mirror of https://gitee.com/openkylin/qemu.git
344 lines
10 KiB
C
344 lines
10 KiB
C
/*
|
|
* QEMU Sparc SLAVIO timer controller emulation
|
|
*
|
|
* Copyright (c) 2003-2005 Fabrice Bellard
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
* of this software and associated documentation files (the "Software"), to deal
|
|
* in the Software without restriction, including without limitation the rights
|
|
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
* copies of the Software, and to permit persons to whom the Software is
|
|
* furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice shall be included in
|
|
* all copies or substantial portions of the Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
|
* THE SOFTWARE.
|
|
*/
|
|
#include "hw.h"
|
|
#include "sun4m.h"
|
|
#include "qemu-timer.h"
|
|
|
|
//#define DEBUG_TIMER
|
|
|
|
#ifdef DEBUG_TIMER
|
|
#define DPRINTF(fmt, args...) \
|
|
do { printf("TIMER: " fmt , ##args); } while (0)
|
|
#else
|
|
#define DPRINTF(fmt, args...)
|
|
#endif
|
|
|
|
/*
|
|
* Registers of hardware timer in sun4m.
|
|
*
|
|
* This is the timer/counter part of chip STP2001 (Slave I/O), also
|
|
* produced as NCR89C105. See
|
|
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
|
|
*
|
|
* The 31-bit counter is incremented every 500ns by bit 9. Bits 8..0
|
|
* are zero. Bit 31 is 1 when count has been reached.
|
|
*
|
|
* Per-CPU timers interrupt local CPU, system timer uses normal
|
|
* interrupt routing.
|
|
*
|
|
*/
|
|
|
|
#define MAX_CPUS 16
|
|
|
|
typedef struct SLAVIO_TIMERState {
|
|
qemu_irq irq;
|
|
ptimer_state *timer;
|
|
uint32_t count, counthigh, reached;
|
|
uint64_t limit;
|
|
// processor only
|
|
int running;
|
|
struct SLAVIO_TIMERState *master;
|
|
int slave_index;
|
|
// system only
|
|
struct SLAVIO_TIMERState *slave[MAX_CPUS];
|
|
uint32_t slave_mode;
|
|
} SLAVIO_TIMERState;
|
|
|
|
#define TIMER_MAXADDR 0x1f
|
|
#define SYS_TIMER_SIZE 0x14
|
|
#define CPU_TIMER_SIZE 0x10
|
|
|
|
static int slavio_timer_is_user(SLAVIO_TIMERState *s)
|
|
{
|
|
return s->master && (s->master->slave_mode & (1 << s->slave_index));
|
|
}
|
|
|
|
// Update count, set irq, update expire_time
|
|
// Convert from ptimer countdown units
|
|
static void slavio_timer_get_out(SLAVIO_TIMERState *s)
|
|
{
|
|
uint64_t count;
|
|
|
|
count = s->limit - (ptimer_get_count(s->timer) << 9);
|
|
DPRINTF("get_out: limit %" PRIx64 " count %x%08x\n", s->limit, s->counthigh,
|
|
s->count);
|
|
s->count = count & 0xfffffe00;
|
|
s->counthigh = count >> 32;
|
|
}
|
|
|
|
// timer callback
|
|
static void slavio_timer_irq(void *opaque)
|
|
{
|
|
SLAVIO_TIMERState *s = opaque;
|
|
|
|
slavio_timer_get_out(s);
|
|
DPRINTF("callback: count %x%08x\n", s->counthigh, s->count);
|
|
if (!slavio_timer_is_user(s)) {
|
|
s->reached = 0x80000000;
|
|
qemu_irq_raise(s->irq);
|
|
}
|
|
}
|
|
|
|
static uint32_t slavio_timer_mem_readl(void *opaque, target_phys_addr_t addr)
|
|
{
|
|
SLAVIO_TIMERState *s = opaque;
|
|
uint32_t saddr, ret;
|
|
|
|
saddr = (addr & TIMER_MAXADDR) >> 2;
|
|
switch (saddr) {
|
|
case 0:
|
|
// read limit (system counter mode) or read most signifying
|
|
// part of counter (user mode)
|
|
if (slavio_timer_is_user(s)) {
|
|
// read user timer MSW
|
|
slavio_timer_get_out(s);
|
|
ret = s->counthigh;
|
|
} else {
|
|
// read limit
|
|
// clear irq
|
|
qemu_irq_lower(s->irq);
|
|
s->reached = 0;
|
|
ret = s->limit & 0x7fffffff;
|
|
}
|
|
break;
|
|
case 1:
|
|
// read counter and reached bit (system mode) or read lsbits
|
|
// of counter (user mode)
|
|
slavio_timer_get_out(s);
|
|
if (slavio_timer_is_user(s)) // read user timer LSW
|
|
ret = s->count & 0xfffffe00;
|
|
else // read limit
|
|
ret = (s->count & 0x7ffffe00) | s->reached;
|
|
break;
|
|
case 3:
|
|
// only available in processor counter/timer
|
|
// read start/stop status
|
|
ret = s->running;
|
|
break;
|
|
case 4:
|
|
// only available in system counter
|
|
// read user/system mode
|
|
ret = s->slave_mode;
|
|
break;
|
|
default:
|
|
DPRINTF("invalid read address " TARGET_FMT_plx "\n", addr);
|
|
ret = 0;
|
|
break;
|
|
}
|
|
DPRINTF("read " TARGET_FMT_plx " = %08x\n", addr, ret);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void slavio_timer_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
|
|
{
|
|
SLAVIO_TIMERState *s = opaque;
|
|
uint32_t saddr;
|
|
int reload = 0;
|
|
|
|
DPRINTF("write " TARGET_FMT_plx " %08x\n", addr, val);
|
|
saddr = (addr & TIMER_MAXADDR) >> 2;
|
|
switch (saddr) {
|
|
case 0:
|
|
if (slavio_timer_is_user(s)) {
|
|
// set user counter MSW, reset counter
|
|
qemu_irq_lower(s->irq);
|
|
s->limit = 0x7ffffffffffffe00ULL;
|
|
DPRINTF("processor %d user timer reset\n", s->slave_index);
|
|
ptimer_set_limit(s->timer, s->limit >> 9, 1);
|
|
} else {
|
|
// set limit, reset counter
|
|
qemu_irq_lower(s->irq);
|
|
s->limit = val & 0x7ffffe00ULL;
|
|
if (!s->limit)
|
|
s->limit = 0x7ffffe00ULL;
|
|
ptimer_set_limit(s->timer, s->limit >> 9, 1);
|
|
}
|
|
break;
|
|
case 1:
|
|
if (slavio_timer_is_user(s)) {
|
|
// set user counter LSW, reset counter
|
|
qemu_irq_lower(s->irq);
|
|
s->limit = 0x7ffffffffffffe00ULL;
|
|
DPRINTF("processor %d user timer reset\n", s->slave_index);
|
|
ptimer_set_limit(s->timer, s->limit >> 9, 1);
|
|
} else
|
|
DPRINTF("not user timer\n");
|
|
break;
|
|
case 2:
|
|
// set limit without resetting counter
|
|
s->limit = val & 0x7ffffe00ULL;
|
|
if (!s->limit)
|
|
s->limit = 0x7ffffe00ULL;
|
|
ptimer_set_limit(s->timer, s->limit >> 9, reload);
|
|
break;
|
|
case 3:
|
|
if (slavio_timer_is_user(s)) {
|
|
// start/stop user counter
|
|
if ((val & 1) && !s->running) {
|
|
DPRINTF("processor %d user timer started\n", s->slave_index);
|
|
ptimer_run(s->timer, 0);
|
|
s->running = 1;
|
|
} else if (!(val & 1) && s->running) {
|
|
DPRINTF("processor %d user timer stopped\n", s->slave_index);
|
|
ptimer_stop(s->timer);
|
|
s->running = 0;
|
|
}
|
|
}
|
|
break;
|
|
case 4:
|
|
if (s->master == NULL) {
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < MAX_CPUS; i++) {
|
|
if (val & (1 << i)) {
|
|
qemu_irq_lower(s->slave[i]->irq);
|
|
s->slave[i]->limit = -1ULL;
|
|
}
|
|
if ((val & (1 << i)) != (s->slave_mode & (1 << i))) {
|
|
ptimer_stop(s->slave[i]->timer);
|
|
ptimer_set_limit(s->slave[i]->timer, s->slave[i]->limit >> 9, 1);
|
|
DPRINTF("processor %d timer changed\n", s->slave[i]->slave_index);
|
|
ptimer_run(s->slave[i]->timer, 0);
|
|
}
|
|
}
|
|
s->slave_mode = val & ((1 << MAX_CPUS) - 1);
|
|
} else
|
|
DPRINTF("not system timer\n");
|
|
break;
|
|
default:
|
|
DPRINTF("invalid write address " TARGET_FMT_plx "\n", addr);
|
|
break;
|
|
}
|
|
}
|
|
|
|
static CPUReadMemoryFunc *slavio_timer_mem_read[3] = {
|
|
slavio_timer_mem_readl,
|
|
slavio_timer_mem_readl,
|
|
slavio_timer_mem_readl,
|
|
};
|
|
|
|
static CPUWriteMemoryFunc *slavio_timer_mem_write[3] = {
|
|
slavio_timer_mem_writel,
|
|
slavio_timer_mem_writel,
|
|
slavio_timer_mem_writel,
|
|
};
|
|
|
|
static void slavio_timer_save(QEMUFile *f, void *opaque)
|
|
{
|
|
SLAVIO_TIMERState *s = opaque;
|
|
|
|
qemu_put_be64s(f, &s->limit);
|
|
qemu_put_be32s(f, &s->count);
|
|
qemu_put_be32s(f, &s->counthigh);
|
|
qemu_put_be32(f, 0); // Was irq
|
|
qemu_put_be32s(f, &s->reached);
|
|
qemu_put_be32s(f, &s->running);
|
|
qemu_put_be32s(f, 0); // Was mode
|
|
qemu_put_ptimer(f, s->timer);
|
|
}
|
|
|
|
static int slavio_timer_load(QEMUFile *f, void *opaque, int version_id)
|
|
{
|
|
SLAVIO_TIMERState *s = opaque;
|
|
uint32_t tmp;
|
|
|
|
if (version_id != 2)
|
|
return -EINVAL;
|
|
|
|
qemu_get_be64s(f, &s->limit);
|
|
qemu_get_be32s(f, &s->count);
|
|
qemu_get_be32s(f, &s->counthigh);
|
|
qemu_get_be32s(f, &tmp); // Was irq
|
|
qemu_get_be32s(f, &s->reached);
|
|
qemu_get_be32s(f, &s->running);
|
|
qemu_get_be32s(f, &tmp); // Was mode
|
|
qemu_get_ptimer(f, s->timer);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void slavio_timer_reset(void *opaque)
|
|
{
|
|
SLAVIO_TIMERState *s = opaque;
|
|
|
|
if (slavio_timer_is_user(s))
|
|
s->limit = 0x7ffffffffffffe00ULL;
|
|
else
|
|
s->limit = 0x7ffffe00ULL;
|
|
s->count = 0;
|
|
s->reached = 0;
|
|
ptimer_set_limit(s->timer, s->limit >> 9, 1);
|
|
ptimer_run(s->timer, 0);
|
|
s->running = 1;
|
|
qemu_irq_lower(s->irq);
|
|
}
|
|
|
|
static SLAVIO_TIMERState *slavio_timer_init(target_phys_addr_t addr,
|
|
qemu_irq irq,
|
|
SLAVIO_TIMERState *master,
|
|
int slave_index)
|
|
{
|
|
int slavio_timer_io_memory;
|
|
SLAVIO_TIMERState *s;
|
|
QEMUBH *bh;
|
|
|
|
s = qemu_mallocz(sizeof(SLAVIO_TIMERState));
|
|
if (!s)
|
|
return s;
|
|
s->irq = irq;
|
|
s->master = master;
|
|
s->slave_index = slave_index;
|
|
bh = qemu_bh_new(slavio_timer_irq, s);
|
|
s->timer = ptimer_init(bh);
|
|
ptimer_set_period(s->timer, 500ULL);
|
|
|
|
slavio_timer_io_memory = cpu_register_io_memory(0, slavio_timer_mem_read,
|
|
slavio_timer_mem_write, s);
|
|
if (master)
|
|
cpu_register_physical_memory(addr, CPU_TIMER_SIZE, slavio_timer_io_memory);
|
|
else
|
|
cpu_register_physical_memory(addr, SYS_TIMER_SIZE, slavio_timer_io_memory);
|
|
register_savevm("slavio_timer", addr, 2, slavio_timer_save, slavio_timer_load, s);
|
|
qemu_register_reset(slavio_timer_reset, s);
|
|
slavio_timer_reset(s);
|
|
|
|
return s;
|
|
}
|
|
|
|
void slavio_timer_init_all(target_phys_addr_t base, qemu_irq master_irq,
|
|
qemu_irq *cpu_irqs)
|
|
{
|
|
SLAVIO_TIMERState *master;
|
|
unsigned int i;
|
|
|
|
master = slavio_timer_init(base + 0x10000ULL, master_irq, NULL, 0);
|
|
|
|
for (i = 0; i < MAX_CPUS; i++) {
|
|
master->slave[i] = slavio_timer_init(base + (target_phys_addr_t)
|
|
(i * TARGET_PAGE_SIZE),
|
|
cpu_irqs[i], master, i);
|
|
}
|
|
}
|