qemu/target-s390x/kvm.c

941 lines
25 KiB
C

/*
* QEMU S390x KVM implementation
*
* Copyright (c) 2009 Alexander Graf <agraf@suse.de>
* Copyright IBM Corp. 2012
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* Contributions after 2012-10-29 are licensed under the terms of the
* GNU GPL, version 2 or (at your option) any later version.
*
* You should have received a copy of the GNU (Lesser) General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include <sys/types.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <linux/kvm.h>
#include <asm/ptrace.h>
#include "qemu-common.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
#include "sysemu/kvm.h"
#include "cpu.h"
#include "sysemu/device_tree.h"
#include "qapi/qmp/qjson.h"
#include "monitor/monitor.h"
/* #define DEBUG_KVM */
#ifdef DEBUG_KVM
#define DPRINTF(fmt, ...) \
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
#else
#define DPRINTF(fmt, ...) \
do { } while (0)
#endif
#define IPA0_DIAG 0x8300
#define IPA0_SIGP 0xae00
#define IPA0_B2 0xb200
#define IPA0_B9 0xb900
#define IPA0_EB 0xeb00
#define PRIV_B2_SCLP_CALL 0x20
#define PRIV_B2_CSCH 0x30
#define PRIV_B2_HSCH 0x31
#define PRIV_B2_MSCH 0x32
#define PRIV_B2_SSCH 0x33
#define PRIV_B2_STSCH 0x34
#define PRIV_B2_TSCH 0x35
#define PRIV_B2_TPI 0x36
#define PRIV_B2_SAL 0x37
#define PRIV_B2_RSCH 0x38
#define PRIV_B2_STCRW 0x39
#define PRIV_B2_STCPS 0x3a
#define PRIV_B2_RCHP 0x3b
#define PRIV_B2_SCHM 0x3c
#define PRIV_B2_CHSC 0x5f
#define PRIV_B2_SIGA 0x74
#define PRIV_B2_XSCH 0x76
#define PRIV_EB_SQBS 0x8a
#define PRIV_B9_EQBS 0x9c
#define DIAG_IPL 0x308
#define DIAG_KVM_HYPERCALL 0x500
#define DIAG_KVM_BREAKPOINT 0x501
#define ICPT_INSTRUCTION 0x04
#define ICPT_WAITPSW 0x1c
#define ICPT_SOFT_INTERCEPT 0x24
#define ICPT_CPU_STOP 0x28
#define ICPT_IO 0x40
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
static int cap_sync_regs;
static int cap_async_pf;
static void *legacy_s390_alloc(size_t size);
int kvm_arch_init(KVMState *s)
{
cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF);
if (!kvm_check_extension(s, KVM_CAP_S390_GMAP)
|| !kvm_check_extension(s, KVM_CAP_S390_COW)) {
phys_mem_set_alloc(legacy_s390_alloc);
}
return 0;
}
unsigned long kvm_arch_vcpu_id(CPUState *cpu)
{
return cpu->cpu_index;
}
int kvm_arch_init_vcpu(CPUState *cpu)
{
/* nothing todo yet */
return 0;
}
void kvm_arch_reset_vcpu(CPUState *cpu)
{
/* The initial reset call is needed here to reset in-kernel
* vcpu data that we can't access directly from QEMU
* (i.e. with older kernels which don't support sync_regs/ONE_REG).
* Before this ioctl cpu_synchronize_state() is called in common kvm
* code (kvm-all) */
if (kvm_vcpu_ioctl(cpu, KVM_S390_INITIAL_RESET, NULL)) {
perror("Can't reset vcpu\n");
}
}
int kvm_arch_put_registers(CPUState *cs, int level)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_one_reg reg;
struct kvm_sregs sregs;
struct kvm_regs regs;
int ret;
int i;
/* always save the PSW and the GPRS*/
cs->kvm_run->psw_addr = env->psw.addr;
cs->kvm_run->psw_mask = env->psw.mask;
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.gprs[i] = env->regs[i];
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
}
} else {
for (i = 0; i < 16; i++) {
regs.gprs[i] = env->regs[i];
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
if (ret < 0) {
return ret;
}
}
/* Do we need to save more than that? */
if (level == KVM_PUT_RUNTIME_STATE) {
return 0;
}
reg.id = KVM_REG_S390_CPU_TIMER;
reg.addr = (__u64)&(env->cputm);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
reg.id = KVM_REG_S390_CLOCK_COMP;
reg.addr = (__u64)&(env->ckc);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
reg.id = KVM_REG_S390_TODPR;
reg.addr = (__u64)&(env->todpr);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
if (cap_async_pf) {
reg.id = KVM_REG_S390_PFTOKEN;
reg.addr = (__u64)&(env->pfault_token);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
reg.id = KVM_REG_S390_PFCOMPARE;
reg.addr = (__u64)&(env->pfault_compare);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
reg.id = KVM_REG_S390_PFSELECT;
reg.addr = (__u64)&(env->pfault_select);
ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &reg);
if (ret < 0) {
return ret;
}
}
if (cap_sync_regs &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) {
for (i = 0; i < 16; i++) {
cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
cs->kvm_run->s.regs.crs[i] = env->cregs[i];
}
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
} else {
for (i = 0; i < 16; i++) {
sregs.acrs[i] = env->aregs[i];
sregs.crs[i] = env->cregs[i];
}
ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
if (ret < 0) {
return ret;
}
}
/* Finally the prefix */
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) {
cs->kvm_run->s.regs.prefix = env->psa;
cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
} else {
/* prefix is only supported via sync regs */
}
return 0;
}
int kvm_arch_get_registers(CPUState *cs)
{
S390CPU *cpu = S390_CPU(cs);
CPUS390XState *env = &cpu->env;
struct kvm_one_reg reg;
struct kvm_sregs sregs;
struct kvm_regs regs;
int i, r;
/* get the PSW */
env->psw.addr = cs->kvm_run->psw_addr;
env->psw.mask = cs->kvm_run->psw_mask;
/* the GPRS */
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) {
for (i = 0; i < 16; i++) {
env->regs[i] = cs->kvm_run->s.regs.gprs[i];
}
} else {
r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
env->regs[i] = regs.gprs[i];
}
}
/* The ACRS and CRS */
if (cap_sync_regs &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS &&
cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) {
for (i = 0; i < 16; i++) {
env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
env->cregs[i] = cs->kvm_run->s.regs.crs[i];
}
} else {
r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
if (r < 0) {
return r;
}
for (i = 0; i < 16; i++) {
env->aregs[i] = sregs.acrs[i];
env->cregs[i] = sregs.crs[i];
}
}
/* The prefix */
if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) {
env->psa = cs->kvm_run->s.regs.prefix;
}
/* One Regs */
reg.id = KVM_REG_S390_CPU_TIMER;
reg.addr = (__u64)&(env->cputm);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
reg.id = KVM_REG_S390_CLOCK_COMP;
reg.addr = (__u64)&(env->ckc);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
reg.id = KVM_REG_S390_TODPR;
reg.addr = (__u64)&(env->todpr);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
if (cap_async_pf) {
reg.id = KVM_REG_S390_PFTOKEN;
reg.addr = (__u64)&(env->pfault_token);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
reg.id = KVM_REG_S390_PFCOMPARE;
reg.addr = (__u64)&(env->pfault_compare);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
reg.id = KVM_REG_S390_PFSELECT;
reg.addr = (__u64)&(env->pfault_select);
r = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &reg);
if (r < 0) {
return r;
}
}
return 0;
}
/*
* Legacy layout for s390:
* Older S390 KVM requires the topmost vma of the RAM to be
* smaller than an system defined value, which is at least 256GB.
* Larger systems have larger values. We put the guest between
* the end of data segment (system break) and this value. We
* use 32GB as a base to have enough room for the system break
* to grow. We also have to use MAP parameters that avoid
* read-only mapping of guest pages.
*/
static void *legacy_s390_alloc(size_t size)
{
void *mem;
mem = mmap((void *) 0x800000000ULL, size,
PROT_EXEC|PROT_READ|PROT_WRITE,
MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
return mem == MAP_FAILED ? NULL : mem;
}
int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)diag_501, 4, 1)) {
return -EINVAL;
}
return 0;
}
int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
{
uint8_t t[4];
static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
if (cpu_memory_rw_debug(cs, bp->pc, t, 4, 0)) {
return -EINVAL;
} else if (memcmp(t, diag_501, 4)) {
return -EINVAL;
} else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
return -EINVAL;
}
return 0;
}
void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
{
}
void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
{
}
int kvm_arch_process_async_events(CPUState *cs)
{
return cs->halted;
}
void kvm_s390_interrupt_internal(S390CPU *cpu, int type, uint32_t parm,
uint64_t parm64, int vm)
{
CPUState *cs = CPU(cpu);
struct kvm_s390_interrupt kvmint;
int r;
if (!cs->kvm_state) {
return;
}
kvmint.type = type;
kvmint.parm = parm;
kvmint.parm64 = parm64;
if (vm) {
r = kvm_vm_ioctl(cs->kvm_state, KVM_S390_INTERRUPT, &kvmint);
} else {
r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
}
if (r < 0) {
fprintf(stderr, "KVM failed to inject interrupt\n");
exit(1);
}
}
void kvm_s390_virtio_irq(S390CPU *cpu, int config_change, uint64_t token)
{
kvm_s390_interrupt_internal(cpu, KVM_S390_INT_VIRTIO, config_change,
token, 1);
}
void kvm_s390_interrupt(S390CPU *cpu, int type, uint32_t code)
{
kvm_s390_interrupt_internal(cpu, type, code, 0, 0);
}
static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
{
kvm_s390_interrupt(cpu, KVM_S390_PROGRAM_INT, code);
}
static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
uint16_t ipbh0)
{
CPUS390XState *env = &cpu->env;
uint64_t sccb;
uint32_t code;
int r = 0;
cpu_synchronize_state(CPU(cpu));
sccb = env->regs[ipbh0 & 0xf];
code = env->regs[(ipbh0 & 0xf0) >> 4];
r = sclp_service_call(env, sccb, code);
if (r < 0) {
enter_pgmcheck(cpu, -r);
} else {
setcc(cpu, r);
}
return 0;
}
static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
CPUS390XState *env = &cpu->env;
int rc = 0;
uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
cpu_synchronize_state(CPU(cpu));
switch (ipa1) {
case PRIV_B2_XSCH:
ioinst_handle_xsch(cpu, env->regs[1]);
break;
case PRIV_B2_CSCH:
ioinst_handle_csch(cpu, env->regs[1]);
break;
case PRIV_B2_HSCH:
ioinst_handle_hsch(cpu, env->regs[1]);
break;
case PRIV_B2_MSCH:
ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_B2_SSCH:
ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_B2_STCRW:
ioinst_handle_stcrw(cpu, run->s390_sieic.ipb);
break;
case PRIV_B2_STSCH:
ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb);
break;
case PRIV_B2_TSCH:
/* We should only get tsch via KVM_EXIT_S390_TSCH. */
fprintf(stderr, "Spurious tsch intercept\n");
break;
case PRIV_B2_CHSC:
ioinst_handle_chsc(cpu, run->s390_sieic.ipb);
break;
case PRIV_B2_TPI:
/* This should have been handled by kvm already. */
fprintf(stderr, "Spurious tpi intercept\n");
break;
case PRIV_B2_SCHM:
ioinst_handle_schm(cpu, env->regs[1], env->regs[2],
run->s390_sieic.ipb);
break;
case PRIV_B2_RSCH:
ioinst_handle_rsch(cpu, env->regs[1]);
break;
case PRIV_B2_RCHP:
ioinst_handle_rchp(cpu, env->regs[1]);
break;
case PRIV_B2_STCPS:
/* We do not provide this instruction, it is suppressed. */
break;
case PRIV_B2_SAL:
ioinst_handle_sal(cpu, env->regs[1]);
break;
case PRIV_B2_SIGA:
/* Not provided, set CC = 3 for subchannel not operational */
setcc(cpu, 3);
break;
case PRIV_B2_SCLP_CALL:
rc = kvm_sclp_service_call(cpu, run, ipbh0);
break;
default:
rc = -1;
DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1);
break;
}
return rc;
}
static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
int r = 0;
switch (ipa1) {
case PRIV_B9_EQBS:
/* just inject exception */
r = -1;
break;
default:
r = -1;
DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1);
break;
}
return r;
}
static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
int r = 0;
switch (ipa1) {
case PRIV_EB_SQBS:
/* just inject exception */
r = -1;
break;
default:
r = -1;
DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipa1);
break;
}
return r;
}
static int handle_hypercall(S390CPU *cpu, struct kvm_run *run)
{
CPUS390XState *env = &cpu->env;
int ret;
cpu_synchronize_state(CPU(cpu));
ret = s390_virtio_hypercall(env);
if (ret == -EINVAL) {
enter_pgmcheck(cpu, PGM_SPECIFICATION);
return 0;
}
return ret;
}
static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run)
{
uint64_t r1, r3;
cpu_synchronize_state(CPU(cpu));
r1 = (run->s390_sieic.ipa & 0x00f0) >> 8;
r3 = run->s390_sieic.ipa & 0x000f;
handle_diag_308(&cpu->env, r1, r3);
}
#define DIAG_KVM_CODE_MASK 0x000000000000ffff
static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb)
{
int r = 0;
uint16_t func_code;
/*
* For any diagnose call we support, bits 48-63 of the resulting
* address specify the function code; the remainder is ignored.
*/
func_code = decode_basedisp_rs(&cpu->env, ipb) & DIAG_KVM_CODE_MASK;
switch (func_code) {
case DIAG_IPL:
kvm_handle_diag_308(cpu, run);
break;
case DIAG_KVM_HYPERCALL:
r = handle_hypercall(cpu, run);
break;
case DIAG_KVM_BREAKPOINT:
sleep(10);
break;
default:
DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code);
r = -1;
break;
}
return r;
}
static int kvm_s390_cpu_start(S390CPU *cpu)
{
s390_add_running_cpu(cpu);
qemu_cpu_kick(CPU(cpu));
DPRINTF("DONE: KVM cpu start: %p\n", &cpu->env);
return 0;
}
int kvm_s390_cpu_restart(S390CPU *cpu)
{
kvm_s390_interrupt(cpu, KVM_S390_RESTART, 0);
s390_add_running_cpu(cpu);
qemu_cpu_kick(CPU(cpu));
DPRINTF("DONE: KVM cpu restart: %p\n", &cpu->env);
return 0;
}
static void sigp_initial_cpu_reset(void *arg)
{
CPUState *cpu = arg;
S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
cpu_synchronize_state(cpu);
scc->initial_cpu_reset(cpu);
}
static void sigp_cpu_reset(void *arg)
{
CPUState *cpu = arg;
S390CPUClass *scc = S390_CPU_GET_CLASS(cpu);
cpu_synchronize_state(cpu);
scc->cpu_reset(cpu);
}
#define SIGP_ORDER_MASK 0x000000ff
static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
{
CPUS390XState *env = &cpu->env;
uint8_t order_code;
uint16_t cpu_addr;
S390CPU *target_cpu;
uint64_t *statusreg = &env->regs[ipa1 >> 4];
int cc;
cpu_synchronize_state(CPU(cpu));
/* get order code */
order_code = decode_basedisp_rs(env, run->s390_sieic.ipb) & SIGP_ORDER_MASK;
cpu_addr = env->regs[ipa1 & 0x0f];
target_cpu = s390_cpu_addr2state(cpu_addr);
if (target_cpu == NULL) {
cc = 3; /* not operational */
goto out;
}
switch (order_code) {
case SIGP_START:
cc = kvm_s390_cpu_start(target_cpu);
break;
case SIGP_RESTART:
cc = kvm_s390_cpu_restart(target_cpu);
break;
case SIGP_SET_ARCH:
*statusreg &= 0xffffffff00000000UL;
*statusreg |= SIGP_STAT_INVALID_PARAMETER;
cc = 1; /* status stored */
break;
case SIGP_INITIAL_CPU_RESET:
run_on_cpu(CPU(target_cpu), sigp_initial_cpu_reset, CPU(target_cpu));
cc = 0;
break;
case SIGP_CPU_RESET:
run_on_cpu(CPU(target_cpu), sigp_cpu_reset, CPU(target_cpu));
cc = 0;
break;
default:
DPRINTF("KVM: unknown SIGP: 0x%x\n", order_code);
*statusreg &= 0xffffffff00000000UL;
*statusreg |= SIGP_STAT_INVALID_ORDER;
cc = 1; /* status stored */
break;
}
out:
setcc(cpu, cc);
return 0;
}
static void handle_instruction(S390CPU *cpu, struct kvm_run *run)
{
unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
int r = -1;
DPRINTF("handle_instruction 0x%x 0x%x\n",
run->s390_sieic.ipa, run->s390_sieic.ipb);
switch (ipa0) {
case IPA0_B2:
r = handle_b2(cpu, run, ipa1);
break;
case IPA0_B9:
r = handle_b9(cpu, run, ipa1);
break;
case IPA0_EB:
r = handle_eb(cpu, run, ipa1);
break;
case IPA0_DIAG:
r = handle_diag(cpu, run, run->s390_sieic.ipb);
break;
case IPA0_SIGP:
r = handle_sigp(cpu, run, ipa1);
break;
}
if (r < 0) {
enter_pgmcheck(cpu, 0x0001);
}
}
static bool is_special_wait_psw(CPUState *cs)
{
/* signal quiesce */
return cs->kvm_run->psw_addr == 0xfffUL;
}
static int handle_intercept(S390CPU *cpu)
{
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int icpt_code = run->s390_sieic.icptcode;
int r = 0;
DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code,
(long)cs->kvm_run->psw_addr);
switch (icpt_code) {
case ICPT_INSTRUCTION:
handle_instruction(cpu, run);
break;
case ICPT_WAITPSW:
/* disabled wait, since enabled wait is handled in kernel */
if (s390_del_running_cpu(cpu) == 0) {
if (is_special_wait_psw(cs)) {
qemu_system_shutdown_request();
} else {
QObject *data;
data = qobject_from_jsonf("{ 'action': %s }", "pause");
monitor_protocol_event(QEVENT_GUEST_PANICKED, data);
qobject_decref(data);
vm_stop(RUN_STATE_GUEST_PANICKED);
}
}
r = EXCP_HALTED;
break;
case ICPT_CPU_STOP:
if (s390_del_running_cpu(cpu) == 0) {
qemu_system_shutdown_request();
}
r = EXCP_HALTED;
break;
case ICPT_SOFT_INTERCEPT:
fprintf(stderr, "KVM unimplemented icpt SOFT\n");
exit(1);
break;
case ICPT_IO:
fprintf(stderr, "KVM unimplemented icpt IO\n");
exit(1);
break;
default:
fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
exit(1);
break;
}
return r;
}
static int handle_tsch(S390CPU *cpu)
{
CPUS390XState *env = &cpu->env;
CPUState *cs = CPU(cpu);
struct kvm_run *run = cs->kvm_run;
int ret;
cpu_synchronize_state(cs);
ret = ioinst_handle_tsch(env, env->regs[1], run->s390_tsch.ipb);
if (ret >= 0) {
/* Success; set condition code. */
setcc(cpu, ret);
ret = 0;
} else if (ret < -1) {
/*
* Failure.
* If an I/O interrupt had been dequeued, we have to reinject it.
*/
if (run->s390_tsch.dequeued) {
uint16_t subchannel_id = run->s390_tsch.subchannel_id;
uint16_t subchannel_nr = run->s390_tsch.subchannel_nr;
uint32_t io_int_parm = run->s390_tsch.io_int_parm;
uint32_t io_int_word = run->s390_tsch.io_int_word;
uint32_t type = ((subchannel_id & 0xff00) << 24) |
((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16);
kvm_s390_interrupt_internal(cpu, type,
((uint32_t)subchannel_id << 16)
| subchannel_nr,
((uint64_t)io_int_parm << 32)
| io_int_word, 1);
}
ret = 0;
}
return ret;
}
int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
{
S390CPU *cpu = S390_CPU(cs);
int ret = 0;
switch (run->exit_reason) {
case KVM_EXIT_S390_SIEIC:
ret = handle_intercept(cpu);
break;
case KVM_EXIT_S390_RESET:
qemu_system_reset_request();
break;
case KVM_EXIT_S390_TSCH:
ret = handle_tsch(cpu);
break;
default:
fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
break;
}
if (ret == 0) {
ret = EXCP_INTERRUPT;
}
return ret;
}
bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
{
return true;
}
int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
return 1;
}
int kvm_arch_on_sigbus(int code, void *addr)
{
return 1;
}
void kvm_s390_io_interrupt(S390CPU *cpu, uint16_t subchannel_id,
uint16_t subchannel_nr, uint32_t io_int_parm,
uint32_t io_int_word)
{
uint32_t type;
type = ((subchannel_id & 0xff00) << 24) |
((subchannel_id & 0x00060) << 22) | (subchannel_nr << 16);
kvm_s390_interrupt_internal(cpu, type,
((uint32_t)subchannel_id << 16) | subchannel_nr,
((uint64_t)io_int_parm << 32) | io_int_word, 1);
}
void kvm_s390_crw_mchk(S390CPU *cpu)
{
kvm_s390_interrupt_internal(cpu, KVM_S390_MCHK, 1 << 28,
0x00400f1d40330000, 1);
}
void kvm_s390_enable_css_support(S390CPU *cpu)
{
struct kvm_enable_cap cap = {};
int r;
/* Activate host kernel channel subsystem support. */
cap.cap = KVM_CAP_S390_CSS_SUPPORT;
r = kvm_vcpu_ioctl(CPU(cpu), KVM_ENABLE_CAP, &cap);
assert(r == 0);
}
void kvm_arch_init_irq_routing(KVMState *s)
{
}
int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch,
int vq, bool assign)
{
struct kvm_ioeventfd kick = {
.flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY |
KVM_IOEVENTFD_FLAG_DATAMATCH,
.fd = event_notifier_get_fd(notifier),
.datamatch = vq,
.addr = sch,
.len = 8,
};
if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) {
return -ENOSYS;
}
if (!assign) {
kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
}
return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
}