3);
|
|
|
|
s->freq = imx_ccm_get_clock_frequency(s->ccm,
|
|
s->clocks[clksrc]) / (1 + s->pr);
|
|
|
|
DPRINTF("Setting clksrc %d to frequency %d\n", clksrc, s->freq);
|
|
|
|
if (s->freq) {
|
|
ptimer_set_freq(s->timer, s->freq);
|
|
}
|
|
}
|
|
|
|
static void imx_gpt_update_int(IMXGPTState *s)
|
|
{
|
|
if ((s->sr & s->ir) && (s->cr & GPT_CR_EN)) {
|
|
qemu_irq_raise(s->irq);
|
|
} else {
|
|
qemu_irq_lower(s->irq);
|
|
}
|
|
}
|
|
|
|
static uint32_t imx_gpt_update_count(IMXGPTState *s)
|
|
{
|
|
s->cnt = s->next_timeout - (uint32_t)ptimer_get_count(s->timer);
|
|
|
|
return s->cnt;
|
|
}
|
|
|
|
static inline uint32_t imx_gpt_find_limit(uint32_t count, uint32_t reg,
|
|
uint32_t timeout)
|
|
{
|
|
if ((count < reg) && (timeout > reg)) {
|
|
timeout = reg;
|
|
}
|
|
|
|
return timeout;
|
|
}
|
|
|
|
static void imx_gpt_compute_next_timeout(IMXGPTState *s, bool event)
|
|
{
|
|
uint32_t timeout = GPT_TIMER_MAX;
|
|
uint32_t count;
|
|
long long limit;
|
|
|
|
if (!(s->cr & GPT_CR_EN)) {
|
|
/* if not enabled just return */
|
|
return;
|
|
}
|
|
|
|
/* update the count */
|
|
count = imx_gpt_update_count(s);
|
|
|
|
if (event) {
|
|
/*
|
|
* This is an event (the ptimer reached 0 and stopped), and the
|
|
* timer counter is now equal to s->next_timeout.
|
|
*/
|
|
if (!(s->cr & GPT_CR_FRR) && (count == s->ocr1)) {
|
|
/* We are in restart mode and we crossed the compare channel 1
|
|
* value. We need to reset the counter to 0.
|
|
*/
|
|
count = s->cnt = s->next_timeout = 0;
|
|
} else if (count == GPT_TIMER_MAX) {
|
|
/* We reached GPT_TIMER_MAX so we need to rollover */
|
|
count = s->cnt = s->next_timeout = 0;
|
|
}
|
|
}
|
|
|
|
/* now, find the next timeout related to count */
|
|
|
|
if (s->ir & GPT_IR_OF1IE) {
|
|
timeout = imx_gpt_find_limit(count, s->ocr1, timeout);
|
|
}
|
|
if (s->ir & GPT_IR_OF2IE) {
|
|
timeout = imx_gpt_find_limit(count, s->ocr2, timeout);
|
|
}
|
|
if (s->ir & GPT_IR_OF3IE) {
|
|
timeout = imx_gpt_find_limit(count, s->ocr3, timeout);
|
|
}
|
|
|
|
/* find the next set of interrupts to raise for next timer event */
|
|
|
|
s->next_int = 0;
|
|
if ((s->ir & GPT_IR_OF1IE) && (timeout == s->ocr1)) {
|
|
s->next_int |= GPT_SR_OF1;
|
|
}
|
|
if ((s->ir & GPT_IR_OF2IE) && (timeout == s->ocr2)) {
|
|
s->next_int |= GPT_SR_OF2;
|
|
}
|
|
if ((s->ir & GPT_IR_OF3IE) && (timeout == s->ocr3)) {
|
|
s->next_int |= GPT_SR_OF3;
|
|
}
|
|
if ((s->ir & GPT_IR_ROVIE) && (timeout == GPT_TIMER_MAX)) {
|
|
s->next_int |= GPT_SR_ROV;
|
|
}
|
|
|
|
/* the new range to count down from */
|
|
limit = timeout - imx_gpt_update_count(s);
|
|
|
|
if (limit < 0) {
|
|
/*
|
|
* if we reach here, then QEMU is running too slow and we pass the
|
|
* timeout limit while computing it. Let's deliver the interrupt
|
|
* and compute a new limit.
|
|
*/
|
|
s->sr |= s->next_int;
|
|
|
|
imx_gpt_compute_next_timeout(s, event);
|
|
|
|
imx_gpt_update_int(s);
|
|
} else {
|
|
/* New timeout value */
|
|
s->next_timeout = timeout;
|
|
|
|
/* reset the limit to the computed range */
|
|
ptimer_set_limit(s->timer, limit, 1);
|
|
}
|
|
}
|
|
|
|
static uint64_t imx_gpt_read(void *opaque, hwaddr offset, unsigned size)
|
|
{
|
|
IMXGPTState *s = IMX_GPT(opaque);
|
|
uint32_t reg_value = 0;
|
|
|
|
switch (offset >> 2) {
|
|
case 0: /* Control Register */
|
|
reg_value = s->cr;
|
|
break;
|
|
|
|
case 1: /* prescaler */
|
|
reg_value = s->pr;
|
|
break;
|
|
|
|
case 2: /* Status Register */
|
|
reg_value = s->sr;
|
|
break;
|
|
|
|
case 3: /* Interrupt Register */
|
|
reg_value = s->ir;
|
|
break;
|
|
|
|
case 4: /* Output Compare Register 1 */
|
|
reg_value = s->ocr1;
|
|
break;
|
|
|
|
case 5: /* Output Compare Register 2 */
|
|
reg_value = s->ocr2;
|
|
break;
|
|
|
|
case 6: /* Output Compare Register 3 */
|
|
reg_value = s->ocr3;
|
|
break;
|
|
|
|
case 7: /* input Capture Register 1 */
|
|
qemu_log_mask(LOG_UNIMP, "[%s]%s: icr1 feature is not implemented\n",
|
|
TYPE_IMX_GPT, __func__);
|
|
reg_value = s->icr1;
|
|
break;
|
|
|
|
case 8: /* input Capture Register 2 */
|
|
qemu_log_mask(LOG_UNIMP, "[%s]%s: icr2 feature is not implemented\n",
|
|
TYPE_IMX_GPT, __func__);
|
|
reg_value = s->icr2;
|
|
break;
|
|
|
|
case 9: /* cnt */
|
|
imx_gpt_update_count(s);
|
|
reg_value = s->cnt;
|
|
break;
|
|
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
|
|
HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset);
|
|
break;
|
|
}
|
|
|
|
DPRINTF("(%s) = 0x%08x\n", imx_gpt_reg_name(offset >> 2), reg_value);
|
|
|
|
return reg_value;
|
|
}
|
|
|
|
|
|
static void imx_gpt_reset_common(IMXGPTState *s, bool is_soft_reset)
|
|
{
|
|
/* stop timer */
|
|
ptimer_stop(s->timer);
|
|
|
|
/* Soft reset and hard reset differ only in their handling of the CR
|
|
* register -- soft reset preserves the values of some bits there.
|
|
*/
|
|
if (is_soft_reset) {
|
|
/* Clear all CR bits except those that are preserved by soft reset. */
|
|
s->cr &= GPT_CR_EN | GPT_CR_ENMOD | GPT_CR_STOPEN | GPT_CR_DOZEN |
|
|
GPT_CR_WAITEN | GPT_CR_DBGEN |
|
|
(GPT_CR_CLKSRC_MASK << GPT_CR_CLKSRC_SHIFT);
|
|
} else {
|
|
s->cr = 0;
|
|
}
|
|
s->sr = 0;
|
|
s->pr = 0;
|
|
s->ir = 0;
|
|
s->cnt = 0;
|
|
s->ocr1 = GPT_TIMER_MAX;
|
|
s->ocr2 = GPT_TIMER_MAX;
|
|
s->ocr3 = GPT_TIMER_MAX;
|
|
s->icr1 = 0;
|
|
s->icr2 = 0;
|
|
|
|
s->next_timeout = GPT_TIMER_MAX;
|
|
s->next_int = 0;
|
|
|
|
/* compute new freq */
|
|
imx_gpt_set_freq(s);
|
|
|
|
/* reset the limit to GPT_TIMER_MAX */
|
|
ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1);
|
|
|
|
/* if the timer is still enabled, restart it */
|
|
if (s->freq && (s->cr & GPT_CR_EN)) {
|
|
ptimer_run(s->timer, 1);
|
|
}
|
|
}
|
|
|
|
static void imx_gpt_soft_reset(DeviceState *dev)
|
|
{
|
|
IMXGPTState *s = IMX_GPT(dev);
|
|
imx_gpt_reset_common(s, true);
|
|
}
|
|
|
|
static void imx_gpt_reset(DeviceState *dev)
|
|
{
|
|
IMXGPTState *s = IMX_GPT(dev);
|
|
imx_gpt_reset_common(s, false);
|
|
}
|
|
|
|
static void imx_gpt_write(void *opaque, hwaddr offset, uint64_t value,
|
|
unsigned size)
|
|
{
|
|
IMXGPTState *s = IMX_GPT(opaque);
|
|
uint32_t oldreg;
|
|
|
|
DPRINTF("(%s, value = 0x%08x)\n", imx_gpt_reg_name(offset >> 2),
|
|
(uint32_t)value);
|
|
|
|
switch (offset >> 2) {
|
|
case 0:
|
|
oldreg = s->cr;
|
|
s->cr = value & ~0x7c14;
|
|
if (s->cr & GPT_CR_SWR) { /* force reset */
|
|
/* handle the reset */
|
|
imx_gpt_soft_reset(DEVICE(s));
|
|
} else {
|
|
/* set our freq, as the source might have changed */
|
|
imx_gpt_set_freq(s);
|
|
|
|
if ((oldreg ^ s->cr) & GPT_CR_EN) {
|
|
if (s->cr & GPT_CR_EN) {
|
|
if (s->cr & GPT_CR_ENMOD) {
|
|
s->next_timeout = GPT_TIMER_MAX;
|
|
ptimer_set_count(s->timer, GPT_TIMER_MAX);
|
|
imx_gpt_compute_next_timeout(s, false);
|
|
}
|
|
ptimer_run(s->timer, 1);
|
|
} else {
|
|
/* stop timer */
|
|
ptimer_stop(s->timer);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 1: /* Prescaler */
|
|
s->pr = value & 0xfff;
|
|
imx_gpt_set_freq(s);
|
|
break;
|
|
|
|
case 2: /* SR */
|
|
s->sr &= ~(value & 0x3f);
|
|
imx_gpt_update_int(s);
|
|
break;
|
|
|
|
case 3: /* IR -- interrupt register */
|
|
s->ir = value & 0x3f;
|
|
imx_gpt_update_int(s);
|
|
|
|
imx_gpt_compute_next_timeout(s, false);
|
|
|
|
break;
|
|
|
|
case 4: /* OCR1 -- output compare register */
|
|
s->ocr1 = value;
|
|
|
|
/* In non-freerun mode, reset count when this register is written */
|
|
if (!(s->cr & GPT_CR_FRR)) {
|
|
s->next_timeout = GPT_TIMER_MAX;
|
|
ptimer_set_limit(s->timer, GPT_TIMER_MAX, 1);
|
|
}
|
|
|
|
/* compute the new timeout */
|
|
imx_gpt_compute_next_timeout(s, false);
|
|
|
|
break;
|
|
|
|
case 5: /* OCR2 -- output compare register */
|
|
s->ocr2 = value;
|
|
|
|
/* compute the new timeout */
|
|
imx_gpt_compute_next_timeout(s, false);
|
|
|
|
break;
|
|
|
|
case 6: /* OCR3 -- output compare register */
|
|
s->ocr3 = value;
|
|
|
|
/* compute the new timeout */
|
|
imx_gpt_compute_next_timeout(s, false);
|
|
|
|
break;
|
|
|
|
default:
|
|
qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Bad register at offset 0x%"
|
|
HWADDR_PRIx "\n", TYPE_IMX_GPT, __func__, offset);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static void imx_gpt_timeout(void *opaque)
|
|
{
|
|
IMXGPTState *s = IMX_GPT(opaque);
|
|
|
|
DPRINTF("\n");
|
|
|
|
s->sr |= s->next_int;
|
|
s->next_int = 0;
|
|
|
|
imx_gpt_compute_next_timeout(s, true);
|
|
|
|
imx_gpt_update_int(s);
|
|
|
|
if (s->freq && (s->cr & GPT_CR_EN)) {
|
|
ptimer_run(s->timer, 1);
|
|
}
|
|
}
|
|
|
|
static const MemoryRegionOps imx_gpt_ops = {
|
|
.read = imx_gpt_read,
|
|
.write = imx_gpt_write,
|
|
.endianness = DEVICE_NATIVE_ENDIAN,
|
|
};
|
|
|
|
|
|
static void imx_gpt_realize(DeviceState *dev, Error **errp)
|
|
{
|
|
IMXGPTState *s = IMX_GPT(dev);
|
|
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
|
|
QEMUBH *bh;
|
|
|
|
sysbus_init_irq(sbd, &s->irq);
|
|
memory_region_init_io(&s->iomem, OBJECT(s), &imx_gpt_ops, s, TYPE_IMX_GPT,
|
|
0x00001000);
|
|
sysbus_init_mmio(sbd, &s->iomem);
|
|
|
|
bh = qemu_bh_new(imx_gpt_timeout, s);
|
|
s->timer = ptimer_init(bh, PTIMER_POLICY_DEFAULT);
|
|
}
|
|
|
|
static void imx_gpt_class_init(ObjectClass *klass, void *data)
|
|
{
|
|
DeviceClass *dc = DEVICE_CLASS(klass);
|
|
|
|
dc->realize = imx_gpt_realize;
|
|
dc->reset = imx_gpt_reset;
|
|
dc->vmsd = &vmstate_imx_timer_gpt;
|
|
dc->desc = "i.MX general timer";
|
|
}
|
|
|
|
static void imx25_gpt_init(Object *obj)
|
|
{
|
|
IMXGPTState *s = IMX_GPT(obj);
|
|
|
|
s->clocks = imx25_gpt_clocks;
|
|
}
|
|
|
|
static void imx31_gpt_init(Object *obj)
|
|
{
|
|
IMXGPTState *s = IMX_GPT(obj);
|
|
|
|
s->clocks = imx31_gpt_clocks;
|
|
}
|
|
|
|
static void imx6_gpt_init(Object *obj)
|
|
{
|
|
IMXGPTState *s = IMX_GPT(obj);
|
|
|
|
s->clocks = imx6_gpt_clocks;
|
|
}
|
|
|
|
static const TypeInfo imx25_gpt_info = {
|
|
.name = TYPE_IMX25_GPT,
|
|
.parent = TYPE_SYS_BUS_DEVICE,
|
|
.instance_size = sizeof(IMXGPTState),
|
|
.instance_init = imx25_gpt_init,
|
|
.class_init = imx_gpt_class_init,
|
|
};
|
|
|
|
static const TypeInfo imx31_gpt_info = {
|
|
.name = TYPE_IMX31_GPT,
|
|
.parent = TYPE_IMX25_GPT,
|
|
.instance_init = imx31_gpt_init,
|
|
};
|
|
|
|
static const TypeInfo imx6_gpt_info = {
|
|
.name = TYPE_IMX6_GPT,
|
|
.parent = TYPE_IMX25_GPT,
|
|
.instance_init = imx6_gpt_init,
|
|
};
|
|
|
|
static void imx_gpt_register_types(void)
|
|
{
|
|
type_register_static(&imx25_gpt_info);
|
|
type_register_static(&imx31_gpt_info);
|
|
type_register_static(&imx6_gpt_info);
|
|
}
|
|
|
|
type_init(imx_gpt_register_types)
|