qemu/hw/slavio_timer.c

342 lines
10 KiB
C

/*
* QEMU Sparc SLAVIO timer controller emulation
*
* Copyright (c) 2003-2005 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "vl.h"
//#define DEBUG_TIMER
#ifdef DEBUG_TIMER
#define DPRINTF(fmt, args...) \
do { printf("TIMER: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...)
#endif
/*
* Registers of hardware timer in sun4m.
*
* This is the timer/counter part of chip STP2001 (Slave I/O), also
* produced as NCR89C105. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
*
* The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
* are zero. Bit 31 is 1 when count has been reached.
*
* Per-CPU timers interrupt local CPU, system timer uses normal
* interrupt routing.
*
*/
#define MAX_CPUS 16
typedef struct SLAVIO_TIMERState {
qemu_irq irq;
ptimer_state *timer;
uint32_t count, counthigh, reached;
uint64_t limit;
// processor only
int running;
struct SLAVIO_TIMERState *master;
int slave_index;
// system only
struct SLAVIO_TIMERState *slave[MAX_CPUS];
uint32_t slave_mode;
} SLAVIO_TIMERState;
#define TIMER_MAXADDR 0x1f
#define SYS_TIMER_SIZE 0x14
#define CPU_TIMER_SIZE 0x10
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
{
return s->master && (s->master->slave_mode & (1 << s->slave_index));
}
// Update count, set irq, update expire_time
// Convert from ptimer countdown units
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
{
uint64_t count;
count = s->limit - (ptimer_get_count(s->timer) << 9);
DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh,
s->count);
s->count = count & 0xfffffe00;
s->counthigh = count >> 32;
}
// timer callback
static void slavio_timer_irq(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
slavio_timer_get_out(s);
DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
if (!slavio_timer_is_user(s)) {
s->reached = 0x80000000;
qemu_irq_raise(s->irq);
}
}
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr, ret;
saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) {
case 0:
// read limit (system counter mode) or read most signifying
// part of counter (user mode)
if (slavio_timer_is_user(s)) {
// read user timer MSW
slavio_timer_get_out(s);
ret = s->counthigh;
} else {
// read limit
// clear irq
qemu_irq_lower(s->irq);
s->reached = 0;
ret = s->limit & 0x7fffffff;
}
break;
case 1:
// read counter and reached bit (system mode) or read lsbits
// of counter (user mode)
slavio_timer_get_out(s);
if (slavio_timer_is_user(s)) // read user timer LSW
ret = s->count & 0xffffffe00;
else // read limit
ret = (s->count & 0x7ffffe00) | s->reached;
break;
case 3:
// only available in processor counter/timer
// read start/stop status
ret = s->running;
break;
case 4:
// only available in system counter
// read user/system mode
ret = s->slave_mode;
break;
default:
DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
ret = 0;
break;
}
DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
return ret;
}
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
SLAVIO_TIMERState *s = opaque;
uint32_t saddr;
int reload = 0;
DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
saddr = (addr & TIMER_MAXADDR) >> 2;
switch (saddr) {
case 0:
if (slavio_timer_is_user(s)) {
// set user counter MSW, reset counter
qemu_irq_lower(s->irq);
s->limit = 0x7ffffffffffffe00ULL;
DPRINTF("processor %d user timer reset\n", s->slave_index);
ptimer_set_limit(s->timer, s->limit >> 9, 1);
} else {
// set limit, reset counter
qemu_irq_lower(s->irq);
s->limit = val & 0x7ffffe00ULL;
if (!s->limit)
s->limit = 0x7ffffe00ULL;
ptimer_set_limit(s->timer, s->limit >> 9, 1);
}
break;
case 1:
if (slavio_timer_is_user(s)) {
// set user counter LSW, reset counter
qemu_irq_lower(s->irq);
s->limit = 0x7ffffffffffffe00ULL;
DPRINTF("processor %d user timer reset\n", s->slave_index);
ptimer_set_limit(s->timer, s->limit >> 9, 1);
} else
DPRINTF("not user timer\n");
break;
case 2:
// set limit without resetting counter
s->limit = val & 0x7ffffe00ULL;
if (!s->limit)
s->limit = 0x7ffffe00ULL;
ptimer_set_limit(s->timer, s->limit >> 9, reload);
break;
case 3:
if (slavio_timer_is_user(s)) {
// start/stop user counter
if ((val & 1) && !s->running) {
DPRINTF("processor %d user timer started\n", s->slave_index);
ptimer_run(s->timer, 0);
s->running = 1;
} else if (!(val & 1) && s->running) {
DPRINTF("processor %d user timer stopped\n", s->slave_index);
ptimer_stop(s->timer);
s->running = 0;
}
}
break;
case 4:
if (s->master == NULL) {
unsigned int i;
for (i = 0; i < MAX_CPUS; i++) {
if (val & (1 << i)) {
qemu_irq_lower(s->slave[i]->irq);
s->slave[i]->limit = -1ULL;
}
if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
ptimer_stop(s->slave[i]->timer);
ptimer_set_limit(s->slave[i]->timer, s->slave[i]->limit >> 9, 1);
DPRINTF("processor %d timer changed\n", s->slave[i]->slave_index);
ptimer_run(s->slave[i]->timer, 0);
}
}
s->slave_mode = val & ((1 << MAX_CPUS) - 1);
} else
DPRINTF("not system timer\n");
break;
default:
DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
break;
}
}
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
slavio_timer_mem_readl,
slavio_timer_mem_readl,
slavio_timer_mem_readl,
};
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
slavio_timer_mem_writel,
slavio_timer_mem_writel,
slavio_timer_mem_writel,
};
static void slavio_timer_save(QEMUFile *f, void *opaque)
{
SLAVIO_TIMERState *s = opaque;
qemu_put_be64s(f, &s->limit);
qemu_put_be32s(f, &s->count);
qemu_put_be32s(f, &s->counthigh);
qemu_put_be32(f, 0); // Was irq
qemu_put_be32s(f, &s->reached);
qemu_put_be32s(f, &s->running);
qemu_put_be32s(f, 0); // Was mode
qemu_put_ptimer(f, s->timer);
}
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
{
SLAVIO_TIMERState *s = opaque;
uint32_t tmp;
if (version_id != 2)
return -EINVAL;
qemu_get_be64s(f, &s->limit);
qemu_get_be32s(f, &s->count);
qemu_get_be32s(f, &s->counthigh);
qemu_get_be32s(f, &tmp); // Was irq
qemu_get_be32s(f, &s->reached);
qemu_get_be32s(f, &s->running);
qemu_get_be32s(f, &tmp); // Was mode
qemu_get_ptimer(f, s->timer);
return 0;
}
static void slavio_timer_reset(void *opaque)
{
SLAVIO_TIMERState *s = opaque;
if (slavio_timer_is_user(s))
s->limit = 0x7ffffffffffffe00ULL;
else
s->limit = 0x7ffffe00ULL;
s->count = 0;
s->reached = 0;
ptimer_set_limit(s->timer, s->limit >> 9, 1);
ptimer_run(s->timer, 0);
s->running = 1;
qemu_irq_lower(s->irq);
}
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
qemu_irq irq,
SLAVIO_TIMERState *master,
int slave_index)
{
int slavio_timer_io_memory;
SLAVIO_TIMERState *s;
QEMUBH *bh;
s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
if (!s)
return s;
s->irq = irq;
s->master = master;
s->slave_index = slave_index;
bh = qemu_bh_new(slavio_timer_irq, s);
s->timer = ptimer_init(bh);
ptimer_set_period(s->timer, 500ULL);
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
slavio_timer_mem_write, s);
if (master)
cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory);
else
cpu_register_physical_memory(addr, SYS_TIMER_SIZE, slavio_timer_io_memory);
register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
qemu_register_reset(slavio_timer_reset, s);
slavio_timer_reset(s);
return s;
}
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
qemu_irq *cpu_irqs)
{
SLAVIO_TIMERState *master;
unsigned int i;
master = slavio_timer_init(base + 0x10000ULL, master_irq, NULL, 0);
for (i = 0; i < MAX_CPUS; i++) {
master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
(i * TARGET_PAGE_SIZE),
cpu_irqs[i], master, i);
}
}