qemu/hw/mc146818rtc.c

597 lines
17 KiB
C

/*
* QEMU MC146818 RTC emulation
*
* Copyright (c) 2003-2004 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
//#define DEBUG_CMOS
#define RTC_SECONDS 0
#define RTC_SECONDS_ALARM 1
#define RTC_MINUTES 2
#define RTC_MINUTES_ALARM 3
#define RTC_HOURS 4
#define RTC_HOURS_ALARM 5
#define RTC_ALARM_DONT_CARE 0xC0
#define RTC_DAY_OF_WEEK 6
#define RTC_DAY_OF_MONTH 7
#define RTC_MONTH 8
#define RTC_YEAR 9
#define RTC_REG_A 10
#define RTC_REG_B 11
#define RTC_REG_C 12
#define RTC_REG_D 13
#define REG_A_UIP 0x80
#define REG_B_SET 0x80
#define REG_B_PIE 0x40
#define REG_B_AIE 0x20
#define REG_B_UIE 0x10
struct RTCState {
uint8_t cmos_data[128];
uint8_t cmos_index;
struct tm current_tm;
qemu_irq irq;
target_phys_addr_t base;
int it_shift;
/* periodic timer */
QEMUTimer *periodic_timer;
int64_t next_periodic_time;
/* second update */
int64_t next_second_time;
QEMUTimer *second_timer;
QEMUTimer *second_timer2;
};
static void rtc_set_time(RTCState *s);
static void rtc_copy_date(RTCState *s);
static void rtc_timer_update(RTCState *s, int64_t current_time)
{
int period_code, period;
int64_t cur_clock, next_irq_clock;
period_code = s->cmos_data[RTC_REG_A] & 0x0f;
if (period_code != 0 &&
(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
if (period_code <= 2)
period_code += 7;
/* period in 32 Khz cycles */
period = 1 << (period_code - 1);
/* compute 32 khz clock */
cur_clock = muldiv64(current_time, 32768, ticks_per_sec);
next_irq_clock = (cur_clock & ~(period - 1)) + period;
s->next_periodic_time = muldiv64(next_irq_clock, ticks_per_sec, 32768) + 1;
qemu_mod_timer(s->periodic_timer, s->next_periodic_time);
} else {
qemu_del_timer(s->periodic_timer);
}
}
static void rtc_periodic_timer(void *opaque)
{
RTCState *s = opaque;
rtc_timer_update(s, s->next_periodic_time);
s->cmos_data[RTC_REG_C] |= 0xc0;
qemu_irq_raise(s->irq);
}
static void cmos_ioport_write(void *opaque, uint32_t addr, uint32_t data)
{
RTCState *s = opaque;
if ((addr & 1) == 0) {
s->cmos_index = data & 0x7f;
} else {
#ifdef DEBUG_CMOS
printf("cmos: write index=0x%02x val=0x%02x\n",
s->cmos_index, data);
#endif
switch(s->cmos_index) {
case RTC_SECONDS_ALARM:
case RTC_MINUTES_ALARM:
case RTC_HOURS_ALARM:
/* XXX: not supported */
s->cmos_data[s->cmos_index] = data;
break;
case RTC_SECONDS:
case RTC_MINUTES:
case RTC_HOURS:
case RTC_DAY_OF_WEEK:
case RTC_DAY_OF_MONTH:
case RTC_MONTH:
case RTC_YEAR:
s->cmos_data[s->cmos_index] = data;
/* if in set mode, do not update the time */
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
rtc_set_time(s);
}
break;
case RTC_REG_A:
/* UIP bit is read only */
s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
(s->cmos_data[RTC_REG_A] & REG_A_UIP);
rtc_timer_update(s, qemu_get_clock(vm_clock));
break;
case RTC_REG_B:
if (data & REG_B_SET) {
/* set mode: reset UIP mode */
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
data &= ~REG_B_UIE;
} else {
/* if disabling set mode, update the time */
if (s->cmos_data[RTC_REG_B] & REG_B_SET) {
rtc_set_time(s);
}
}
s->cmos_data[RTC_REG_B] = data;
rtc_timer_update(s, qemu_get_clock(vm_clock));
break;
case RTC_REG_C:
case RTC_REG_D:
/* cannot write to them */
break;
default:
s->cmos_data[s->cmos_index] = data;
break;
}
}
}
static inline int to_bcd(RTCState *s, int a)
{
if (s->cmos_data[RTC_REG_B] & 0x04) {
return a;
} else {
return ((a / 10) << 4) | (a % 10);
}
}
static inline int from_bcd(RTCState *s, int a)
{
if (s->cmos_data[RTC_REG_B] & 0x04) {
return a;
} else {
return ((a >> 4) * 10) + (a & 0x0f);
}
}
static void rtc_set_time(RTCState *s)
{
struct tm *tm = &s->current_tm;
tm->tm_sec = from_bcd(s, s->cmos_data[RTC_SECONDS]);
tm->tm_min = from_bcd(s, s->cmos_data[RTC_MINUTES]);
tm->tm_hour = from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
if (!(s->cmos_data[RTC_REG_B] & 0x02) &&
(s->cmos_data[RTC_HOURS] & 0x80)) {
tm->tm_hour += 12;
}
tm->tm_wday = from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]);
tm->tm_mday = from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
tm->tm_mon = from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
tm->tm_year = from_bcd(s, s->cmos_data[RTC_YEAR]) + 100;
}
static void rtc_copy_date(RTCState *s)
{
const struct tm *tm = &s->current_tm;
s->cmos_data[RTC_SECONDS] = to_bcd(s, tm->tm_sec);
s->cmos_data[RTC_MINUTES] = to_bcd(s, tm->tm_min);
if (s->cmos_data[RTC_REG_B] & 0x02) {
/* 24 hour format */
s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour);
} else {
/* 12 hour format */
s->cmos_data[RTC_HOURS] = to_bcd(s, tm->tm_hour % 12);
if (tm->tm_hour >= 12)
s->cmos_data[RTC_HOURS] |= 0x80;
}
s->cmos_data[RTC_DAY_OF_WEEK] = to_bcd(s, tm->tm_wday);
s->cmos_data[RTC_DAY_OF_MONTH] = to_bcd(s, tm->tm_mday);
s->cmos_data[RTC_MONTH] = to_bcd(s, tm->tm_mon + 1);
s->cmos_data[RTC_YEAR] = to_bcd(s, tm->tm_year % 100);
}
/* month is between 0 and 11. */
static int get_days_in_month(int month, int year)
{
static const int days_tab[12] = {
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
int d;
if ((unsigned )month >= 12)
return 31;
d = days_tab[month];
if (month == 1) {
if ((year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0))
d++;
}
return d;
}
/* update 'tm' to the next second */
static void rtc_next_second(struct tm *tm)
{
int days_in_month;
tm->tm_sec++;
if ((unsigned)tm->tm_sec >= 60) {
tm->tm_sec = 0;
tm->tm_min++;
if ((unsigned)tm->tm_min >= 60) {
tm->tm_min = 0;
tm->tm_hour++;
if ((unsigned)tm->tm_hour >= 24) {
tm->tm_hour = 0;
/* next day */
tm->tm_wday++;
if ((unsigned)tm->tm_wday >= 7)
tm->tm_wday = 0;
days_in_month = get_days_in_month(tm->tm_mon,
tm->tm_year + 1900);
tm->tm_mday++;
if (tm->tm_mday < 1) {
tm->tm_mday = 1;
} else if (tm->tm_mday > days_in_month) {
tm->tm_mday = 1;
tm->tm_mon++;
if (tm->tm_mon >= 12) {
tm->tm_mon = 0;
tm->tm_year++;
}
}
}
}
}
}
static void rtc_update_second(void *opaque)
{
RTCState *s = opaque;
int64_t delay;
/* if the oscillator is not in normal operation, we do not update */
if ((s->cmos_data[RTC_REG_A] & 0x70) != 0x20) {
s->next_second_time += ticks_per_sec;
qemu_mod_timer(s->second_timer, s->next_second_time);
} else {
rtc_next_second(&s->current_tm);
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
/* update in progress bit */
s->cmos_data[RTC_REG_A] |= REG_A_UIP;
}
/* should be 244 us = 8 / 32768 seconds, but currently the
timers do not have the necessary resolution. */
delay = (ticks_per_sec * 1) / 100;
if (delay < 1)
delay = 1;
qemu_mod_timer(s->second_timer2,
s->next_second_time + delay);
}
}
static void rtc_update_second2(void *opaque)
{
RTCState *s = opaque;
if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
rtc_copy_date(s);
}
/* check alarm */
if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
if (((s->cmos_data[RTC_SECONDS_ALARM] & 0xc0) == 0xc0 ||
s->cmos_data[RTC_SECONDS_ALARM] == s->current_tm.tm_sec) &&
((s->cmos_data[RTC_MINUTES_ALARM] & 0xc0) == 0xc0 ||
s->cmos_data[RTC_MINUTES_ALARM] == s->current_tm.tm_mon) &&
((s->cmos_data[RTC_HOURS_ALARM] & 0xc0) == 0xc0 ||
s->cmos_data[RTC_HOURS_ALARM] == s->current_tm.tm_hour)) {
s->cmos_data[RTC_REG_C] |= 0xa0;
qemu_irq_raise(s->irq);
}
}
/* update ended interrupt */
if (s->cmos_data[RTC_REG_B] & REG_B_UIE) {
s->cmos_data[RTC_REG_C] |= 0x90;
qemu_irq_raise(s->irq);
}
/* clear update in progress bit */
s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
s->next_second_time += ticks_per_sec;
qemu_mod_timer(s->second_timer, s->next_second_time);
}
static uint32_t cmos_ioport_read(void *opaque, uint32_t addr)
{
RTCState *s = opaque;
int ret;
if ((addr & 1) == 0) {
return 0xff;
} else {
switch(s->cmos_index) {
case RTC_SECONDS:
case RTC_MINUTES:
case RTC_HOURS:
case RTC_DAY_OF_WEEK:
case RTC_DAY_OF_MONTH:
case RTC_MONTH:
case RTC_YEAR:
ret = s->cmos_data[s->cmos_index];
break;
case RTC_REG_A:
ret = s->cmos_data[s->cmos_index];
break;
case RTC_REG_C:
ret = s->cmos_data[s->cmos_index];
qemu_irq_lower(s->irq);
s->cmos_data[RTC_REG_C] = 0x00;
break;
default:
ret = s->cmos_data[s->cmos_index];
break;
}
#ifdef DEBUG_CMOS
printf("cmos: read index=0x%02x val=0x%02x\n",
s->cmos_index, ret);
#endif
return ret;
}
}
void rtc_set_memory(RTCState *s, int addr, int val)
{
if (addr >= 0 && addr <= 127)
s->cmos_data[addr] = val;
}
void rtc_set_date(RTCState *s, const struct tm *tm)
{
s->current_tm = *tm;
rtc_copy_date(s);
}
/* PC cmos mappings */
#define REG_IBM_CENTURY_BYTE 0x32
#define REG_IBM_PS2_CENTURY_BYTE 0x37
void rtc_set_date_from_host(RTCState *s)
{
time_t ti;
struct tm *tm;
int val;
/* set the CMOS date */
time(&ti);
if (rtc_utc)
tm = gmtime(&ti);
else
tm = localtime(&ti);
rtc_set_date(s, tm);
val = to_bcd(s, (tm->tm_year / 100) + 19);
rtc_set_memory(s, REG_IBM_CENTURY_BYTE, val);
rtc_set_memory(s, REG_IBM_PS2_CENTURY_BYTE, val);
}
static void rtc_save(QEMUFile *f, void *opaque)
{
RTCState *s = opaque;
qemu_put_buffer(f, s->cmos_data, 128);
qemu_put_8s(f, &s->cmos_index);
qemu_put_be32s(f, &s->current_tm.tm_sec);
qemu_put_be32s(f, &s->current_tm.tm_min);
qemu_put_be32s(f, &s->current_tm.tm_hour);
qemu_put_be32s(f, &s->current_tm.tm_wday);
qemu_put_be32s(f, &s->current_tm.tm_mday);
qemu_put_be32s(f, &s->current_tm.tm_mon);
qemu_put_be32s(f, &s->current_tm.tm_year);
qemu_put_timer(f, s->periodic_timer);
qemu_put_be64s(f, &s->next_periodic_time);
qemu_put_be64s(f, &s->next_second_time);
qemu_put_timer(f, s->second_timer);
qemu_put_timer(f, s->second_timer2);
}
static int rtc_load(QEMUFile *f, void *opaque, int version_id)
{
RTCState *s = opaque;
if (version_id != 1)
return -EINVAL;
qemu_get_buffer(f, s->cmos_data, 128);
qemu_get_8s(f, &s->cmos_index);
qemu_get_be32s(f, &s->current_tm.tm_sec);
qemu_get_be32s(f, &s->current_tm.tm_min);
qemu_get_be32s(f, &s->current_tm.tm_hour);
qemu_get_be32s(f, &s->current_tm.tm_wday);
qemu_get_be32s(f, &s->current_tm.tm_mday);
qemu_get_be32s(f, &s->current_tm.tm_mon);
qemu_get_be32s(f, &s->current_tm.tm_year);
qemu_get_timer(f, s->periodic_timer);
qemu_get_be64s(f, &s->next_periodic_time);
qemu_get_be64s(f, &s->next_second_time);
qemu_get_timer(f, s->second_timer);
qemu_get_timer(f, s->second_timer2);
return 0;
}
RTCState *rtc_init(int base, qemu_irq irq)
{
RTCState *s;
s = qemu_mallocz(sizeof(RTCState));
if (!s)
return NULL;
s->irq = irq;
s->cmos_data[RTC_REG_A] = 0x26;
s->cmos_data[RTC_REG_B] = 0x02;
s->cmos_data[RTC_REG_C] = 0x00;
s->cmos_data[RTC_REG_D] = 0x80;
rtc_set_date_from_host(s);
s->periodic_timer = qemu_new_timer(vm_clock,
rtc_periodic_timer, s);
s->second_timer = qemu_new_timer(vm_clock,
rtc_update_second, s);
s->second_timer2 = qemu_new_timer(vm_clock,
rtc_update_second2, s);
s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
qemu_mod_timer(s->second_timer2, s->next_second_time);
register_ioport_write(base, 2, 1, cmos_ioport_write, s);
register_ioport_read(base, 2, 1, cmos_ioport_read, s);
register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
return s;
}
/* Memory mapped interface */
uint32_t cmos_mm_readb (void *opaque, target_phys_addr_t addr)
{
RTCState *s = opaque;
return cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFF;
}
void cmos_mm_writeb (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
RTCState *s = opaque;
cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFF);
}
uint32_t cmos_mm_readw (void *opaque, target_phys_addr_t addr)
{
RTCState *s = opaque;
uint32_t val;
val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift) & 0xFFFF;
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap16(val);
#endif
return val;
}
void cmos_mm_writew (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
RTCState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap16(value);
#endif
cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value & 0xFFFF);
}
uint32_t cmos_mm_readl (void *opaque, target_phys_addr_t addr)
{
RTCState *s = opaque;
uint32_t val;
val = cmos_ioport_read(s, (addr - s->base) >> s->it_shift);
#ifdef TARGET_WORDS_BIGENDIAN
val = bswap32(val);
#endif
return val;
}
void cmos_mm_writel (void *opaque,
target_phys_addr_t addr, uint32_t value)
{
RTCState *s = opaque;
#ifdef TARGET_WORDS_BIGENDIAN
value = bswap32(value);
#endif
cmos_ioport_write(s, (addr - s->base) >> s->it_shift, value);
}
static CPUReadMemoryFunc *rtc_mm_read[] = {
&cmos_mm_readb,
&cmos_mm_readw,
&cmos_mm_readl,
};
static CPUWriteMemoryFunc *rtc_mm_write[] = {
&cmos_mm_writeb,
&cmos_mm_writew,
&cmos_mm_writel,
};
RTCState *rtc_mm_init(target_phys_addr_t base, int it_shift, qemu_irq irq)
{
RTCState *s;
int io_memory;
s = qemu_mallocz(sizeof(RTCState));
if (!s)
return NULL;
s->irq = irq;
s->cmos_data[RTC_REG_A] = 0x26;
s->cmos_data[RTC_REG_B] = 0x02;
s->cmos_data[RTC_REG_C] = 0x00;
s->cmos_data[RTC_REG_D] = 0x80;
s->base = base;
rtc_set_date_from_host(s);
s->periodic_timer = qemu_new_timer(vm_clock,
rtc_periodic_timer, s);
s->second_timer = qemu_new_timer(vm_clock,
rtc_update_second, s);
s->second_timer2 = qemu_new_timer(vm_clock,
rtc_update_second2, s);
s->next_second_time = qemu_get_clock(vm_clock) + (ticks_per_sec * 99) / 100;
qemu_mod_timer(s->second_timer2, s->next_second_time);
io_memory = cpu_register_io_memory(0, rtc_mm_read, rtc_mm_write, s);
cpu_register_physical_memory(base, 2 << it_shift, io_memory);
register_savevm("mc146818rtc", base, 1, rtc_save, rtc_load, s);
return s;
}