qemu/hw/ide/ahci.c

1864 lines
56 KiB
C

/*
* QEMU AHCI Emulation
*
* Copyright (c) 2010 qiaochong@loongson.cn
* Copyright (c) 2010 Roland Elek <elek.roland@gmail.com>
* Copyright (c) 2010 Sebastian Herbszt <herbszt@gmx.de>
* Copyright (c) 2010 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/pci/msi.h"
#include "hw/i386/pc.h"
#include "hw/pci/pci.h"
#include "qemu/error-report.h"
#include "sysemu/block-backend.h"
#include "sysemu/dma.h"
#include "hw/ide/internal.h"
#include "hw/ide/pci.h"
#include "hw/ide/ahci_internal.h"
#include "trace.h"
static void check_cmd(AHCIState *s, int port);
static int handle_cmd(AHCIState *s, int port, uint8_t slot);
static void ahci_reset_port(AHCIState *s, int port);
static bool ahci_write_fis_d2h(AHCIDevice *ad);
static void ahci_init_d2h(AHCIDevice *ad);
static int ahci_dma_prepare_buf(IDEDMA *dma, int32_t limit);
static bool ahci_map_clb_address(AHCIDevice *ad);
static bool ahci_map_fis_address(AHCIDevice *ad);
static void ahci_unmap_clb_address(AHCIDevice *ad);
static void ahci_unmap_fis_address(AHCIDevice *ad);
static const char *AHCIPortIRQ_lookup[AHCI_PORT_IRQ__COUNT] = {
[AHCI_PORT_IRQ_BIT_DHRS] = "DHRS",
[AHCI_PORT_IRQ_BIT_PSS] = "PSS",
[AHCI_PORT_IRQ_BIT_DSS] = "DSS",
[AHCI_PORT_IRQ_BIT_SDBS] = "SDBS",
[AHCI_PORT_IRQ_BIT_UFS] = "UFS",
[AHCI_PORT_IRQ_BIT_DPS] = "DPS",
[AHCI_PORT_IRQ_BIT_PCS] = "PCS",
[AHCI_PORT_IRQ_BIT_DMPS] = "DMPS",
[8 ... 21] = "RESERVED",
[AHCI_PORT_IRQ_BIT_PRCS] = "PRCS",
[AHCI_PORT_IRQ_BIT_IPMS] = "IPMS",
[AHCI_PORT_IRQ_BIT_OFS] = "OFS",
[25] = "RESERVED",
[AHCI_PORT_IRQ_BIT_INFS] = "INFS",
[AHCI_PORT_IRQ_BIT_IFS] = "IFS",
[AHCI_PORT_IRQ_BIT_HBDS] = "HBDS",
[AHCI_PORT_IRQ_BIT_HBFS] = "HBFS",
[AHCI_PORT_IRQ_BIT_TFES] = "TFES",
[AHCI_PORT_IRQ_BIT_CPDS] = "CPDS"
};
static uint32_t ahci_port_read(AHCIState *s, int port, int offset)
{
uint32_t val;
AHCIPortRegs *pr;
pr = &s->dev[port].port_regs;
switch (offset) {
case PORT_LST_ADDR:
val = pr->lst_addr;
break;
case PORT_LST_ADDR_HI:
val = pr->lst_addr_hi;
break;
case PORT_FIS_ADDR:
val = pr->fis_addr;
break;
case PORT_FIS_ADDR_HI:
val = pr->fis_addr_hi;
break;
case PORT_IRQ_STAT:
val = pr->irq_stat;
break;
case PORT_IRQ_MASK:
val = pr->irq_mask;
break;
case PORT_CMD:
val = pr->cmd;
break;
case PORT_TFDATA:
val = pr->tfdata;
break;
case PORT_SIG:
val = pr->sig;
break;
case PORT_SCR_STAT:
if (s->dev[port].port.ifs[0].blk) {
val = SATA_SCR_SSTATUS_DET_DEV_PRESENT_PHY_UP |
SATA_SCR_SSTATUS_SPD_GEN1 | SATA_SCR_SSTATUS_IPM_ACTIVE;
} else {
val = SATA_SCR_SSTATUS_DET_NODEV;
}
break;
case PORT_SCR_CTL:
val = pr->scr_ctl;
break;
case PORT_SCR_ERR:
val = pr->scr_err;
break;
case PORT_SCR_ACT:
val = pr->scr_act;
break;
case PORT_CMD_ISSUE:
val = pr->cmd_issue;
break;
case PORT_RESERVED:
default:
val = 0;
}
trace_ahci_port_read(s, port, offset, val);
return val;
}
static void ahci_irq_raise(AHCIState *s, AHCIDevice *dev)
{
DeviceState *dev_state = s->container;
PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state),
TYPE_PCI_DEVICE);
trace_ahci_irq_raise(s);
if (pci_dev && msi_enabled(pci_dev)) {
msi_notify(pci_dev, 0);
} else {
qemu_irq_raise(s->irq);
}
}
static void ahci_irq_lower(AHCIState *s, AHCIDevice *dev)
{
DeviceState *dev_state = s->container;
PCIDevice *pci_dev = (PCIDevice *) object_dynamic_cast(OBJECT(dev_state),
TYPE_PCI_DEVICE);
trace_ahci_irq_lower(s);
if (!pci_dev || !msi_enabled(pci_dev)) {
qemu_irq_lower(s->irq);
}
}
static void ahci_check_irq(AHCIState *s)
{
int i;
uint32_t old_irq = s->control_regs.irqstatus;
s->control_regs.irqstatus = 0;
for (i = 0; i < s->ports; i++) {
AHCIPortRegs *pr = &s->dev[i].port_regs;
if (pr->irq_stat & pr->irq_mask) {
s->control_regs.irqstatus |= (1 << i);
}
}
trace_ahci_check_irq(s, old_irq, s->control_regs.irqstatus);
if (s->control_regs.irqstatus &&
(s->control_regs.ghc & HOST_CTL_IRQ_EN)) {
ahci_irq_raise(s, NULL);
} else {
ahci_irq_lower(s, NULL);
}
}
static void ahci_trigger_irq(AHCIState *s, AHCIDevice *d,
enum AHCIPortIRQ irqbit)
{
g_assert((unsigned)irqbit < 32);
uint32_t irq = 1U << irqbit;
uint32_t irqstat = d->port_regs.irq_stat | irq;
trace_ahci_trigger_irq(s, d->port_no,
AHCIPortIRQ_lookup[irqbit], irq,
d->port_regs.irq_stat, irqstat,
irqstat & d->port_regs.irq_mask);
d->port_regs.irq_stat = irqstat;
ahci_check_irq(s);
}
static void map_page(AddressSpace *as, uint8_t **ptr, uint64_t addr,
uint32_t wanted)
{
hwaddr len = wanted;
if (*ptr) {
dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len);
}
*ptr = dma_memory_map(as, addr, &len, DMA_DIRECTION_FROM_DEVICE);
if (len < wanted) {
dma_memory_unmap(as, *ptr, len, DMA_DIRECTION_FROM_DEVICE, len);
*ptr = NULL;
}
}
/**
* Check the cmd register to see if we should start or stop
* the DMA or FIS RX engines.
*
* @ad: Device to dis/engage.
*
* @return 0 on success, -1 on error.
*/
static int ahci_cond_start_engines(AHCIDevice *ad)
{
AHCIPortRegs *pr = &ad->port_regs;
bool cmd_start = pr->cmd & PORT_CMD_START;
bool cmd_on = pr->cmd & PORT_CMD_LIST_ON;
bool fis_start = pr->cmd & PORT_CMD_FIS_RX;
bool fis_on = pr->cmd & PORT_CMD_FIS_ON;
if (cmd_start && !cmd_on) {
if (!ahci_map_clb_address(ad)) {
pr->cmd &= ~PORT_CMD_START;
error_report("AHCI: Failed to start DMA engine: "
"bad command list buffer address");
return -1;
}
} else if (!cmd_start && cmd_on) {
ahci_unmap_clb_address(ad);
}
if (fis_start && !fis_on) {
if (!ahci_map_fis_address(ad)) {
pr->cmd &= ~PORT_CMD_FIS_RX;
error_report("AHCI: Failed to start FIS receive engine: "
"bad FIS receive buffer address");
return -1;
}
} else if (!fis_start && fis_on) {
ahci_unmap_fis_address(ad);
}
return 0;
}
static void ahci_port_write(AHCIState *s, int port, int offset, uint32_t val)
{
AHCIPortRegs *pr = &s->dev[port].port_regs;
trace_ahci_port_write(s, port, offset, val);
switch (offset) {
case PORT_LST_ADDR:
pr->lst_addr = val;
break;
case PORT_LST_ADDR_HI:
pr->lst_addr_hi = val;
break;
case PORT_FIS_ADDR:
pr->fis_addr = val;
break;
case PORT_FIS_ADDR_HI:
pr->fis_addr_hi = val;
break;
case PORT_IRQ_STAT:
pr->irq_stat &= ~val;
ahci_check_irq(s);
break;
case PORT_IRQ_MASK:
pr->irq_mask = val & 0xfdc000ff;
ahci_check_irq(s);
break;
case PORT_CMD:
/* Block any Read-only fields from being set;
* including LIST_ON and FIS_ON.
* The spec requires to set ICC bits to zero after the ICC change
* is done. We don't support ICC state changes, therefore always
* force the ICC bits to zero.
*/
pr->cmd = (pr->cmd & PORT_CMD_RO_MASK) |
(val & ~(PORT_CMD_RO_MASK|PORT_CMD_ICC_MASK));
/* Check FIS RX and CLB engines */
ahci_cond_start_engines(&s->dev[port]);
/* XXX usually the FIS would be pending on the bus here and
issuing deferred until the OS enables FIS receival.
Instead, we only submit it once - which works in most
cases, but is a hack. */
if ((pr->cmd & PORT_CMD_FIS_ON) &&
!s->dev[port].init_d2h_sent) {
ahci_init_d2h(&s->dev[port]);
}
check_cmd(s, port);
break;
case PORT_TFDATA:
/* Read Only. */
break;
case PORT_SIG:
/* Read Only */
break;
case PORT_SCR_STAT:
/* Read Only */
break;
case PORT_SCR_CTL:
if (((pr->scr_ctl & AHCI_SCR_SCTL_DET) == 1) &&
((val & AHCI_SCR_SCTL_DET) == 0)) {
ahci_reset_port(s, port);
}
pr->scr_ctl = val;
break;
case PORT_SCR_ERR:
pr->scr_err &= ~val;
break;
case PORT_SCR_ACT:
/* RW1 */
pr->scr_act |= val;
break;
case PORT_CMD_ISSUE:
pr->cmd_issue |= val;
check_cmd(s, port);
break;
default:
break;
}
}
static uint64_t ahci_mem_read_32(void *opaque, hwaddr addr)
{
AHCIState *s = opaque;
uint32_t val = 0;
if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) {
switch (addr) {
case HOST_CAP:
val = s->control_regs.cap;
break;
case HOST_CTL:
val = s->control_regs.ghc;
break;
case HOST_IRQ_STAT:
val = s->control_regs.irqstatus;
break;
case HOST_PORTS_IMPL:
val = s->control_regs.impl;
break;
case HOST_VERSION:
val = s->control_regs.version;
break;
}
} else if ((addr >= AHCI_PORT_REGS_START_ADDR) &&
(addr < (AHCI_PORT_REGS_START_ADDR +
(s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) {
val = ahci_port_read(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7,
addr & AHCI_PORT_ADDR_OFFSET_MASK);
}
trace_ahci_mem_read_32(s, addr, val);
return val;
}
/**
* AHCI 1.3 section 3 ("HBA Memory Registers")
* Support unaligned 8/16/32 bit reads, and 64 bit aligned reads.
* Caller is responsible for masking unwanted higher order bytes.
*/
static uint64_t ahci_mem_read(void *opaque, hwaddr addr, unsigned size)
{
hwaddr aligned = addr & ~0x3;
int ofst = addr - aligned;
uint64_t lo = ahci_mem_read_32(opaque, aligned);
uint64_t hi;
uint64_t val;
/* if < 8 byte read does not cross 4 byte boundary */
if (ofst + size <= 4) {
val = lo >> (ofst * 8);
} else {
g_assert_cmpint(size, >, 1);
/* If the 64bit read is unaligned, we will produce undefined
* results. AHCI does not support unaligned 64bit reads. */
hi = ahci_mem_read_32(opaque, aligned + 4);
val = (hi << 32 | lo) >> (ofst * 8);
}
trace_ahci_mem_read(opaque, size, addr, val);
return val;
}
static void ahci_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
AHCIState *s = opaque;
trace_ahci_mem_write(s, size, addr, val);
/* Only aligned reads are allowed on AHCI */
if (addr & 3) {
fprintf(stderr, "ahci: Mis-aligned write to addr 0x"
TARGET_FMT_plx "\n", addr);
return;
}
if (addr < AHCI_GENERIC_HOST_CONTROL_REGS_MAX_ADDR) {
switch (addr) {
case HOST_CAP: /* R/WO, RO */
/* FIXME handle R/WO */
break;
case HOST_CTL: /* R/W */
if (val & HOST_CTL_RESET) {
ahci_reset(s);
} else {
s->control_regs.ghc = (val & 0x3) | HOST_CTL_AHCI_EN;
ahci_check_irq(s);
}
break;
case HOST_IRQ_STAT: /* R/WC, RO */
s->control_regs.irqstatus &= ~val;
ahci_check_irq(s);
break;
case HOST_PORTS_IMPL: /* R/WO, RO */
/* FIXME handle R/WO */
break;
case HOST_VERSION: /* RO */
/* FIXME report write? */
break;
default:
trace_ahci_mem_write_unknown(s, size, addr, val);
}
} else if ((addr >= AHCI_PORT_REGS_START_ADDR) &&
(addr < (AHCI_PORT_REGS_START_ADDR +
(s->ports * AHCI_PORT_ADDR_OFFSET_LEN)))) {
ahci_port_write(s, (addr - AHCI_PORT_REGS_START_ADDR) >> 7,
addr & AHCI_PORT_ADDR_OFFSET_MASK, val);
}
}
static const MemoryRegionOps ahci_mem_ops = {
.read = ahci_mem_read,
.write = ahci_mem_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t ahci_idp_read(void *opaque, hwaddr addr,
unsigned size)
{
AHCIState *s = opaque;
if (addr == s->idp_offset) {
/* index register */
return s->idp_index;
} else if (addr == s->idp_offset + 4) {
/* data register - do memory read at location selected by index */
return ahci_mem_read(opaque, s->idp_index, size);
} else {
return 0;
}
}
static void ahci_idp_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
AHCIState *s = opaque;
if (addr == s->idp_offset) {
/* index register - mask off reserved bits */
s->idp_index = (uint32_t)val & ((AHCI_MEM_BAR_SIZE - 1) & ~3);
} else if (addr == s->idp_offset + 4) {
/* data register - do memory write at location selected by index */
ahci_mem_write(opaque, s->idp_index, val, size);
}
}
static const MemoryRegionOps ahci_idp_ops = {
.read = ahci_idp_read,
.write = ahci_idp_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void ahci_reg_init(AHCIState *s)
{
int i;
s->control_regs.cap = (s->ports - 1) |
(AHCI_NUM_COMMAND_SLOTS << 8) |
(AHCI_SUPPORTED_SPEED_GEN1 << AHCI_SUPPORTED_SPEED) |
HOST_CAP_NCQ | HOST_CAP_AHCI | HOST_CAP_64;
s->control_regs.impl = (1 << s->ports) - 1;
s->control_regs.version = AHCI_VERSION_1_0;
for (i = 0; i < s->ports; i++) {
s->dev[i].port_state = STATE_RUN;
}
}
static void check_cmd(AHCIState *s, int port)
{
AHCIPortRegs *pr = &s->dev[port].port_regs;
uint8_t slot;
if ((pr->cmd & PORT_CMD_START) && pr->cmd_issue) {
for (slot = 0; (slot < 32) && pr->cmd_issue; slot++) {
if ((pr->cmd_issue & (1U << slot)) &&
!handle_cmd(s, port, slot)) {
pr->cmd_issue &= ~(1U << slot);
}
}
}
}
static void ahci_check_cmd_bh(void *opaque)
{
AHCIDevice *ad = opaque;
qemu_bh_delete(ad->check_bh);
ad->check_bh = NULL;
if ((ad->busy_slot != -1) &&
!(ad->port.ifs[0].status & (BUSY_STAT|DRQ_STAT))) {
/* no longer busy */
ad->port_regs.cmd_issue &= ~(1 << ad->busy_slot);
ad->busy_slot = -1;
}
check_cmd(ad->hba, ad->port_no);
}
static void ahci_init_d2h(AHCIDevice *ad)
{
IDEState *ide_state = &ad->port.ifs[0];
AHCIPortRegs *pr = &ad->port_regs;
if (ad->init_d2h_sent) {
return;
}
if (ahci_write_fis_d2h(ad)) {
ad->init_d2h_sent = true;
/* We're emulating receiving the first Reg H2D Fis from the device;
* Update the SIG register, but otherwise proceed as normal. */
pr->sig = ((uint32_t)ide_state->hcyl << 24) |
(ide_state->lcyl << 16) |
(ide_state->sector << 8) |
(ide_state->nsector & 0xFF);
}
}
static void ahci_set_signature(AHCIDevice *ad, uint32_t sig)
{
IDEState *s = &ad->port.ifs[0];
s->hcyl = sig >> 24 & 0xFF;
s->lcyl = sig >> 16 & 0xFF;
s->sector = sig >> 8 & 0xFF;
s->nsector = sig & 0xFF;
trace_ahci_set_signature(ad->hba, ad->port_no, s->nsector, s->sector,
s->lcyl, s->hcyl, sig);
}
static void ahci_reset_port(AHCIState *s, int port)
{
AHCIDevice *d = &s->dev[port];
AHCIPortRegs *pr = &d->port_regs;
IDEState *ide_state = &d->port.ifs[0];
int i;
trace_ahci_reset_port(s, port);
ide_bus_reset(&d->port);
ide_state->ncq_queues = AHCI_MAX_CMDS;
pr->scr_stat = 0;
pr->scr_err = 0;
pr->scr_act = 0;
pr->tfdata = 0x7F;
pr->sig = 0xFFFFFFFF;
d->busy_slot = -1;
d->init_d2h_sent = false;
ide_state = &s->dev[port].port.ifs[0];
if (!ide_state->blk) {
return;
}
/* reset ncq queue */
for (i = 0; i < AHCI_MAX_CMDS; i++) {
NCQTransferState *ncq_tfs = &s->dev[port].ncq_tfs[i];
ncq_tfs->halt = false;
if (!ncq_tfs->used) {
continue;
}
if (ncq_tfs->aiocb) {
blk_aio_cancel(ncq_tfs->aiocb);
ncq_tfs->aiocb = NULL;
}
/* Maybe we just finished the request thanks to blk_aio_cancel() */
if (!ncq_tfs->used) {
continue;
}
qemu_sglist_destroy(&ncq_tfs->sglist);
ncq_tfs->used = 0;
}
s->dev[port].port_state = STATE_RUN;
if (ide_state->drive_kind == IDE_CD) {
ahci_set_signature(d, SATA_SIGNATURE_CDROM);\
ide_state->status = SEEK_STAT | WRERR_STAT | READY_STAT;
} else {
ahci_set_signature(d, SATA_SIGNATURE_DISK);
ide_state->status = SEEK_STAT | WRERR_STAT;
}
ide_state->error = 1;
ahci_init_d2h(d);
}
/* Buffer pretty output based on a raw FIS structure. */
static char *ahci_pretty_buffer_fis(uint8_t *fis, int cmd_len)
{
int i;
GString *s = g_string_new("FIS:");
for (i = 0; i < cmd_len; i++) {
if ((i & 0xf) == 0) {
g_string_append_printf(s, "\n0x%02x: ", i);
}
g_string_append_printf(s, "%02x ", fis[i]);
}
g_string_append_c(s, '\n');
return g_string_free(s, FALSE);
}
static bool ahci_map_fis_address(AHCIDevice *ad)
{
AHCIPortRegs *pr = &ad->port_regs;
map_page(ad->hba->as, &ad->res_fis,
((uint64_t)pr->fis_addr_hi << 32) | pr->fis_addr, 256);
if (ad->res_fis != NULL) {
pr->cmd |= PORT_CMD_FIS_ON;
return true;
}
pr->cmd &= ~PORT_CMD_FIS_ON;
return false;
}
static void ahci_unmap_fis_address(AHCIDevice *ad)
{
if (ad->res_fis == NULL) {
trace_ahci_unmap_fis_address_null(ad->hba, ad->port_no);
return;
}
ad->port_regs.cmd &= ~PORT_CMD_FIS_ON;
dma_memory_unmap(ad->hba->as, ad->res_fis, 256,
DMA_DIRECTION_FROM_DEVICE, 256);
ad->res_fis = NULL;
}
static bool ahci_map_clb_address(AHCIDevice *ad)
{
AHCIPortRegs *pr = &ad->port_regs;
ad->cur_cmd = NULL;
map_page(ad->hba->as, &ad->lst,
((uint64_t)pr->lst_addr_hi << 32) | pr->lst_addr, 1024);
if (ad->lst != NULL) {
pr->cmd |= PORT_CMD_LIST_ON;
return true;
}
pr->cmd &= ~PORT_CMD_LIST_ON;
return false;
}
static void ahci_unmap_clb_address(AHCIDevice *ad)
{
if (ad->lst == NULL) {
trace_ahci_unmap_clb_address_null(ad->hba, ad->port_no);
return;
}
ad->port_regs.cmd &= ~PORT_CMD_LIST_ON;
dma_memory_unmap(ad->hba->as, ad->lst, 1024,
DMA_DIRECTION_FROM_DEVICE, 1024);
ad->lst = NULL;
}
static void ahci_write_fis_sdb(AHCIState *s, NCQTransferState *ncq_tfs)
{
AHCIDevice *ad = ncq_tfs->drive;
AHCIPortRegs *pr = &ad->port_regs;
IDEState *ide_state;
SDBFIS *sdb_fis;
if (!ad->res_fis ||
!(pr->cmd & PORT_CMD_FIS_RX)) {
return;
}
sdb_fis = (SDBFIS *)&ad->res_fis[RES_FIS_SDBFIS];
ide_state = &ad->port.ifs[0];
sdb_fis->type = SATA_FIS_TYPE_SDB;
/* Interrupt pending & Notification bit */
sdb_fis->flags = 0x40; /* Interrupt bit, always 1 for NCQ */
sdb_fis->status = ide_state->status & 0x77;
sdb_fis->error = ide_state->error;
/* update SAct field in SDB_FIS */
sdb_fis->payload = cpu_to_le32(ad->finished);
/* Update shadow registers (except BSY 0x80 and DRQ 0x08) */
pr->tfdata = (ad->port.ifs[0].error << 8) |
(ad->port.ifs[0].status & 0x77) |
(pr->tfdata & 0x88);
pr->scr_act &= ~ad->finished;
ad->finished = 0;
/* Trigger IRQ if interrupt bit is set (which currently, it always is) */
if (sdb_fis->flags & 0x40) {
ahci_trigger_irq(s, ad, AHCI_PORT_IRQ_BIT_SDBS);
}
}
static void ahci_write_fis_pio(AHCIDevice *ad, uint16_t len)
{
AHCIPortRegs *pr = &ad->port_regs;
uint8_t *pio_fis;
IDEState *s = &ad->port.ifs[0];
if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) {
return;
}
pio_fis = &ad->res_fis[RES_FIS_PSFIS];
pio_fis[0] = SATA_FIS_TYPE_PIO_SETUP;
pio_fis[1] = (ad->hba->control_regs.irqstatus ? (1 << 6) : 0);
pio_fis[2] = s->status;
pio_fis[3] = s->error;
pio_fis[4] = s->sector;
pio_fis[5] = s->lcyl;
pio_fis[6] = s->hcyl;
pio_fis[7] = s->select;
pio_fis[8] = s->hob_sector;
pio_fis[9] = s->hob_lcyl;
pio_fis[10] = s->hob_hcyl;
pio_fis[11] = 0;
pio_fis[12] = s->nsector & 0xFF;
pio_fis[13] = (s->nsector >> 8) & 0xFF;
pio_fis[14] = 0;
pio_fis[15] = s->status;
pio_fis[16] = len & 255;
pio_fis[17] = len >> 8;
pio_fis[18] = 0;
pio_fis[19] = 0;
/* Update shadow registers: */
pr->tfdata = (ad->port.ifs[0].error << 8) |
ad->port.ifs[0].status;
if (pio_fis[2] & ERR_STAT) {
ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES);
}
ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_PSS);
}
static bool ahci_write_fis_d2h(AHCIDevice *ad)
{
AHCIPortRegs *pr = &ad->port_regs;
uint8_t *d2h_fis;
int i;
IDEState *s = &ad->port.ifs[0];
if (!ad->res_fis || !(pr->cmd & PORT_CMD_FIS_RX)) {
return false;
}
d2h_fis = &ad->res_fis[RES_FIS_RFIS];
d2h_fis[0] = SATA_FIS_TYPE_REGISTER_D2H;
d2h_fis[1] = (ad->hba->control_regs.irqstatus ? (1 << 6) : 0);
d2h_fis[2] = s->status;
d2h_fis[3] = s->error;
d2h_fis[4] = s->sector;
d2h_fis[5] = s->lcyl;
d2h_fis[6] = s->hcyl;
d2h_fis[7] = s->select;
d2h_fis[8] = s->hob_sector;
d2h_fis[9] = s->hob_lcyl;
d2h_fis[10] = s->hob_hcyl;
d2h_fis[11] = 0;
d2h_fis[12] = s->nsector & 0xFF;
d2h_fis[13] = (s->nsector >> 8) & 0xFF;
for (i = 14; i < 20; i++) {
d2h_fis[i] = 0;
}
/* Update shadow registers: */
pr->tfdata = (ad->port.ifs[0].error << 8) |
ad->port.ifs[0].status;
if (d2h_fis[2] & ERR_STAT) {
ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_TFES);
}
ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_DHRS);
return true;
}
static int prdt_tbl_entry_size(const AHCI_SG *tbl)
{
/* flags_size is zero-based */
return (le32_to_cpu(tbl->flags_size) & AHCI_PRDT_SIZE_MASK) + 1;
}
/**
* Fetch entries in a guest-provided PRDT and convert it into a QEMU SGlist.
* @ad: The AHCIDevice for whom we are building the SGList.
* @sglist: The SGList target to add PRD entries to.
* @cmd: The AHCI Command Header that describes where the PRDT is.
* @limit: The remaining size of the S/ATA transaction, in bytes.
* @offset: The number of bytes already transferred, in bytes.
*
* The AHCI PRDT can describe up to 256GiB. S/ATA only support transactions of
* up to 32MiB as of ATA8-ACS3 rev 1b, assuming a 512 byte sector size. We stop
* building the sglist from the PRDT as soon as we hit @limit bytes,
* which is <= INT32_MAX/2GiB.
*/
static int ahci_populate_sglist(AHCIDevice *ad, QEMUSGList *sglist,
AHCICmdHdr *cmd, int64_t limit, uint64_t offset)
{
uint16_t opts = le16_to_cpu(cmd->opts);
uint16_t prdtl = le16_to_cpu(cmd->prdtl);
uint64_t cfis_addr = le64_to_cpu(cmd->tbl_addr);
uint64_t prdt_addr = cfis_addr + 0x80;
dma_addr_t prdt_len = (prdtl * sizeof(AHCI_SG));
dma_addr_t real_prdt_len = prdt_len;
uint8_t *prdt;
int i;
int r = 0;
uint64_t sum = 0;
int off_idx = -1;
int64_t off_pos = -1;
int tbl_entry_size;
IDEBus *bus = &ad->port;
BusState *qbus = BUS(bus);
trace_ahci_populate_sglist(ad->hba, ad->port_no);
if (!prdtl) {
trace_ahci_populate_sglist_no_prdtl(ad->hba, ad->port_no, opts);
return -1;
}
/* map PRDT */
if (!(prdt = dma_memory_map(ad->hba->as, prdt_addr, &prdt_len,
DMA_DIRECTION_TO_DEVICE))){
trace_ahci_populate_sglist_no_map(ad->hba, ad->port_no);
return -1;
}
if (prdt_len < real_prdt_len) {
trace_ahci_populate_sglist_short_map(ad->hba, ad->port_no);
r = -1;
goto out;
}
/* Get entries in the PRDT, init a qemu sglist accordingly */
if (prdtl > 0) {
AHCI_SG *tbl = (AHCI_SG *)prdt;
sum = 0;
for (i = 0; i < prdtl; i++) {
tbl_entry_size = prdt_tbl_entry_size(&tbl[i]);
if (offset < (sum + tbl_entry_size)) {
off_idx = i;
off_pos = offset - sum;
break;
}
sum += tbl_entry_size;
}
if ((off_idx == -1) || (off_pos < 0) || (off_pos > tbl_entry_size)) {
trace_ahci_populate_sglist_bad_offset(ad->hba, ad->port_no,
off_idx, off_pos);
r = -1;
goto out;
}
qemu_sglist_init(sglist, qbus->parent, (prdtl - off_idx),
ad->hba->as);
qemu_sglist_add(sglist, le64_to_cpu(tbl[off_idx].addr) + off_pos,
MIN(prdt_tbl_entry_size(&tbl[off_idx]) - off_pos,
limit));
for (i = off_idx + 1; i < prdtl && sglist->size < limit; i++) {
qemu_sglist_add(sglist, le64_to_cpu(tbl[i].addr),
MIN(prdt_tbl_entry_size(&tbl[i]),
limit - sglist->size));
}
}
out:
dma_memory_unmap(ad->hba->as, prdt, prdt_len,
DMA_DIRECTION_TO_DEVICE, prdt_len);
return r;
}
static void ncq_err(NCQTransferState *ncq_tfs)
{
IDEState *ide_state = &ncq_tfs->drive->port.ifs[0];
ide_state->error = ABRT_ERR;
ide_state->status = READY_STAT | ERR_STAT;
ncq_tfs->drive->port_regs.scr_err |= (1 << ncq_tfs->tag);
qemu_sglist_destroy(&ncq_tfs->sglist);
ncq_tfs->used = 0;
}
static void ncq_finish(NCQTransferState *ncq_tfs)
{
/* If we didn't error out, set our finished bit. Errored commands
* do not get a bit set for the SDB FIS ACT register, nor do they
* clear the outstanding bit in scr_act (PxSACT). */
if (!(ncq_tfs->drive->port_regs.scr_err & (1 << ncq_tfs->tag))) {
ncq_tfs->drive->finished |= (1 << ncq_tfs->tag);
}
ahci_write_fis_sdb(ncq_tfs->drive->hba, ncq_tfs);
trace_ncq_finish(ncq_tfs->drive->hba, ncq_tfs->drive->port_no,
ncq_tfs->tag);
block_acct_done(blk_get_stats(ncq_tfs->drive->port.ifs[0].blk),
&ncq_tfs->acct);
qemu_sglist_destroy(&ncq_tfs->sglist);
ncq_tfs->used = 0;
}
static void ncq_cb(void *opaque, int ret)
{
NCQTransferState *ncq_tfs = (NCQTransferState *)opaque;
IDEState *ide_state = &ncq_tfs->drive->port.ifs[0];
ncq_tfs->aiocb = NULL;
if (ret == -ECANCELED) {
return;
}
if (ret < 0) {
bool is_read = ncq_tfs->cmd == READ_FPDMA_QUEUED;
BlockErrorAction action = blk_get_error_action(ide_state->blk,
is_read, -ret);
if (action == BLOCK_ERROR_ACTION_STOP) {
ncq_tfs->halt = true;
ide_state->bus->error_status = IDE_RETRY_HBA;
} else if (action == BLOCK_ERROR_ACTION_REPORT) {
ncq_err(ncq_tfs);
}
blk_error_action(ide_state->blk, action, is_read, -ret);
} else {
ide_state->status = READY_STAT | SEEK_STAT;
}
if (!ncq_tfs->halt) {
ncq_finish(ncq_tfs);
}
}
static int is_ncq(uint8_t ata_cmd)
{
/* Based on SATA 3.2 section 13.6.3.2 */
switch (ata_cmd) {
case READ_FPDMA_QUEUED:
case WRITE_FPDMA_QUEUED:
case NCQ_NON_DATA:
case RECEIVE_FPDMA_QUEUED:
case SEND_FPDMA_QUEUED:
return 1;
default:
return 0;
}
}
static void execute_ncq_command(NCQTransferState *ncq_tfs)
{
AHCIDevice *ad = ncq_tfs->drive;
IDEState *ide_state = &ad->port.ifs[0];
int port = ad->port_no;
g_assert(is_ncq(ncq_tfs->cmd));
ncq_tfs->halt = false;
switch (ncq_tfs->cmd) {
case READ_FPDMA_QUEUED:
trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag,
ncq_tfs->sector_count, ncq_tfs->lba);
dma_acct_start(ide_state->blk, &ncq_tfs->acct,
&ncq_tfs->sglist, BLOCK_ACCT_READ);
ncq_tfs->aiocb = dma_blk_read(ide_state->blk, &ncq_tfs->sglist,
ncq_tfs->lba << BDRV_SECTOR_BITS,
BDRV_SECTOR_SIZE,
ncq_cb, ncq_tfs);
break;
case WRITE_FPDMA_QUEUED:
trace_execute_ncq_command_read(ad->hba, port, ncq_tfs->tag,
ncq_tfs->sector_count, ncq_tfs->lba);
dma_acct_start(ide_state->blk, &ncq_tfs->acct,
&ncq_tfs->sglist, BLOCK_ACCT_WRITE);
ncq_tfs->aiocb = dma_blk_write(ide_state->blk, &ncq_tfs->sglist,
ncq_tfs->lba << BDRV_SECTOR_BITS,
BDRV_SECTOR_SIZE,
ncq_cb, ncq_tfs);
break;
default:
trace_execute_ncq_command_unsup(ad->hba, port,
ncq_tfs->tag, ncq_tfs->cmd);
ncq_err(ncq_tfs);
}
}
static void process_ncq_command(AHCIState *s, int port, uint8_t *cmd_fis,
uint8_t slot)
{
AHCIDevice *ad = &s->dev[port];
NCQFrame *ncq_fis = (NCQFrame*)cmd_fis;
uint8_t tag = ncq_fis->tag >> 3;
NCQTransferState *ncq_tfs = &ad->ncq_tfs[tag];
size_t size;
g_assert(is_ncq(ncq_fis->command));
if (ncq_tfs->used) {
/* error - already in use */
fprintf(stderr, "%s: tag %d already used\n", __FUNCTION__, tag);
return;
}
ncq_tfs->used = 1;
ncq_tfs->drive = ad;
ncq_tfs->slot = slot;
ncq_tfs->cmdh = &((AHCICmdHdr *)ad->lst)[slot];
ncq_tfs->cmd = ncq_fis->command;
ncq_tfs->lba = ((uint64_t)ncq_fis->lba5 << 40) |
((uint64_t)ncq_fis->lba4 << 32) |
((uint64_t)ncq_fis->lba3 << 24) |
((uint64_t)ncq_fis->lba2 << 16) |
((uint64_t)ncq_fis->lba1 << 8) |
(uint64_t)ncq_fis->lba0;
ncq_tfs->tag = tag;
/* Sanity-check the NCQ packet */
if (tag != slot) {
trace_process_ncq_command_mismatch(s, port, tag, slot);
}
if (ncq_fis->aux0 || ncq_fis->aux1 || ncq_fis->aux2 || ncq_fis->aux3) {
trace_process_ncq_command_aux(s, port, tag);
}
if (ncq_fis->prio || ncq_fis->icc) {
trace_process_ncq_command_prioicc(s, port, tag);
}
if (ncq_fis->fua & NCQ_FIS_FUA_MASK) {
trace_process_ncq_command_fua(s, port, tag);
}
if (ncq_fis->tag & NCQ_FIS_RARC_MASK) {
trace_process_ncq_command_rarc(s, port, tag);
}
ncq_tfs->sector_count = ((ncq_fis->sector_count_high << 8) |
ncq_fis->sector_count_low);
if (!ncq_tfs->sector_count) {
ncq_tfs->sector_count = 0x10000;
}
size = ncq_tfs->sector_count * 512;
ahci_populate_sglist(ad, &ncq_tfs->sglist, ncq_tfs->cmdh, size, 0);
if (ncq_tfs->sglist.size < size) {
error_report("ahci: PRDT length for NCQ command (0x%zx) "
"is smaller than the requested size (0x%zx)",
ncq_tfs->sglist.size, size);
ncq_err(ncq_tfs);
ahci_trigger_irq(ad->hba, ad, AHCI_PORT_IRQ_BIT_OFS);
return;
} else if (ncq_tfs->sglist.size != size) {
trace_process_ncq_command_large(s, port, tag,
ncq_tfs->sglist.size, size);
}
trace_process_ncq_command(s, port, tag,
ncq_fis->command,
ncq_tfs->lba,
ncq_tfs->lba + ncq_tfs->sector_count - 1);
execute_ncq_command(ncq_tfs);
}
static AHCICmdHdr *get_cmd_header(AHCIState *s, uint8_t port, uint8_t slot)
{
if (port >= s->ports || slot >= AHCI_MAX_CMDS) {
return NULL;
}
return s->dev[port].lst ? &((AHCICmdHdr *)s->dev[port].lst)[slot] : NULL;
}
static void handle_reg_h2d_fis(AHCIState *s, int port,
uint8_t slot, uint8_t *cmd_fis)
{
IDEState *ide_state = &s->dev[port].port.ifs[0];
AHCICmdHdr *cmd = get_cmd_header(s, port, slot);
uint16_t opts = le16_to_cpu(cmd->opts);
if (cmd_fis[1] & 0x0F) {
trace_handle_reg_h2d_fis_pmp(s, port, cmd_fis[1],
cmd_fis[2], cmd_fis[3]);
return;
}
if (cmd_fis[1] & 0x70) {
trace_handle_reg_h2d_fis_res(s, port, cmd_fis[1],
cmd_fis[2], cmd_fis[3]);
return;
}
if (!(cmd_fis[1] & SATA_FIS_REG_H2D_UPDATE_COMMAND_REGISTER)) {
switch (s->dev[port].port_state) {
case STATE_RUN:
if (cmd_fis[15] & ATA_SRST) {
s->dev[port].port_state = STATE_RESET;
}
break;
case STATE_RESET:
if (!(cmd_fis[15] & ATA_SRST)) {
ahci_reset_port(s, port);
}
break;
}
return;
}
/* Check for NCQ command */
if (is_ncq(cmd_fis[2])) {
process_ncq_command(s, port, cmd_fis, slot);
return;
}
/* Decompose the FIS:
* AHCI does not interpret FIS packets, it only forwards them.
* SATA 1.0 describes how to decode LBA28 and CHS FIS packets.
* Later specifications, e.g, SATA 3.2, describe LBA48 FIS packets.
*
* ATA4 describes sector number for LBA28/CHS commands.
* ATA6 describes sector number for LBA48 commands.
* ATA8 deprecates CHS fully, describing only LBA28/48.
*
* We dutifully convert the FIS into IDE registers, and allow the
* core layer to interpret them as needed. */
ide_state->feature = cmd_fis[3];
ide_state->sector = cmd_fis[4]; /* LBA 7:0 */
ide_state->lcyl = cmd_fis[5]; /* LBA 15:8 */
ide_state->hcyl = cmd_fis[6]; /* LBA 23:16 */
ide_state->select = cmd_fis[7]; /* LBA 27:24 (LBA28) */
ide_state->hob_sector = cmd_fis[8]; /* LBA 31:24 */
ide_state->hob_lcyl = cmd_fis[9]; /* LBA 39:32 */
ide_state->hob_hcyl = cmd_fis[10]; /* LBA 47:40 */
ide_state->hob_feature = cmd_fis[11];
ide_state->nsector = (int64_t)((cmd_fis[13] << 8) | cmd_fis[12]);
/* 14, 16, 17, 18, 19: Reserved (SATA 1.0) */
/* 15: Only valid when UPDATE_COMMAND not set. */
/* Copy the ACMD field (ATAPI packet, if any) from the AHCI command
* table to ide_state->io_buffer */
if (opts & AHCI_CMD_ATAPI) {
memcpy(ide_state->io_buffer, &cmd_fis[AHCI_COMMAND_TABLE_ACMD], 0x10);
if (trace_event_get_state_backends(TRACE_HANDLE_REG_H2D_FIS_DUMP)) {
char *pretty_fis = ahci_pretty_buffer_fis(ide_state->io_buffer, 0x10);
trace_handle_reg_h2d_fis_dump(s, port, pretty_fis);
g_free(pretty_fis);
}
s->dev[port].done_atapi_packet = false;
/* XXX send PIO setup FIS */
}
ide_state->error = 0;
/* Reset transferred byte counter */
cmd->status = 0;
/* We're ready to process the command in FIS byte 2. */
ide_exec_cmd(&s->dev[port].port, cmd_fis[2]);
}
static int handle_cmd(AHCIState *s, int port, uint8_t slot)
{
IDEState *ide_state;
uint64_t tbl_addr;
AHCICmdHdr *cmd;
uint8_t *cmd_fis;
dma_addr_t cmd_len;
if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) {
/* Engine currently busy, try again later */
trace_handle_cmd_busy(s, port);
return -1;
}
if (!s->dev[port].lst) {
trace_handle_cmd_nolist(s, port);
return -1;
}
cmd = get_cmd_header(s, port, slot);
/* remember current slot handle for later */
s->dev[port].cur_cmd = cmd;
/* The device we are working for */
ide_state = &s->dev[port].port.ifs[0];
if (!ide_state->blk) {
trace_handle_cmd_badport(s, port);
return -1;
}
tbl_addr = le64_to_cpu(cmd->tbl_addr);
cmd_len = 0x80;
cmd_fis = dma_memory_map(s->as, tbl_addr, &cmd_len,
DMA_DIRECTION_FROM_DEVICE);
if (!cmd_fis) {
trace_handle_cmd_badfis(s, port);
return -1;
} else if (cmd_len != 0x80) {
ahci_trigger_irq(s, &s->dev[port], AHCI_PORT_IRQ_BIT_HBFS);
trace_handle_cmd_badmap(s, port, cmd_len);
goto out;
}
if (trace_event_get_state_backends(TRACE_HANDLE_CMD_FIS_DUMP)) {
char *pretty_fis = ahci_pretty_buffer_fis(cmd_fis, 0x80);
trace_handle_cmd_fis_dump(s, port, pretty_fis);
g_free(pretty_fis);
}
switch (cmd_fis[0]) {
case SATA_FIS_TYPE_REGISTER_H2D:
handle_reg_h2d_fis(s, port, slot, cmd_fis);
break;
default:
trace_handle_cmd_unhandled_fis(s, port,
cmd_fis[0], cmd_fis[1], cmd_fis[2]);
break;
}
out:
dma_memory_unmap(s->as, cmd_fis, cmd_len, DMA_DIRECTION_FROM_DEVICE,
cmd_len);
if (s->dev[port].port.ifs[0].status & (BUSY_STAT|DRQ_STAT)) {
/* async command, complete later */
s->dev[port].busy_slot = slot;
return -1;
}
/* done handling the command */
return 0;
}
/* DMA dev <-> ram */
static void ahci_start_transfer(IDEDMA *dma)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
IDEState *s = &ad->port.ifs[0];
uint32_t size = (uint32_t)(s->data_end - s->data_ptr);
/* write == ram -> device */
uint16_t opts = le16_to_cpu(ad->cur_cmd->opts);
int is_write = opts & AHCI_CMD_WRITE;
int is_atapi = opts & AHCI_CMD_ATAPI;
int has_sglist = 0;
if (is_atapi && !ad->done_atapi_packet) {
/* already prepopulated iobuffer */
ad->done_atapi_packet = true;
size = 0;
goto out;
}
if (ahci_dma_prepare_buf(dma, size)) {
has_sglist = 1;
}
trace_ahci_start_transfer(ad->hba, ad->port_no, is_write ? "writ" : "read",
size, is_atapi ? "atapi" : "ata",
has_sglist ? "" : "o");
if (has_sglist && size) {
if (is_write) {
dma_buf_write(s->data_ptr, size, &s->sg);
} else {
dma_buf_read(s->data_ptr, size, &s->sg);
}
}
out:
/* declare that we processed everything */
s->data_ptr = s->data_end;
/* Update number of transferred bytes, destroy sglist */
dma_buf_commit(s, size);
s->end_transfer_func(s);
if (!(s->status & DRQ_STAT)) {
/* done with PIO send/receive */
ahci_write_fis_pio(ad, le32_to_cpu(ad->cur_cmd->status));
}
}
static void ahci_start_dma(IDEDMA *dma, IDEState *s,
BlockCompletionFunc *dma_cb)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
trace_ahci_start_dma(ad->hba, ad->port_no);
s->io_buffer_offset = 0;
dma_cb(s, 0);
}
static void ahci_restart_dma(IDEDMA *dma)
{
/* Nothing to do, ahci_start_dma already resets s->io_buffer_offset. */
}
/**
* IDE/PIO restarts are handled by the core layer, but NCQ commands
* need an extra kick from the AHCI HBA.
*/
static void ahci_restart(IDEDMA *dma)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
int i;
for (i = 0; i < AHCI_MAX_CMDS; i++) {
NCQTransferState *ncq_tfs = &ad->ncq_tfs[i];
if (ncq_tfs->halt) {
execute_ncq_command(ncq_tfs);
}
}
}
/**
* Called in DMA and PIO R/W chains to read the PRDT.
* Not shared with NCQ pathways.
*/
static int32_t ahci_dma_prepare_buf(IDEDMA *dma, int32_t limit)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
IDEState *s = &ad->port.ifs[0];
if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd,
limit, s->io_buffer_offset) == -1) {
trace_ahci_dma_prepare_buf_fail(ad->hba, ad->port_no);
return -1;
}
s->io_buffer_size = s->sg.size;
trace_ahci_dma_prepare_buf(ad->hba, ad->port_no, limit, s->io_buffer_size);
return s->io_buffer_size;
}
/**
* Updates the command header with a bytes-read value.
* Called via dma_buf_commit, for both DMA and PIO paths.
* sglist destruction is handled within dma_buf_commit.
*/
static void ahci_commit_buf(IDEDMA *dma, uint32_t tx_bytes)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
tx_bytes += le32_to_cpu(ad->cur_cmd->status);
ad->cur_cmd->status = cpu_to_le32(tx_bytes);
}
static int ahci_dma_rw_buf(IDEDMA *dma, int is_write)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
IDEState *s = &ad->port.ifs[0];
uint8_t *p = s->io_buffer + s->io_buffer_index;
int l = s->io_buffer_size - s->io_buffer_index;
if (ahci_populate_sglist(ad, &s->sg, ad->cur_cmd, l, s->io_buffer_offset)) {
return 0;
}
if (is_write) {
dma_buf_read(p, l, &s->sg);
} else {
dma_buf_write(p, l, &s->sg);
}
/* free sglist, update byte count */
dma_buf_commit(s, l);
s->io_buffer_index += l;
trace_ahci_dma_rw_buf(ad->hba, ad->port_no, l);
return 1;
}
static void ahci_cmd_done(IDEDMA *dma)
{
AHCIDevice *ad = DO_UPCAST(AHCIDevice, dma, dma);
trace_ahci_cmd_done(ad->hba, ad->port_no);
/* update d2h status */
ahci_write_fis_d2h(ad);
if (!ad->check_bh) {
/* maybe we still have something to process, check later */
ad->check_bh = qemu_bh_new(ahci_check_cmd_bh, ad);
qemu_bh_schedule(ad->check_bh);
}
}
static void ahci_irq_set(void *opaque, int n, int level)
{
}
static const IDEDMAOps ahci_dma_ops = {
.start_dma = ahci_start_dma,
.restart = ahci_restart,
.restart_dma = ahci_restart_dma,
.start_transfer = ahci_start_transfer,
.prepare_buf = ahci_dma_prepare_buf,
.commit_buf = ahci_commit_buf,
.rw_buf = ahci_dma_rw_buf,
.cmd_done = ahci_cmd_done,
};
void ahci_init(AHCIState *s, DeviceState *qdev)
{
s->container = qdev;
/* XXX BAR size should be 1k, but that breaks, so bump it to 4k for now */
memory_region_init_io(&s->mem, OBJECT(qdev), &ahci_mem_ops, s,
"ahci", AHCI_MEM_BAR_SIZE);
memory_region_init_io(&s->idp, OBJECT(qdev), &ahci_idp_ops, s,
"ahci-idp", 32);
}
void ahci_realize(AHCIState *s, DeviceState *qdev, AddressSpace *as, int ports)
{
qemu_irq *irqs;
int i;
s->as = as;
s->ports = ports;
s->dev = g_new0(AHCIDevice, ports);
ahci_reg_init(s);
irqs = qemu_allocate_irqs(ahci_irq_set, s, s->ports);
for (i = 0; i < s->ports; i++) {
AHCIDevice *ad = &s->dev[i];
ide_bus_new(&ad->port, sizeof(ad->port), qdev, i, 1);
ide_init2(&ad->port, irqs[i]);
ad->hba = s;
ad->port_no = i;
ad->port.dma = &ad->dma;
ad->port.dma->ops = &ahci_dma_ops;
ide_register_restart_cb(&ad->port);
}
g_free(irqs);
}
void ahci_uninit(AHCIState *s)
{
int i, j;
for (i = 0; i < s->ports; i++) {
AHCIDevice *ad = &s->dev[i];
for (j = 0; j < 2; j++) {
IDEState *s = &ad->port.ifs[j];
ide_exit(s);
}
object_unparent(OBJECT(&ad->port));
}
g_free(s->dev);
}
void ahci_reset(AHCIState *s)
{
AHCIPortRegs *pr;
int i;
trace_ahci_reset(s);
s->control_regs.irqstatus = 0;
/* AHCI Enable (AE)
* The implementation of this bit is dependent upon the value of the
* CAP.SAM bit. If CAP.SAM is '0', then GHC.AE shall be read-write and
* shall have a reset value of '0'. If CAP.SAM is '1', then AE shall be
* read-only and shall have a reset value of '1'.
*
* We set HOST_CAP_AHCI so we must enable AHCI at reset.
*/
s->control_regs.ghc = HOST_CTL_AHCI_EN;
for (i = 0; i < s->ports; i++) {
pr = &s->dev[i].port_regs;
pr->irq_stat = 0;
pr->irq_mask = 0;
pr->scr_ctl = 0;
pr->cmd = PORT_CMD_SPIN_UP | PORT_CMD_POWER_ON;
ahci_reset_port(s, i);
}
}
static const VMStateDescription vmstate_ncq_tfs = {
.name = "ncq state",
.version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32(sector_count, NCQTransferState),
VMSTATE_UINT64(lba, NCQTransferState),
VMSTATE_UINT8(tag, NCQTransferState),
VMSTATE_UINT8(cmd, NCQTransferState),
VMSTATE_UINT8(slot, NCQTransferState),
VMSTATE_BOOL(used, NCQTransferState),
VMSTATE_BOOL(halt, NCQTransferState),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_ahci_device = {
.name = "ahci port",
.version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_IDE_BUS(port, AHCIDevice),
VMSTATE_IDE_DRIVE(port.ifs[0], AHCIDevice),
VMSTATE_UINT32(port_state, AHCIDevice),
VMSTATE_UINT32(finished, AHCIDevice),
VMSTATE_UINT32(port_regs.lst_addr, AHCIDevice),
VMSTATE_UINT32(port_regs.lst_addr_hi, AHCIDevice),
VMSTATE_UINT32(port_regs.fis_addr, AHCIDevice),
VMSTATE_UINT32(port_regs.fis_addr_hi, AHCIDevice),
VMSTATE_UINT32(port_regs.irq_stat, AHCIDevice),
VMSTATE_UINT32(port_regs.irq_mask, AHCIDevice),
VMSTATE_UINT32(port_regs.cmd, AHCIDevice),
VMSTATE_UINT32(port_regs.tfdata, AHCIDevice),
VMSTATE_UINT32(port_regs.sig, AHCIDevice),
VMSTATE_UINT32(port_regs.scr_stat, AHCIDevice),
VMSTATE_UINT32(port_regs.scr_ctl, AHCIDevice),
VMSTATE_UINT32(port_regs.scr_err, AHCIDevice),
VMSTATE_UINT32(port_regs.scr_act, AHCIDevice),
VMSTATE_UINT32(port_regs.cmd_issue, AHCIDevice),
VMSTATE_BOOL(done_atapi_packet, AHCIDevice),
VMSTATE_INT32(busy_slot, AHCIDevice),
VMSTATE_BOOL(init_d2h_sent, AHCIDevice),
VMSTATE_STRUCT_ARRAY(ncq_tfs, AHCIDevice, AHCI_MAX_CMDS,
1, vmstate_ncq_tfs, NCQTransferState),
VMSTATE_END_OF_LIST()
},
};
static int ahci_state_post_load(void *opaque, int version_id)
{
int i, j;
struct AHCIDevice *ad;
NCQTransferState *ncq_tfs;
AHCIPortRegs *pr;
AHCIState *s = opaque;
for (i = 0; i < s->ports; i++) {
ad = &s->dev[i];
pr = &ad->port_regs;
if (!(pr->cmd & PORT_CMD_START) && (pr->cmd & PORT_CMD_LIST_ON)) {
error_report("AHCI: DMA engine should be off, but status bit "
"indicates it is still running.");
return -1;
}
if (!(pr->cmd & PORT_CMD_FIS_RX) && (pr->cmd & PORT_CMD_FIS_ON)) {
error_report("AHCI: FIS RX engine should be off, but status bit "
"indicates it is still running.");
return -1;
}
/* After a migrate, the DMA/FIS engines are "off" and
* need to be conditionally restarted */
pr->cmd &= ~(PORT_CMD_LIST_ON | PORT_CMD_FIS_ON);
if (ahci_cond_start_engines(ad) != 0) {
return -1;
}
for (j = 0; j < AHCI_MAX_CMDS; j++) {
ncq_tfs = &ad->ncq_tfs[j];
ncq_tfs->drive = ad;
if (ncq_tfs->used != ncq_tfs->halt) {
return -1;
}
if (!ncq_tfs->halt) {
continue;
}
if (!is_ncq(ncq_tfs->cmd)) {
return -1;
}
if (ncq_tfs->slot != ncq_tfs->tag) {
return -1;
}
/* If ncq_tfs->halt is justly set, the engine should be engaged,
* and the command list buffer should be mapped. */
ncq_tfs->cmdh = get_cmd_header(s, i, ncq_tfs->slot);
if (!ncq_tfs->cmdh) {
return -1;
}
ahci_populate_sglist(ncq_tfs->drive, &ncq_tfs->sglist,
ncq_tfs->cmdh, ncq_tfs->sector_count * 512,
0);
if (ncq_tfs->sector_count != ncq_tfs->sglist.size >> 9) {
return -1;
}
}
/*
* If an error is present, ad->busy_slot will be valid and not -1.
* In this case, an operation is waiting to resume and will re-check
* for additional AHCI commands to execute upon completion.
*
* In the case where no error was present, busy_slot will be -1,
* and we should check to see if there are additional commands waiting.
*/
if (ad->busy_slot == -1) {
check_cmd(s, i);
} else {
/* We are in the middle of a command, and may need to access
* the command header in guest memory again. */
if (ad->busy_slot < 0 || ad->busy_slot >= AHCI_MAX_CMDS) {
return -1;
}
ad->cur_cmd = get_cmd_header(s, i, ad->busy_slot);
}
}
return 0;
}
const VMStateDescription vmstate_ahci = {
.name = "ahci",
.version_id = 1,
.post_load = ahci_state_post_load,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_VARRAY_POINTER_INT32(dev, AHCIState, ports,
vmstate_ahci_device, AHCIDevice),
VMSTATE_UINT32(control_regs.cap, AHCIState),
VMSTATE_UINT32(control_regs.ghc, AHCIState),
VMSTATE_UINT32(control_regs.irqstatus, AHCIState),
VMSTATE_UINT32(control_regs.impl, AHCIState),
VMSTATE_UINT32(control_regs.version, AHCIState),
VMSTATE_UINT32(idp_index, AHCIState),
VMSTATE_INT32_EQUAL(ports, AHCIState, NULL),
VMSTATE_END_OF_LIST()
},
};
static const VMStateDescription vmstate_sysbus_ahci = {
.name = "sysbus-ahci",
.fields = (VMStateField[]) {
VMSTATE_AHCI(ahci, SysbusAHCIState),
VMSTATE_END_OF_LIST()
},
};
static void sysbus_ahci_reset(DeviceState *dev)
{
SysbusAHCIState *s = SYSBUS_AHCI(dev);
ahci_reset(&s->ahci);
}
static void sysbus_ahci_init(Object *obj)
{
SysbusAHCIState *s = SYSBUS_AHCI(obj);
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
ahci_init(&s->ahci, DEVICE(obj));
sysbus_init_mmio(sbd, &s->ahci.mem);
sysbus_init_irq(sbd, &s->ahci.irq);
}
static void sysbus_ahci_realize(DeviceState *dev, Error **errp)
{
SysbusAHCIState *s = SYSBUS_AHCI(dev);
ahci_realize(&s->ahci, dev, &address_space_memory, s->num_ports);
}
static Property sysbus_ahci_properties[] = {
DEFINE_PROP_UINT32("num-ports", SysbusAHCIState, num_ports, 1),
DEFINE_PROP_END_OF_LIST(),
};
static void sysbus_ahci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = sysbus_ahci_realize;
dc->vmsd = &vmstate_sysbus_ahci;
dc->props = sysbus_ahci_properties;
dc->reset = sysbus_ahci_reset;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
}
static const TypeInfo sysbus_ahci_info = {
.name = TYPE_SYSBUS_AHCI,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(SysbusAHCIState),
.instance_init = sysbus_ahci_init,
.class_init = sysbus_ahci_class_init,
};
#define ALLWINNER_AHCI_BISTAFR ((0xa0 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_BISTCR ((0xa4 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_BISTFCTR ((0xa8 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_BISTSR ((0xac - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_BISTDECR ((0xb0 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_DIAGNR0 ((0xb4 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_DIAGNR1 ((0xb8 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_OOBR ((0xbc - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_PHYCS0R ((0xc0 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_PHYCS1R ((0xc4 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_PHYCS2R ((0xc8 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_TIMER1MS ((0xe0 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_GPARAM1R ((0xe8 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_GPARAM2R ((0xec - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_PPARAMR ((0xf0 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_TESTR ((0xf4 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_VERSIONR ((0xf8 - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_IDR ((0xfc - ALLWINNER_AHCI_MMIO_OFF) / 4)
#define ALLWINNER_AHCI_RWCR ((0xfc - ALLWINNER_AHCI_MMIO_OFF) / 4)
static uint64_t allwinner_ahci_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
AllwinnerAHCIState *a = opaque;
AHCIState *s = &(SYSBUS_AHCI(a)->ahci);
uint64_t val = a->regs[addr/4];
switch (addr / 4) {
case ALLWINNER_AHCI_PHYCS0R:
val |= 0x2 << 28;
break;
case ALLWINNER_AHCI_PHYCS2R:
val &= ~(0x1 << 24);
break;
}
trace_allwinner_ahci_mem_read(s, a, addr, val, size);
return val;
}
static void allwinner_ahci_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
AllwinnerAHCIState *a = opaque;
AHCIState *s = &(SYSBUS_AHCI(a)->ahci);
trace_allwinner_ahci_mem_write(s, a, addr, val, size);
a->regs[addr/4] = val;
}
static const MemoryRegionOps allwinner_ahci_mem_ops = {
.read = allwinner_ahci_mem_read,
.write = allwinner_ahci_mem_write,
.valid.min_access_size = 4,
.valid.max_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void allwinner_ahci_init(Object *obj)
{
SysbusAHCIState *s = SYSBUS_AHCI(obj);
AllwinnerAHCIState *a = ALLWINNER_AHCI(obj);
memory_region_init_io(&a->mmio, OBJECT(obj), &allwinner_ahci_mem_ops, a,
"allwinner-ahci", ALLWINNER_AHCI_MMIO_SIZE);
memory_region_add_subregion(&s->ahci.mem, ALLWINNER_AHCI_MMIO_OFF,
&a->mmio);
}
static const VMStateDescription vmstate_allwinner_ahci = {
.name = "allwinner-ahci",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, AllwinnerAHCIState,
ALLWINNER_AHCI_MMIO_SIZE/4),
VMSTATE_END_OF_LIST()
}
};
static void allwinner_ahci_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->vmsd = &vmstate_allwinner_ahci;
}
static const TypeInfo allwinner_ahci_info = {
.name = TYPE_ALLWINNER_AHCI,
.parent = TYPE_SYSBUS_AHCI,
.instance_size = sizeof(AllwinnerAHCIState),
.instance_init = allwinner_ahci_init,
.class_init = allwinner_ahci_class_init,
};
static void sysbus_ahci_register_types(void)
{
type_register_static(&sysbus_ahci_info);
type_register_static(&allwinner_ahci_info);
}
type_init(sysbus_ahci_register_types)
int32_t ahci_get_num_ports(PCIDevice *dev)
{
AHCIPCIState *d = ICH_AHCI(dev);
AHCIState *ahci = &d->ahci;
return ahci->ports;
}
void ahci_ide_create_devs(PCIDevice *dev, DriveInfo **hd)
{
AHCIPCIState *d = ICH_AHCI(dev);
AHCIState *ahci = &d->ahci;
int i;
for (i = 0; i < ahci->ports; i++) {
if (hd[i] == NULL) {
continue;
}
ide_create_drive(&ahci->dev[i].port, 0, hd[i]);
}
}