mirror of https://gitee.com/openkylin/qemu.git
2628 lines
75 KiB
C
2628 lines
75 KiB
C
/* This is the Linux kernel elf-loading code, ported into user space */
|
|
#include <sys/time.h>
|
|
#include <sys/param.h>
|
|
|
|
#include <stdio.h>
|
|
#include <sys/types.h>
|
|
#include <fcntl.h>
|
|
#include <errno.h>
|
|
#include <unistd.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/resource.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
|
|
#include "qemu.h"
|
|
#include "disas.h"
|
|
|
|
#ifdef _ARCH_PPC64
|
|
#undef ARCH_DLINFO
|
|
#undef ELF_PLATFORM
|
|
#undef ELF_HWCAP
|
|
#undef ELF_CLASS
|
|
#undef ELF_DATA
|
|
#undef ELF_ARCH
|
|
#endif
|
|
|
|
#define ELF_OSABI ELFOSABI_SYSV
|
|
|
|
/* from personality.h */
|
|
|
|
/*
|
|
* Flags for bug emulation.
|
|
*
|
|
* These occupy the top three bytes.
|
|
*/
|
|
enum {
|
|
ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
|
|
FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to descriptors
|
|
* (signal handling)
|
|
*/
|
|
MMAP_PAGE_ZERO = 0x0100000,
|
|
ADDR_COMPAT_LAYOUT = 0x0200000,
|
|
READ_IMPLIES_EXEC = 0x0400000,
|
|
ADDR_LIMIT_32BIT = 0x0800000,
|
|
SHORT_INODE = 0x1000000,
|
|
WHOLE_SECONDS = 0x2000000,
|
|
STICKY_TIMEOUTS = 0x4000000,
|
|
ADDR_LIMIT_3GB = 0x8000000,
|
|
};
|
|
|
|
/*
|
|
* Personality types.
|
|
*
|
|
* These go in the low byte. Avoid using the top bit, it will
|
|
* conflict with error returns.
|
|
*/
|
|
enum {
|
|
PER_LINUX = 0x0000,
|
|
PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
|
|
PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
|
|
PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
|
|
PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS |
|
|
WHOLE_SECONDS | SHORT_INODE,
|
|
PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
|
|
PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
|
|
PER_BSD = 0x0006,
|
|
PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
|
|
PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
|
|
PER_LINUX32 = 0x0008,
|
|
PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
|
|
PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
|
|
PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
|
|
PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
|
|
PER_RISCOS = 0x000c,
|
|
PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
|
|
PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
|
|
PER_OSF4 = 0x000f, /* OSF/1 v4 */
|
|
PER_HPUX = 0x0010,
|
|
PER_MASK = 0x00ff,
|
|
};
|
|
|
|
/*
|
|
* Return the base personality without flags.
|
|
*/
|
|
#define personality(pers) (pers & PER_MASK)
|
|
|
|
/* this flag is uneffective under linux too, should be deleted */
|
|
#ifndef MAP_DENYWRITE
|
|
#define MAP_DENYWRITE 0
|
|
#endif
|
|
|
|
/* should probably go in elf.h */
|
|
#ifndef ELIBBAD
|
|
#define ELIBBAD 80
|
|
#endif
|
|
|
|
#ifdef TARGET_I386
|
|
|
|
#define ELF_PLATFORM get_elf_platform()
|
|
|
|
static const char *get_elf_platform(void)
|
|
{
|
|
static char elf_platform[] = "i386";
|
|
int family = (thread_env->cpuid_version >> 8) & 0xff;
|
|
if (family > 6)
|
|
family = 6;
|
|
if (family >= 3)
|
|
elf_platform[1] = '0' + family;
|
|
return elf_platform;
|
|
}
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
return thread_env->cpuid_features;
|
|
}
|
|
|
|
#ifdef TARGET_X86_64
|
|
#define ELF_START_MMAP 0x2aaaaab000ULL
|
|
#define elf_check_arch(x) ( ((x) == ELF_ARCH) )
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#define ELF_ARCH EM_X86_64
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->rax = 0;
|
|
regs->rsp = infop->start_stack;
|
|
regs->rip = infop->entry;
|
|
}
|
|
|
|
typedef target_ulong target_elf_greg_t;
|
|
typedef uint32_t target_uid_t;
|
|
typedef uint32_t target_gid_t;
|
|
typedef int32_t target_pid_t;
|
|
|
|
#define ELF_NREG 27
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/*
|
|
* Note that ELF_NREG should be 29 as there should be place for
|
|
* TRAPNO and ERR "registers" as well but linux doesn't dump
|
|
* those.
|
|
*
|
|
* See linux kernel: arch/x86/include/asm/elf.h
|
|
*/
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
|
|
{
|
|
(*regs)[0] = env->regs[15];
|
|
(*regs)[1] = env->regs[14];
|
|
(*regs)[2] = env->regs[13];
|
|
(*regs)[3] = env->regs[12];
|
|
(*regs)[4] = env->regs[R_EBP];
|
|
(*regs)[5] = env->regs[R_EBX];
|
|
(*regs)[6] = env->regs[11];
|
|
(*regs)[7] = env->regs[10];
|
|
(*regs)[8] = env->regs[9];
|
|
(*regs)[9] = env->regs[8];
|
|
(*regs)[10] = env->regs[R_EAX];
|
|
(*regs)[11] = env->regs[R_ECX];
|
|
(*regs)[12] = env->regs[R_EDX];
|
|
(*regs)[13] = env->regs[R_ESI];
|
|
(*regs)[14] = env->regs[R_EDI];
|
|
(*regs)[15] = env->regs[R_EAX]; /* XXX */
|
|
(*regs)[16] = env->eip;
|
|
(*regs)[17] = env->segs[R_CS].selector & 0xffff;
|
|
(*regs)[18] = env->eflags;
|
|
(*regs)[19] = env->regs[R_ESP];
|
|
(*regs)[20] = env->segs[R_SS].selector & 0xffff;
|
|
(*regs)[21] = env->segs[R_FS].selector & 0xffff;
|
|
(*regs)[22] = env->segs[R_GS].selector & 0xffff;
|
|
(*regs)[23] = env->segs[R_DS].selector & 0xffff;
|
|
(*regs)[24] = env->segs[R_ES].selector & 0xffff;
|
|
(*regs)[25] = env->segs[R_FS].selector & 0xffff;
|
|
(*regs)[26] = env->segs[R_GS].selector & 0xffff;
|
|
}
|
|
|
|
#else
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
/*
|
|
* This is used to ensure we don't load something for the wrong architecture.
|
|
*/
|
|
#define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
|
|
|
|
/*
|
|
* These are used to set parameters in the core dumps.
|
|
*/
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#define ELF_ARCH EM_386
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->esp = infop->start_stack;
|
|
regs->eip = infop->entry;
|
|
|
|
/* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
|
|
starts %edx contains a pointer to a function which might be
|
|
registered using `atexit'. This provides a mean for the
|
|
dynamic linker to call DT_FINI functions for shared libraries
|
|
that have been loaded before the code runs.
|
|
|
|
A value of 0 tells we have no such handler. */
|
|
regs->edx = 0;
|
|
}
|
|
|
|
typedef target_ulong target_elf_greg_t;
|
|
typedef uint16_t target_uid_t;
|
|
typedef uint16_t target_gid_t;
|
|
typedef int32_t target_pid_t;
|
|
|
|
#define ELF_NREG 17
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
/*
|
|
* Note that ELF_NREG should be 19 as there should be place for
|
|
* TRAPNO and ERR "registers" as well but linux doesn't dump
|
|
* those.
|
|
*
|
|
* See linux kernel: arch/x86/include/asm/elf.h
|
|
*/
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
|
|
{
|
|
(*regs)[0] = env->regs[R_EBX];
|
|
(*regs)[1] = env->regs[R_ECX];
|
|
(*regs)[2] = env->regs[R_EDX];
|
|
(*regs)[3] = env->regs[R_ESI];
|
|
(*regs)[4] = env->regs[R_EDI];
|
|
(*regs)[5] = env->regs[R_EBP];
|
|
(*regs)[6] = env->regs[R_EAX];
|
|
(*regs)[7] = env->segs[R_DS].selector & 0xffff;
|
|
(*regs)[8] = env->segs[R_ES].selector & 0xffff;
|
|
(*regs)[9] = env->segs[R_FS].selector & 0xffff;
|
|
(*regs)[10] = env->segs[R_GS].selector & 0xffff;
|
|
(*regs)[11] = env->regs[R_EAX]; /* XXX */
|
|
(*regs)[12] = env->eip;
|
|
(*regs)[13] = env->segs[R_CS].selector & 0xffff;
|
|
(*regs)[14] = env->eflags;
|
|
(*regs)[15] = env->regs[R_ESP];
|
|
(*regs)[16] = env->segs[R_SS].selector & 0xffff;
|
|
}
|
|
#endif
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_ARM
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_ARM )
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#else
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#endif
|
|
#define ELF_ARCH EM_ARM
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
abi_long stack = infop->start_stack;
|
|
memset(regs, 0, sizeof(*regs));
|
|
regs->ARM_cpsr = 0x10;
|
|
if (infop->entry & 1)
|
|
regs->ARM_cpsr |= CPSR_T;
|
|
regs->ARM_pc = infop->entry & 0xfffffffe;
|
|
regs->ARM_sp = infop->start_stack;
|
|
/* FIXME - what to for failure of get_user()? */
|
|
get_user_ual(regs->ARM_r2, stack + 8); /* envp */
|
|
get_user_ual(regs->ARM_r1, stack + 4); /* envp */
|
|
/* XXX: it seems that r0 is zeroed after ! */
|
|
regs->ARM_r0 = 0;
|
|
/* For uClinux PIC binaries. */
|
|
/* XXX: Linux does this only on ARM with no MMU (do we care ?) */
|
|
regs->ARM_r10 = infop->start_data;
|
|
}
|
|
|
|
typedef uint32_t target_elf_greg_t;
|
|
typedef uint16_t target_uid_t;
|
|
typedef uint16_t target_gid_t;
|
|
typedef int32_t target_pid_t;
|
|
|
|
#define ELF_NREG 18
|
|
typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
|
|
static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
|
|
{
|
|
(*regs)[0] = env->regs[0];
|
|
(*regs)[1] = env->regs[1];
|
|
(*regs)[2] = env->regs[2];
|
|
(*regs)[3] = env->regs[3];
|
|
(*regs)[4] = env->regs[4];
|
|
(*regs)[5] = env->regs[5];
|
|
(*regs)[6] = env->regs[6];
|
|
(*regs)[7] = env->regs[7];
|
|
(*regs)[8] = env->regs[8];
|
|
(*regs)[9] = env->regs[9];
|
|
(*regs)[10] = env->regs[10];
|
|
(*regs)[11] = env->regs[11];
|
|
(*regs)[12] = env->regs[12];
|
|
(*regs)[13] = env->regs[13];
|
|
(*regs)[14] = env->regs[14];
|
|
(*regs)[15] = env->regs[15];
|
|
|
|
(*regs)[16] = cpsr_read((CPUState *)env);
|
|
(*regs)[17] = env->regs[0]; /* XXX */
|
|
}
|
|
|
|
#define USE_ELF_CORE_DUMP
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
enum
|
|
{
|
|
ARM_HWCAP_ARM_SWP = 1 << 0,
|
|
ARM_HWCAP_ARM_HALF = 1 << 1,
|
|
ARM_HWCAP_ARM_THUMB = 1 << 2,
|
|
ARM_HWCAP_ARM_26BIT = 1 << 3,
|
|
ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
|
|
ARM_HWCAP_ARM_FPA = 1 << 5,
|
|
ARM_HWCAP_ARM_VFP = 1 << 6,
|
|
ARM_HWCAP_ARM_EDSP = 1 << 7,
|
|
ARM_HWCAP_ARM_JAVA = 1 << 8,
|
|
ARM_HWCAP_ARM_IWMMXT = 1 << 9,
|
|
ARM_HWCAP_ARM_THUMBEE = 1 << 10,
|
|
ARM_HWCAP_ARM_NEON = 1 << 11,
|
|
ARM_HWCAP_ARM_VFPv3 = 1 << 12,
|
|
ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
|
|
};
|
|
|
|
#define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
|
|
| ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
|
|
| ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
|
|
| ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_SPARC
|
|
#ifdef TARGET_SPARC64
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#ifndef TARGET_ABI32
|
|
#define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
|
|
#else
|
|
#define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
|
|
#endif
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#define ELF_ARCH EM_SPARCV9
|
|
|
|
#define STACK_BIAS 2047
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
#ifndef TARGET_ABI32
|
|
regs->tstate = 0;
|
|
#endif
|
|
regs->pc = infop->entry;
|
|
regs->npc = regs->pc + 4;
|
|
regs->y = 0;
|
|
#ifdef TARGET_ABI32
|
|
regs->u_regs[14] = infop->start_stack - 16 * 4;
|
|
#else
|
|
if (personality(infop->personality) == PER_LINUX32)
|
|
regs->u_regs[14] = infop->start_stack - 16 * 4;
|
|
else
|
|
regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
|
|
#endif
|
|
}
|
|
|
|
#else
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_SPARC )
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#define ELF_ARCH EM_SPARC
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->psr = 0;
|
|
regs->pc = infop->entry;
|
|
regs->npc = regs->pc + 4;
|
|
regs->y = 0;
|
|
regs->u_regs[14] = infop->start_stack - 16 * 4;
|
|
}
|
|
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef TARGET_PPC
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_PPC64 )
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
|
|
#else
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_PPC )
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#else
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#endif
|
|
#define ELF_ARCH EM_PPC
|
|
|
|
/* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
|
|
See arch/powerpc/include/asm/cputable.h. */
|
|
enum {
|
|
QEMU_PPC_FEATURE_32 = 0x80000000,
|
|
QEMU_PPC_FEATURE_64 = 0x40000000,
|
|
QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
|
|
QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
|
|
QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
|
|
QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
|
|
QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
|
|
QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
|
|
QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
|
|
QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
|
|
QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
|
|
QEMU_PPC_FEATURE_NO_TB = 0x00100000,
|
|
QEMU_PPC_FEATURE_POWER4 = 0x00080000,
|
|
QEMU_PPC_FEATURE_POWER5 = 0x00040000,
|
|
QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
|
|
QEMU_PPC_FEATURE_CELL = 0x00010000,
|
|
QEMU_PPC_FEATURE_BOOKE = 0x00008000,
|
|
QEMU_PPC_FEATURE_SMT = 0x00004000,
|
|
QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
|
|
QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
|
|
QEMU_PPC_FEATURE_PA6T = 0x00000800,
|
|
QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
|
|
QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
|
|
QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
|
|
QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
|
|
QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
|
|
|
|
QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
|
|
QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
|
|
};
|
|
|
|
#define ELF_HWCAP get_elf_hwcap()
|
|
|
|
static uint32_t get_elf_hwcap(void)
|
|
{
|
|
CPUState *e = thread_env;
|
|
uint32_t features = 0;
|
|
|
|
/* We don't have to be terribly complete here; the high points are
|
|
Altivec/FP/SPE support. Anything else is just a bonus. */
|
|
#define GET_FEATURE(flag, feature) \
|
|
do {if (e->insns_flags & flag) features |= feature; } while(0)
|
|
GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
|
|
GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
|
|
GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
|
|
GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
|
|
GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
|
|
GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
|
|
GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
|
|
GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
|
|
#undef GET_FEATURE
|
|
|
|
return features;
|
|
}
|
|
|
|
/*
|
|
* We need to put in some extra aux table entries to tell glibc what
|
|
* the cache block size is, so it can use the dcbz instruction safely.
|
|
*/
|
|
#define AT_DCACHEBSIZE 19
|
|
#define AT_ICACHEBSIZE 20
|
|
#define AT_UCACHEBSIZE 21
|
|
/* A special ignored type value for PPC, for glibc compatibility. */
|
|
#define AT_IGNOREPPC 22
|
|
/*
|
|
* The requirements here are:
|
|
* - keep the final alignment of sp (sp & 0xf)
|
|
* - make sure the 32-bit value at the first 16 byte aligned position of
|
|
* AUXV is greater than 16 for glibc compatibility.
|
|
* AT_IGNOREPPC is used for that.
|
|
* - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
|
|
* even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
|
|
*/
|
|
#define DLINFO_ARCH_ITEMS 5
|
|
#define ARCH_DLINFO \
|
|
do { \
|
|
NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
|
|
NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
|
|
NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
|
|
/* \
|
|
* Now handle glibc compatibility. \
|
|
*/ \
|
|
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
|
|
NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
|
|
} while (0)
|
|
|
|
static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
|
|
{
|
|
abi_ulong pos = infop->start_stack;
|
|
abi_ulong tmp;
|
|
#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
|
|
abi_ulong entry, toc;
|
|
#endif
|
|
|
|
_regs->gpr[1] = infop->start_stack;
|
|
#if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
|
|
entry = ldq_raw(infop->entry) + infop->load_addr;
|
|
toc = ldq_raw(infop->entry + 8) + infop->load_addr;
|
|
_regs->gpr[2] = toc;
|
|
infop->entry = entry;
|
|
#endif
|
|
_regs->nip = infop->entry;
|
|
/* Note that isn't exactly what regular kernel does
|
|
* but this is what the ABI wants and is needed to allow
|
|
* execution of PPC BSD programs.
|
|
*/
|
|
/* FIXME - what to for failure of get_user()? */
|
|
get_user_ual(_regs->gpr[3], pos);
|
|
pos += sizeof(abi_ulong);
|
|
_regs->gpr[4] = pos;
|
|
for (tmp = 1; tmp != 0; pos += sizeof(abi_ulong))
|
|
tmp = ldl(pos);
|
|
_regs->gpr[5] = pos;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_MIPS
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_MIPS )
|
|
|
|
#ifdef TARGET_MIPS64
|
|
#define ELF_CLASS ELFCLASS64
|
|
#else
|
|
#define ELF_CLASS ELFCLASS32
|
|
#endif
|
|
#ifdef TARGET_WORDS_BIGENDIAN
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#else
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#endif
|
|
#define ELF_ARCH EM_MIPS
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->cp0_status = 2 << CP0St_KSU;
|
|
regs->cp0_epc = infop->entry;
|
|
regs->regs[29] = infop->start_stack;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif /* TARGET_MIPS */
|
|
|
|
#ifdef TARGET_MICROBLAZE
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_XILINX_MICROBLAZE )
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#define ELF_ARCH EM_MIPS
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->r1 = infop->start_stack;
|
|
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif /* TARGET_MICROBLAZE */
|
|
|
|
#ifdef TARGET_SH4
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_SH )
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#define ELF_ARCH EM_SH
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
/* Check other registers XXXXX */
|
|
regs->pc = infop->entry;
|
|
regs->regs[15] = infop->start_stack;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 4096
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_CRIS
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_CRIS )
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2LSB
|
|
#define ELF_ARCH EM_CRIS
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->erp = infop->entry;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_M68K
|
|
|
|
#define ELF_START_MMAP 0x80000000
|
|
|
|
#define elf_check_arch(x) ( (x) == EM_68K )
|
|
|
|
#define ELF_CLASS ELFCLASS32
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#define ELF_ARCH EM_68K
|
|
|
|
/* ??? Does this need to do anything?
|
|
#define ELF_PLAT_INIT(_r) */
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->usp = infop->start_stack;
|
|
regs->sr = 0;
|
|
regs->pc = infop->entry;
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif
|
|
|
|
#ifdef TARGET_ALPHA
|
|
|
|
#define ELF_START_MMAP (0x30000000000ULL)
|
|
|
|
#define elf_check_arch(x) ( (x) == ELF_ARCH )
|
|
|
|
#define ELF_CLASS ELFCLASS64
|
|
#define ELF_DATA ELFDATA2MSB
|
|
#define ELF_ARCH EM_ALPHA
|
|
|
|
static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
regs->pc = infop->entry;
|
|
regs->ps = 8;
|
|
regs->usp = infop->start_stack;
|
|
regs->unique = infop->start_data; /* ? */
|
|
printf("Set unique value to " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n",
|
|
regs->unique, infop->start_data);
|
|
}
|
|
|
|
#define ELF_EXEC_PAGESIZE 8192
|
|
|
|
#endif /* TARGET_ALPHA */
|
|
|
|
#ifndef ELF_PLATFORM
|
|
#define ELF_PLATFORM (NULL)
|
|
#endif
|
|
|
|
#ifndef ELF_HWCAP
|
|
#define ELF_HWCAP 0
|
|
#endif
|
|
|
|
#ifdef TARGET_ABI32
|
|
#undef ELF_CLASS
|
|
#define ELF_CLASS ELFCLASS32
|
|
#undef bswaptls
|
|
#define bswaptls(ptr) bswap32s(ptr)
|
|
#endif
|
|
|
|
#include "elf.h"
|
|
|
|
struct exec
|
|
{
|
|
unsigned int a_info; /* Use macros N_MAGIC, etc for access */
|
|
unsigned int a_text; /* length of text, in bytes */
|
|
unsigned int a_data; /* length of data, in bytes */
|
|
unsigned int a_bss; /* length of uninitialized data area, in bytes */
|
|
unsigned int a_syms; /* length of symbol table data in file, in bytes */
|
|
unsigned int a_entry; /* start address */
|
|
unsigned int a_trsize; /* length of relocation info for text, in bytes */
|
|
unsigned int a_drsize; /* length of relocation info for data, in bytes */
|
|
};
|
|
|
|
|
|
#define N_MAGIC(exec) ((exec).a_info & 0xffff)
|
|
#define OMAGIC 0407
|
|
#define NMAGIC 0410
|
|
#define ZMAGIC 0413
|
|
#define QMAGIC 0314
|
|
|
|
/* max code+data+bss space allocated to elf interpreter */
|
|
#define INTERP_MAP_SIZE (32 * 1024 * 1024)
|
|
|
|
/* max code+data+bss+brk space allocated to ET_DYN executables */
|
|
#define ET_DYN_MAP_SIZE (128 * 1024 * 1024)
|
|
|
|
/* Necessary parameters */
|
|
#define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
|
|
#define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
|
|
#define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
|
|
|
|
#define INTERPRETER_NONE 0
|
|
#define INTERPRETER_AOUT 1
|
|
#define INTERPRETER_ELF 2
|
|
|
|
#define DLINFO_ITEMS 12
|
|
|
|
static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
|
|
{
|
|
memcpy(to, from, n);
|
|
}
|
|
|
|
static int load_aout_interp(void * exptr, int interp_fd);
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
static void bswap_ehdr(struct elfhdr *ehdr)
|
|
{
|
|
bswap16s(&ehdr->e_type); /* Object file type */
|
|
bswap16s(&ehdr->e_machine); /* Architecture */
|
|
bswap32s(&ehdr->e_version); /* Object file version */
|
|
bswaptls(&ehdr->e_entry); /* Entry point virtual address */
|
|
bswaptls(&ehdr->e_phoff); /* Program header table file offset */
|
|
bswaptls(&ehdr->e_shoff); /* Section header table file offset */
|
|
bswap32s(&ehdr->e_flags); /* Processor-specific flags */
|
|
bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
|
|
bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
|
|
bswap16s(&ehdr->e_phnum); /* Program header table entry count */
|
|
bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
|
|
bswap16s(&ehdr->e_shnum); /* Section header table entry count */
|
|
bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
|
|
}
|
|
|
|
static void bswap_phdr(struct elf_phdr *phdr)
|
|
{
|
|
bswap32s(&phdr->p_type); /* Segment type */
|
|
bswaptls(&phdr->p_offset); /* Segment file offset */
|
|
bswaptls(&phdr->p_vaddr); /* Segment virtual address */
|
|
bswaptls(&phdr->p_paddr); /* Segment physical address */
|
|
bswaptls(&phdr->p_filesz); /* Segment size in file */
|
|
bswaptls(&phdr->p_memsz); /* Segment size in memory */
|
|
bswap32s(&phdr->p_flags); /* Segment flags */
|
|
bswaptls(&phdr->p_align); /* Segment alignment */
|
|
}
|
|
|
|
static void bswap_shdr(struct elf_shdr *shdr)
|
|
{
|
|
bswap32s(&shdr->sh_name);
|
|
bswap32s(&shdr->sh_type);
|
|
bswaptls(&shdr->sh_flags);
|
|
bswaptls(&shdr->sh_addr);
|
|
bswaptls(&shdr->sh_offset);
|
|
bswaptls(&shdr->sh_size);
|
|
bswap32s(&shdr->sh_link);
|
|
bswap32s(&shdr->sh_info);
|
|
bswaptls(&shdr->sh_addralign);
|
|
bswaptls(&shdr->sh_entsize);
|
|
}
|
|
|
|
static void bswap_sym(struct elf_sym *sym)
|
|
{
|
|
bswap32s(&sym->st_name);
|
|
bswaptls(&sym->st_value);
|
|
bswaptls(&sym->st_size);
|
|
bswap16s(&sym->st_shndx);
|
|
}
|
|
#endif
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
static int elf_core_dump(int, const CPUState *);
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
static void bswap_note(struct elf_note *en)
|
|
{
|
|
bswap32s(&en->n_namesz);
|
|
bswap32s(&en->n_descsz);
|
|
bswap32s(&en->n_type);
|
|
}
|
|
#endif /* BSWAP_NEEDED */
|
|
|
|
#endif /* USE_ELF_CORE_DUMP */
|
|
|
|
/*
|
|
* 'copy_elf_strings()' copies argument/envelope strings from user
|
|
* memory to free pages in kernel mem. These are in a format ready
|
|
* to be put directly into the top of new user memory.
|
|
*
|
|
*/
|
|
static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
|
|
abi_ulong p)
|
|
{
|
|
char *tmp, *tmp1, *pag = NULL;
|
|
int len, offset = 0;
|
|
|
|
if (!p) {
|
|
return 0; /* bullet-proofing */
|
|
}
|
|
while (argc-- > 0) {
|
|
tmp = argv[argc];
|
|
if (!tmp) {
|
|
fprintf(stderr, "VFS: argc is wrong");
|
|
exit(-1);
|
|
}
|
|
tmp1 = tmp;
|
|
while (*tmp++);
|
|
len = tmp - tmp1;
|
|
if (p < len) { /* this shouldn't happen - 128kB */
|
|
return 0;
|
|
}
|
|
while (len) {
|
|
--p; --tmp; --len;
|
|
if (--offset < 0) {
|
|
offset = p % TARGET_PAGE_SIZE;
|
|
pag = (char *)page[p/TARGET_PAGE_SIZE];
|
|
if (!pag) {
|
|
pag = (char *)malloc(TARGET_PAGE_SIZE);
|
|
memset(pag, 0, TARGET_PAGE_SIZE);
|
|
page[p/TARGET_PAGE_SIZE] = pag;
|
|
if (!pag)
|
|
return 0;
|
|
}
|
|
}
|
|
if (len == 0 || offset == 0) {
|
|
*(pag + offset) = *tmp;
|
|
}
|
|
else {
|
|
int bytes_to_copy = (len > offset) ? offset : len;
|
|
tmp -= bytes_to_copy;
|
|
p -= bytes_to_copy;
|
|
offset -= bytes_to_copy;
|
|
len -= bytes_to_copy;
|
|
memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
|
|
}
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
|
|
struct image_info *info)
|
|
{
|
|
abi_ulong stack_base, size, error;
|
|
int i;
|
|
|
|
/* Create enough stack to hold everything. If we don't use
|
|
* it for args, we'll use it for something else...
|
|
*/
|
|
size = x86_stack_size;
|
|
if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE)
|
|
size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
|
|
error = target_mmap(0,
|
|
size + qemu_host_page_size,
|
|
PROT_READ | PROT_WRITE,
|
|
MAP_PRIVATE | MAP_ANONYMOUS,
|
|
-1, 0);
|
|
if (error == -1) {
|
|
perror("stk mmap");
|
|
exit(-1);
|
|
}
|
|
/* we reserve one extra page at the top of the stack as guard */
|
|
target_mprotect(error + size, qemu_host_page_size, PROT_NONE);
|
|
|
|
stack_base = error + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
|
|
p += stack_base;
|
|
|
|
for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
|
|
if (bprm->page[i]) {
|
|
info->rss++;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
|
|
free(bprm->page[i]);
|
|
}
|
|
stack_base += TARGET_PAGE_SIZE;
|
|
}
|
|
return p;
|
|
}
|
|
|
|
static void set_brk(abi_ulong start, abi_ulong end)
|
|
{
|
|
/* page-align the start and end addresses... */
|
|
start = HOST_PAGE_ALIGN(start);
|
|
end = HOST_PAGE_ALIGN(end);
|
|
if (end <= start)
|
|
return;
|
|
if(target_mmap(start, end - start,
|
|
PROT_READ | PROT_WRITE | PROT_EXEC,
|
|
MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0) == -1) {
|
|
perror("cannot mmap brk");
|
|
exit(-1);
|
|
}
|
|
}
|
|
|
|
|
|
/* We need to explicitly zero any fractional pages after the data
|
|
section (i.e. bss). This would contain the junk from the file that
|
|
should not be in memory. */
|
|
static void padzero(abi_ulong elf_bss, abi_ulong last_bss)
|
|
{
|
|
abi_ulong nbyte;
|
|
|
|
if (elf_bss >= last_bss)
|
|
return;
|
|
|
|
/* XXX: this is really a hack : if the real host page size is
|
|
smaller than the target page size, some pages after the end
|
|
of the file may not be mapped. A better fix would be to
|
|
patch target_mmap(), but it is more complicated as the file
|
|
size must be known */
|
|
if (qemu_real_host_page_size < qemu_host_page_size) {
|
|
abi_ulong end_addr, end_addr1;
|
|
end_addr1 = (elf_bss + qemu_real_host_page_size - 1) &
|
|
~(qemu_real_host_page_size - 1);
|
|
end_addr = HOST_PAGE_ALIGN(elf_bss);
|
|
if (end_addr1 < end_addr) {
|
|
mmap((void *)g2h(end_addr1), end_addr - end_addr1,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
}
|
|
}
|
|
|
|
nbyte = elf_bss & (qemu_host_page_size-1);
|
|
if (nbyte) {
|
|
nbyte = qemu_host_page_size - nbyte;
|
|
do {
|
|
/* FIXME - what to do if put_user() fails? */
|
|
put_user_u8(0, elf_bss);
|
|
elf_bss++;
|
|
} while (--nbyte);
|
|
}
|
|
}
|
|
|
|
|
|
static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
|
|
struct elfhdr * exec,
|
|
abi_ulong load_addr,
|
|
abi_ulong load_bias,
|
|
abi_ulong interp_load_addr, int ibcs,
|
|
struct image_info *info)
|
|
{
|
|
abi_ulong sp;
|
|
int size;
|
|
abi_ulong u_platform;
|
|
const char *k_platform;
|
|
const int n = sizeof(elf_addr_t);
|
|
|
|
sp = p;
|
|
u_platform = 0;
|
|
k_platform = ELF_PLATFORM;
|
|
if (k_platform) {
|
|
size_t len = strlen(k_platform) + 1;
|
|
sp -= (len + n - 1) & ~(n - 1);
|
|
u_platform = sp;
|
|
/* FIXME - check return value of memcpy_to_target() for failure */
|
|
memcpy_to_target(sp, k_platform, len);
|
|
}
|
|
/*
|
|
* Force 16 byte _final_ alignment here for generality.
|
|
*/
|
|
sp = sp &~ (abi_ulong)15;
|
|
size = (DLINFO_ITEMS + 1) * 2;
|
|
if (k_platform)
|
|
size += 2;
|
|
#ifdef DLINFO_ARCH_ITEMS
|
|
size += DLINFO_ARCH_ITEMS * 2;
|
|
#endif
|
|
size += envc + argc + 2;
|
|
size += (!ibcs ? 3 : 1); /* argc itself */
|
|
size *= n;
|
|
if (size & 15)
|
|
sp -= 16 - (size & 15);
|
|
|
|
/* This is correct because Linux defines
|
|
* elf_addr_t as Elf32_Off / Elf64_Off
|
|
*/
|
|
#define NEW_AUX_ENT(id, val) do { \
|
|
sp -= n; put_user_ual(val, sp); \
|
|
sp -= n; put_user_ual(id, sp); \
|
|
} while(0)
|
|
|
|
NEW_AUX_ENT (AT_NULL, 0);
|
|
|
|
/* There must be exactly DLINFO_ITEMS entries here. */
|
|
NEW_AUX_ENT(AT_PHDR, (abi_ulong)(load_addr + exec->e_phoff));
|
|
NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
|
|
NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
|
|
NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
|
|
NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_load_addr));
|
|
NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
|
|
NEW_AUX_ENT(AT_ENTRY, load_bias + exec->e_entry);
|
|
NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
|
|
NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
|
|
NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
|
|
NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
|
|
NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
|
|
NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
|
|
if (k_platform)
|
|
NEW_AUX_ENT(AT_PLATFORM, u_platform);
|
|
#ifdef ARCH_DLINFO
|
|
/*
|
|
* ARCH_DLINFO must come last so platform specific code can enforce
|
|
* special alignment requirements on the AUXV if necessary (eg. PPC).
|
|
*/
|
|
ARCH_DLINFO;
|
|
#endif
|
|
#undef NEW_AUX_ENT
|
|
|
|
info->saved_auxv = sp;
|
|
|
|
sp = loader_build_argptr(envc, argc, sp, p, !ibcs);
|
|
return sp;
|
|
}
|
|
|
|
|
|
static abi_ulong load_elf_interp(struct elfhdr * interp_elf_ex,
|
|
int interpreter_fd,
|
|
abi_ulong *interp_load_addr)
|
|
{
|
|
struct elf_phdr *elf_phdata = NULL;
|
|
struct elf_phdr *eppnt;
|
|
abi_ulong load_addr = 0;
|
|
int load_addr_set = 0;
|
|
int retval;
|
|
abi_ulong last_bss, elf_bss;
|
|
abi_ulong error;
|
|
int i;
|
|
|
|
elf_bss = 0;
|
|
last_bss = 0;
|
|
error = 0;
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_ehdr(interp_elf_ex);
|
|
#endif
|
|
/* First of all, some simple consistency checks */
|
|
if ((interp_elf_ex->e_type != ET_EXEC &&
|
|
interp_elf_ex->e_type != ET_DYN) ||
|
|
!elf_check_arch(interp_elf_ex->e_machine)) {
|
|
return ~((abi_ulong)0UL);
|
|
}
|
|
|
|
|
|
/* Now read in all of the header information */
|
|
|
|
if (sizeof(struct elf_phdr) * interp_elf_ex->e_phnum > TARGET_PAGE_SIZE)
|
|
return ~(abi_ulong)0UL;
|
|
|
|
elf_phdata = (struct elf_phdr *)
|
|
malloc(sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
|
|
|
|
if (!elf_phdata)
|
|
return ~((abi_ulong)0UL);
|
|
|
|
/*
|
|
* If the size of this structure has changed, then punt, since
|
|
* we will be doing the wrong thing.
|
|
*/
|
|
if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) {
|
|
free(elf_phdata);
|
|
return ~((abi_ulong)0UL);
|
|
}
|
|
|
|
retval = lseek(interpreter_fd, interp_elf_ex->e_phoff, SEEK_SET);
|
|
if(retval >= 0) {
|
|
retval = read(interpreter_fd,
|
|
(char *) elf_phdata,
|
|
sizeof(struct elf_phdr) * interp_elf_ex->e_phnum);
|
|
}
|
|
if (retval < 0) {
|
|
perror("load_elf_interp");
|
|
exit(-1);
|
|
free (elf_phdata);
|
|
return retval;
|
|
}
|
|
#ifdef BSWAP_NEEDED
|
|
eppnt = elf_phdata;
|
|
for (i=0; i<interp_elf_ex->e_phnum; i++, eppnt++) {
|
|
bswap_phdr(eppnt);
|
|
}
|
|
#endif
|
|
|
|
if (interp_elf_ex->e_type == ET_DYN) {
|
|
/* in order to avoid hardcoding the interpreter load
|
|
address in qemu, we allocate a big enough memory zone */
|
|
error = target_mmap(0, INTERP_MAP_SIZE,
|
|
PROT_NONE, MAP_PRIVATE | MAP_ANON,
|
|
-1, 0);
|
|
if (error == -1) {
|
|
perror("mmap");
|
|
exit(-1);
|
|
}
|
|
load_addr = error;
|
|
load_addr_set = 1;
|
|
}
|
|
|
|
eppnt = elf_phdata;
|
|
for(i=0; i<interp_elf_ex->e_phnum; i++, eppnt++)
|
|
if (eppnt->p_type == PT_LOAD) {
|
|
int elf_type = MAP_PRIVATE | MAP_DENYWRITE;
|
|
int elf_prot = 0;
|
|
abi_ulong vaddr = 0;
|
|
abi_ulong k;
|
|
|
|
if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
|
|
if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
|
|
if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
|
|
if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) {
|
|
elf_type |= MAP_FIXED;
|
|
vaddr = eppnt->p_vaddr;
|
|
}
|
|
error = target_mmap(load_addr+TARGET_ELF_PAGESTART(vaddr),
|
|
eppnt->p_filesz + TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr),
|
|
elf_prot,
|
|
elf_type,
|
|
interpreter_fd,
|
|
eppnt->p_offset - TARGET_ELF_PAGEOFFSET(eppnt->p_vaddr));
|
|
|
|
if (error == -1) {
|
|
/* Real error */
|
|
close(interpreter_fd);
|
|
free(elf_phdata);
|
|
return ~((abi_ulong)0UL);
|
|
}
|
|
|
|
if (!load_addr_set && interp_elf_ex->e_type == ET_DYN) {
|
|
load_addr = error;
|
|
load_addr_set = 1;
|
|
}
|
|
|
|
/*
|
|
* Find the end of the file mapping for this phdr, and keep
|
|
* track of the largest address we see for this.
|
|
*/
|
|
k = load_addr + eppnt->p_vaddr + eppnt->p_filesz;
|
|
if (k > elf_bss) elf_bss = k;
|
|
|
|
/*
|
|
* Do the same thing for the memory mapping - between
|
|
* elf_bss and last_bss is the bss section.
|
|
*/
|
|
k = load_addr + eppnt->p_memsz + eppnt->p_vaddr;
|
|
if (k > last_bss) last_bss = k;
|
|
}
|
|
|
|
/* Now use mmap to map the library into memory. */
|
|
|
|
close(interpreter_fd);
|
|
|
|
/*
|
|
* Now fill out the bss section. First pad the last page up
|
|
* to the page boundary, and then perform a mmap to make sure
|
|
* that there are zeromapped pages up to and including the last
|
|
* bss page.
|
|
*/
|
|
padzero(elf_bss, last_bss);
|
|
elf_bss = TARGET_ELF_PAGESTART(elf_bss + qemu_host_page_size - 1); /* What we have mapped so far */
|
|
|
|
/* Map the last of the bss segment */
|
|
if (last_bss > elf_bss) {
|
|
target_mmap(elf_bss, last_bss-elf_bss,
|
|
PROT_READ|PROT_WRITE|PROT_EXEC,
|
|
MAP_FIXED|MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
|
|
}
|
|
free(elf_phdata);
|
|
|
|
*interp_load_addr = load_addr;
|
|
return ((abi_ulong) interp_elf_ex->e_entry) + load_addr;
|
|
}
|
|
|
|
static int symfind(const void *s0, const void *s1)
|
|
{
|
|
struct elf_sym *key = (struct elf_sym *)s0;
|
|
struct elf_sym *sym = (struct elf_sym *)s1;
|
|
int result = 0;
|
|
if (key->st_value < sym->st_value) {
|
|
result = -1;
|
|
} else if (key->st_value >= sym->st_value + sym->st_size) {
|
|
result = 1;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
|
|
{
|
|
#if ELF_CLASS == ELFCLASS32
|
|
struct elf_sym *syms = s->disas_symtab.elf32;
|
|
#else
|
|
struct elf_sym *syms = s->disas_symtab.elf64;
|
|
#endif
|
|
|
|
// binary search
|
|
struct elf_sym key;
|
|
struct elf_sym *sym;
|
|
|
|
key.st_value = orig_addr;
|
|
|
|
sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
|
|
if (sym != NULL) {
|
|
return s->disas_strtab + sym->st_name;
|
|
}
|
|
|
|
return "";
|
|
}
|
|
|
|
/* FIXME: This should use elf_ops.h */
|
|
static int symcmp(const void *s0, const void *s1)
|
|
{
|
|
struct elf_sym *sym0 = (struct elf_sym *)s0;
|
|
struct elf_sym *sym1 = (struct elf_sym *)s1;
|
|
return (sym0->st_value < sym1->st_value)
|
|
? -1
|
|
: ((sym0->st_value > sym1->st_value) ? 1 : 0);
|
|
}
|
|
|
|
/* Best attempt to load symbols from this ELF object. */
|
|
static void load_symbols(struct elfhdr *hdr, int fd)
|
|
{
|
|
unsigned int i, nsyms;
|
|
struct elf_shdr sechdr, symtab, strtab;
|
|
char *strings;
|
|
struct syminfo *s;
|
|
struct elf_sym *syms;
|
|
|
|
lseek(fd, hdr->e_shoff, SEEK_SET);
|
|
for (i = 0; i < hdr->e_shnum; i++) {
|
|
if (read(fd, &sechdr, sizeof(sechdr)) != sizeof(sechdr))
|
|
return;
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_shdr(&sechdr);
|
|
#endif
|
|
if (sechdr.sh_type == SHT_SYMTAB) {
|
|
symtab = sechdr;
|
|
lseek(fd, hdr->e_shoff
|
|
+ sizeof(sechdr) * sechdr.sh_link, SEEK_SET);
|
|
if (read(fd, &strtab, sizeof(strtab))
|
|
!= sizeof(strtab))
|
|
return;
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_shdr(&strtab);
|
|
#endif
|
|
goto found;
|
|
}
|
|
}
|
|
return; /* Shouldn't happen... */
|
|
|
|
found:
|
|
/* Now know where the strtab and symtab are. Snarf them. */
|
|
s = malloc(sizeof(*s));
|
|
syms = malloc(symtab.sh_size);
|
|
if (!syms)
|
|
return;
|
|
s->disas_strtab = strings = malloc(strtab.sh_size);
|
|
if (!s->disas_strtab)
|
|
return;
|
|
|
|
lseek(fd, symtab.sh_offset, SEEK_SET);
|
|
if (read(fd, syms, symtab.sh_size) != symtab.sh_size)
|
|
return;
|
|
|
|
nsyms = symtab.sh_size / sizeof(struct elf_sym);
|
|
|
|
i = 0;
|
|
while (i < nsyms) {
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_sym(syms + i);
|
|
#endif
|
|
// Throw away entries which we do not need.
|
|
if (syms[i].st_shndx == SHN_UNDEF ||
|
|
syms[i].st_shndx >= SHN_LORESERVE ||
|
|
ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
|
|
nsyms--;
|
|
if (i < nsyms) {
|
|
syms[i] = syms[nsyms];
|
|
}
|
|
continue;
|
|
}
|
|
#if defined(TARGET_ARM) || defined (TARGET_MIPS)
|
|
/* The bottom address bit marks a Thumb or MIPS16 symbol. */
|
|
syms[i].st_value &= ~(target_ulong)1;
|
|
#endif
|
|
i++;
|
|
}
|
|
syms = realloc(syms, nsyms * sizeof(*syms));
|
|
|
|
qsort(syms, nsyms, sizeof(*syms), symcmp);
|
|
|
|
lseek(fd, strtab.sh_offset, SEEK_SET);
|
|
if (read(fd, strings, strtab.sh_size) != strtab.sh_size)
|
|
return;
|
|
s->disas_num_syms = nsyms;
|
|
#if ELF_CLASS == ELFCLASS32
|
|
s->disas_symtab.elf32 = syms;
|
|
s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
|
|
#else
|
|
s->disas_symtab.elf64 = syms;
|
|
s->lookup_symbol = (lookup_symbol_t)lookup_symbolxx;
|
|
#endif
|
|
s->next = syminfos;
|
|
syminfos = s;
|
|
}
|
|
|
|
int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
|
|
struct image_info * info)
|
|
{
|
|
struct elfhdr elf_ex;
|
|
struct elfhdr interp_elf_ex;
|
|
struct exec interp_ex;
|
|
int interpreter_fd = -1; /* avoid warning */
|
|
abi_ulong load_addr, load_bias;
|
|
int load_addr_set = 0;
|
|
unsigned int interpreter_type = INTERPRETER_NONE;
|
|
unsigned char ibcs2_interpreter;
|
|
int i;
|
|
abi_ulong mapped_addr;
|
|
struct elf_phdr * elf_ppnt;
|
|
struct elf_phdr *elf_phdata;
|
|
abi_ulong elf_bss, k, elf_brk;
|
|
int retval;
|
|
char * elf_interpreter;
|
|
abi_ulong elf_entry, interp_load_addr = 0;
|
|
int status;
|
|
abi_ulong start_code, end_code, start_data, end_data;
|
|
abi_ulong reloc_func_desc = 0;
|
|
abi_ulong elf_stack;
|
|
char passed_fileno[6];
|
|
|
|
ibcs2_interpreter = 0;
|
|
status = 0;
|
|
load_addr = 0;
|
|
load_bias = 0;
|
|
elf_ex = *((struct elfhdr *) bprm->buf); /* exec-header */
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_ehdr(&elf_ex);
|
|
#endif
|
|
|
|
/* First of all, some simple consistency checks */
|
|
if ((elf_ex.e_type != ET_EXEC && elf_ex.e_type != ET_DYN) ||
|
|
(! elf_check_arch(elf_ex.e_machine))) {
|
|
return -ENOEXEC;
|
|
}
|
|
|
|
bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
|
|
bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
|
|
bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
|
|
if (!bprm->p) {
|
|
retval = -E2BIG;
|
|
}
|
|
|
|
/* Now read in all of the header information */
|
|
elf_phdata = (struct elf_phdr *)malloc(elf_ex.e_phentsize*elf_ex.e_phnum);
|
|
if (elf_phdata == NULL) {
|
|
return -ENOMEM;
|
|
}
|
|
|
|
retval = lseek(bprm->fd, elf_ex.e_phoff, SEEK_SET);
|
|
if(retval > 0) {
|
|
retval = read(bprm->fd, (char *) elf_phdata,
|
|
elf_ex.e_phentsize * elf_ex.e_phnum);
|
|
}
|
|
|
|
if (retval < 0) {
|
|
perror("load_elf_binary");
|
|
exit(-1);
|
|
free (elf_phdata);
|
|
return -errno;
|
|
}
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
elf_ppnt = elf_phdata;
|
|
for (i=0; i<elf_ex.e_phnum; i++, elf_ppnt++) {
|
|
bswap_phdr(elf_ppnt);
|
|
}
|
|
#endif
|
|
elf_ppnt = elf_phdata;
|
|
|
|
elf_bss = 0;
|
|
elf_brk = 0;
|
|
|
|
|
|
elf_stack = ~((abi_ulong)0UL);
|
|
elf_interpreter = NULL;
|
|
start_code = ~((abi_ulong)0UL);
|
|
end_code = 0;
|
|
start_data = 0;
|
|
end_data = 0;
|
|
interp_ex.a_info = 0;
|
|
|
|
for(i=0;i < elf_ex.e_phnum; i++) {
|
|
if (elf_ppnt->p_type == PT_INTERP) {
|
|
if ( elf_interpreter != NULL )
|
|
{
|
|
free (elf_phdata);
|
|
free(elf_interpreter);
|
|
close(bprm->fd);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* This is the program interpreter used for
|
|
* shared libraries - for now assume that this
|
|
* is an a.out format binary
|
|
*/
|
|
|
|
elf_interpreter = (char *)malloc(elf_ppnt->p_filesz);
|
|
|
|
if (elf_interpreter == NULL) {
|
|
free (elf_phdata);
|
|
close(bprm->fd);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
retval = lseek(bprm->fd, elf_ppnt->p_offset, SEEK_SET);
|
|
if(retval >= 0) {
|
|
retval = read(bprm->fd, elf_interpreter, elf_ppnt->p_filesz);
|
|
}
|
|
if(retval < 0) {
|
|
perror("load_elf_binary2");
|
|
exit(-1);
|
|
}
|
|
|
|
/* If the program interpreter is one of these two,
|
|
then assume an iBCS2 image. Otherwise assume
|
|
a native linux image. */
|
|
|
|
/* JRP - Need to add X86 lib dir stuff here... */
|
|
|
|
if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 ||
|
|
strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) {
|
|
ibcs2_interpreter = 1;
|
|
}
|
|
|
|
#if 0
|
|
printf("Using ELF interpreter %s\n", path(elf_interpreter));
|
|
#endif
|
|
if (retval >= 0) {
|
|
retval = open(path(elf_interpreter), O_RDONLY);
|
|
if(retval >= 0) {
|
|
interpreter_fd = retval;
|
|
}
|
|
else {
|
|
perror(elf_interpreter);
|
|
exit(-1);
|
|
/* retval = -errno; */
|
|
}
|
|
}
|
|
|
|
if (retval >= 0) {
|
|
retval = lseek(interpreter_fd, 0, SEEK_SET);
|
|
if(retval >= 0) {
|
|
retval = read(interpreter_fd,bprm->buf,128);
|
|
}
|
|
}
|
|
if (retval >= 0) {
|
|
interp_ex = *((struct exec *) bprm->buf); /* aout exec-header */
|
|
interp_elf_ex = *((struct elfhdr *) bprm->buf); /* elf exec-header */
|
|
}
|
|
if (retval < 0) {
|
|
perror("load_elf_binary3");
|
|
exit(-1);
|
|
free (elf_phdata);
|
|
free(elf_interpreter);
|
|
close(bprm->fd);
|
|
return retval;
|
|
}
|
|
}
|
|
elf_ppnt++;
|
|
}
|
|
|
|
/* Some simple consistency checks for the interpreter */
|
|
if (elf_interpreter){
|
|
interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT;
|
|
|
|
/* Now figure out which format our binary is */
|
|
if ((N_MAGIC(interp_ex) != OMAGIC) && (N_MAGIC(interp_ex) != ZMAGIC) &&
|
|
(N_MAGIC(interp_ex) != QMAGIC)) {
|
|
interpreter_type = INTERPRETER_ELF;
|
|
}
|
|
|
|
if (interp_elf_ex.e_ident[0] != 0x7f ||
|
|
strncmp((char *)&interp_elf_ex.e_ident[1], "ELF",3) != 0) {
|
|
interpreter_type &= ~INTERPRETER_ELF;
|
|
}
|
|
|
|
if (!interpreter_type) {
|
|
free(elf_interpreter);
|
|
free(elf_phdata);
|
|
close(bprm->fd);
|
|
return -ELIBBAD;
|
|
}
|
|
}
|
|
|
|
/* OK, we are done with that, now set up the arg stuff,
|
|
and then start this sucker up */
|
|
|
|
{
|
|
char * passed_p;
|
|
|
|
if (interpreter_type == INTERPRETER_AOUT) {
|
|
snprintf(passed_fileno, sizeof(passed_fileno), "%d", bprm->fd);
|
|
passed_p = passed_fileno;
|
|
|
|
if (elf_interpreter) {
|
|
bprm->p = copy_elf_strings(1,&passed_p,bprm->page,bprm->p);
|
|
bprm->argc++;
|
|
}
|
|
}
|
|
if (!bprm->p) {
|
|
if (elf_interpreter) {
|
|
free(elf_interpreter);
|
|
}
|
|
free (elf_phdata);
|
|
close(bprm->fd);
|
|
return -E2BIG;
|
|
}
|
|
}
|
|
|
|
/* OK, This is the point of no return */
|
|
info->end_data = 0;
|
|
info->end_code = 0;
|
|
info->start_mmap = (abi_ulong)ELF_START_MMAP;
|
|
info->mmap = 0;
|
|
elf_entry = (abi_ulong) elf_ex.e_entry;
|
|
|
|
#if defined(CONFIG_USE_GUEST_BASE)
|
|
/*
|
|
* In case where user has not explicitly set the guest_base, we
|
|
* probe here that should we set it automatically.
|
|
*/
|
|
if (!have_guest_base) {
|
|
/*
|
|
* Go through ELF program header table and find out whether
|
|
* any of the segments drop below our current mmap_min_addr and
|
|
* in that case set guest_base to corresponding address.
|
|
*/
|
|
for (i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum;
|
|
i++, elf_ppnt++) {
|
|
if (elf_ppnt->p_type != PT_LOAD)
|
|
continue;
|
|
if (HOST_PAGE_ALIGN(elf_ppnt->p_vaddr) < mmap_min_addr) {
|
|
guest_base = HOST_PAGE_ALIGN(mmap_min_addr);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
#endif /* CONFIG_USE_GUEST_BASE */
|
|
|
|
/* Do this so that we can load the interpreter, if need be. We will
|
|
change some of these later */
|
|
info->rss = 0;
|
|
bprm->p = setup_arg_pages(bprm->p, bprm, info);
|
|
info->start_stack = bprm->p;
|
|
|
|
/* Now we do a little grungy work by mmaping the ELF image into
|
|
* the correct location in memory. At this point, we assume that
|
|
* the image should be loaded at fixed address, not at a variable
|
|
* address.
|
|
*/
|
|
|
|
for(i = 0, elf_ppnt = elf_phdata; i < elf_ex.e_phnum; i++, elf_ppnt++) {
|
|
int elf_prot = 0;
|
|
int elf_flags = 0;
|
|
abi_ulong error;
|
|
|
|
if (elf_ppnt->p_type != PT_LOAD)
|
|
continue;
|
|
|
|
if (elf_ppnt->p_flags & PF_R) elf_prot |= PROT_READ;
|
|
if (elf_ppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
|
|
if (elf_ppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
|
|
elf_flags = MAP_PRIVATE | MAP_DENYWRITE;
|
|
if (elf_ex.e_type == ET_EXEC || load_addr_set) {
|
|
elf_flags |= MAP_FIXED;
|
|
} else if (elf_ex.e_type == ET_DYN) {
|
|
/* Try and get dynamic programs out of the way of the default mmap
|
|
base, as well as whatever program they might try to exec. This
|
|
is because the brk will follow the loader, and is not movable. */
|
|
/* NOTE: for qemu, we do a big mmap to get enough space
|
|
without hardcoding any address */
|
|
error = target_mmap(0, ET_DYN_MAP_SIZE,
|
|
PROT_NONE, MAP_PRIVATE | MAP_ANON,
|
|
-1, 0);
|
|
if (error == -1) {
|
|
perror("mmap");
|
|
exit(-1);
|
|
}
|
|
load_bias = TARGET_ELF_PAGESTART(error - elf_ppnt->p_vaddr);
|
|
}
|
|
|
|
error = target_mmap(TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr),
|
|
(elf_ppnt->p_filesz +
|
|
TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)),
|
|
elf_prot,
|
|
(MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE),
|
|
bprm->fd,
|
|
(elf_ppnt->p_offset -
|
|
TARGET_ELF_PAGEOFFSET(elf_ppnt->p_vaddr)));
|
|
if (error == -1) {
|
|
perror("mmap");
|
|
exit(-1);
|
|
}
|
|
|
|
#ifdef LOW_ELF_STACK
|
|
if (TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr) < elf_stack)
|
|
elf_stack = TARGET_ELF_PAGESTART(elf_ppnt->p_vaddr);
|
|
#endif
|
|
|
|
if (!load_addr_set) {
|
|
load_addr_set = 1;
|
|
load_addr = elf_ppnt->p_vaddr - elf_ppnt->p_offset;
|
|
if (elf_ex.e_type == ET_DYN) {
|
|
load_bias += error -
|
|
TARGET_ELF_PAGESTART(load_bias + elf_ppnt->p_vaddr);
|
|
load_addr += load_bias;
|
|
reloc_func_desc = load_bias;
|
|
}
|
|
}
|
|
k = elf_ppnt->p_vaddr;
|
|
if (k < start_code)
|
|
start_code = k;
|
|
if (start_data < k)
|
|
start_data = k;
|
|
k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz;
|
|
if (k > elf_bss)
|
|
elf_bss = k;
|
|
if ((elf_ppnt->p_flags & PF_X) && end_code < k)
|
|
end_code = k;
|
|
if (end_data < k)
|
|
end_data = k;
|
|
k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz;
|
|
if (k > elf_brk) elf_brk = k;
|
|
}
|
|
|
|
elf_entry += load_bias;
|
|
elf_bss += load_bias;
|
|
elf_brk += load_bias;
|
|
start_code += load_bias;
|
|
end_code += load_bias;
|
|
start_data += load_bias;
|
|
end_data += load_bias;
|
|
|
|
if (elf_interpreter) {
|
|
if (interpreter_type & 1) {
|
|
elf_entry = load_aout_interp(&interp_ex, interpreter_fd);
|
|
}
|
|
else if (interpreter_type & 2) {
|
|
elf_entry = load_elf_interp(&interp_elf_ex, interpreter_fd,
|
|
&interp_load_addr);
|
|
}
|
|
reloc_func_desc = interp_load_addr;
|
|
|
|
close(interpreter_fd);
|
|
free(elf_interpreter);
|
|
|
|
if (elf_entry == ~((abi_ulong)0UL)) {
|
|
printf("Unable to load interpreter\n");
|
|
free(elf_phdata);
|
|
exit(-1);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
free(elf_phdata);
|
|
|
|
if (qemu_log_enabled())
|
|
load_symbols(&elf_ex, bprm->fd);
|
|
|
|
if (interpreter_type != INTERPRETER_AOUT) close(bprm->fd);
|
|
info->personality = (ibcs2_interpreter ? PER_SVR4 : PER_LINUX);
|
|
|
|
#ifdef LOW_ELF_STACK
|
|
info->start_stack = bprm->p = elf_stack - 4;
|
|
#endif
|
|
bprm->p = create_elf_tables(bprm->p,
|
|
bprm->argc,
|
|
bprm->envc,
|
|
&elf_ex,
|
|
load_addr, load_bias,
|
|
interp_load_addr,
|
|
(interpreter_type == INTERPRETER_AOUT ? 0 : 1),
|
|
info);
|
|
info->load_addr = reloc_func_desc;
|
|
info->start_brk = info->brk = elf_brk;
|
|
info->end_code = end_code;
|
|
info->start_code = start_code;
|
|
info->start_data = start_data;
|
|
info->end_data = end_data;
|
|
info->start_stack = bprm->p;
|
|
|
|
/* Calling set_brk effectively mmaps the pages that we need for the bss and break
|
|
sections */
|
|
set_brk(elf_bss, elf_brk);
|
|
|
|
padzero(elf_bss, elf_brk);
|
|
|
|
#if 0
|
|
printf("(start_brk) %x\n" , info->start_brk);
|
|
printf("(end_code) %x\n" , info->end_code);
|
|
printf("(start_code) %x\n" , info->start_code);
|
|
printf("(end_data) %x\n" , info->end_data);
|
|
printf("(start_stack) %x\n" , info->start_stack);
|
|
printf("(brk) %x\n" , info->brk);
|
|
#endif
|
|
|
|
if ( info->personality == PER_SVR4 )
|
|
{
|
|
/* Why this, you ask??? Well SVr4 maps page 0 as read-only,
|
|
and some applications "depend" upon this behavior.
|
|
Since we do not have the power to recompile these, we
|
|
emulate the SVr4 behavior. Sigh. */
|
|
mapped_addr = target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
|
|
MAP_FIXED | MAP_PRIVATE, -1, 0);
|
|
}
|
|
|
|
info->entry = elf_entry;
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
bprm->core_dump = &elf_core_dump;
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef USE_ELF_CORE_DUMP
|
|
|
|
/*
|
|
* Definitions to generate Intel SVR4-like core files.
|
|
* These mostly have the same names as the SVR4 types with "target_elf_"
|
|
* tacked on the front to prevent clashes with linux definitions,
|
|
* and the typedef forms have been avoided. This is mostly like
|
|
* the SVR4 structure, but more Linuxy, with things that Linux does
|
|
* not support and which gdb doesn't really use excluded.
|
|
*
|
|
* Fields we don't dump (their contents is zero) in linux-user qemu
|
|
* are marked with XXX.
|
|
*
|
|
* Core dump code is copied from linux kernel (fs/binfmt_elf.c).
|
|
*
|
|
* Porting ELF coredump for target is (quite) simple process. First you
|
|
* define ELF_USE_CORE_DUMP in target ELF code (where init_thread() for
|
|
* the target resides):
|
|
*
|
|
* #define USE_ELF_CORE_DUMP
|
|
*
|
|
* Next you define type of register set used for dumping. ELF specification
|
|
* says that it needs to be array of elf_greg_t that has size of ELF_NREG.
|
|
*
|
|
* typedef <target_regtype> target_elf_greg_t;
|
|
* #define ELF_NREG <number of registers>
|
|
* typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
|
|
*
|
|
* Then define following types to match target types. Actual types can
|
|
* be found from linux kernel (arch/<ARCH>/include/asm/posix_types.h):
|
|
*
|
|
* typedef <target_uid_type> target_uid_t;
|
|
* typedef <target_gid_type> target_gid_t;
|
|
* typedef <target_pid_type> target_pid_t;
|
|
*
|
|
* Last step is to implement target specific function that copies registers
|
|
* from given cpu into just specified register set. Prototype is:
|
|
*
|
|
* static void elf_core_copy_regs(taret_elf_gregset_t *regs,
|
|
* const CPUState *env);
|
|
*
|
|
* Parameters:
|
|
* regs - copy register values into here (allocated and zeroed by caller)
|
|
* env - copy registers from here
|
|
*
|
|
* Example for ARM target is provided in this file.
|
|
*/
|
|
|
|
/* An ELF note in memory */
|
|
struct memelfnote {
|
|
const char *name;
|
|
size_t namesz;
|
|
size_t namesz_rounded;
|
|
int type;
|
|
size_t datasz;
|
|
void *data;
|
|
size_t notesz;
|
|
};
|
|
|
|
struct target_elf_siginfo {
|
|
int si_signo; /* signal number */
|
|
int si_code; /* extra code */
|
|
int si_errno; /* errno */
|
|
};
|
|
|
|
struct target_elf_prstatus {
|
|
struct target_elf_siginfo pr_info; /* Info associated with signal */
|
|
short pr_cursig; /* Current signal */
|
|
target_ulong pr_sigpend; /* XXX */
|
|
target_ulong pr_sighold; /* XXX */
|
|
target_pid_t pr_pid;
|
|
target_pid_t pr_ppid;
|
|
target_pid_t pr_pgrp;
|
|
target_pid_t pr_sid;
|
|
struct target_timeval pr_utime; /* XXX User time */
|
|
struct target_timeval pr_stime; /* XXX System time */
|
|
struct target_timeval pr_cutime; /* XXX Cumulative user time */
|
|
struct target_timeval pr_cstime; /* XXX Cumulative system time */
|
|
target_elf_gregset_t pr_reg; /* GP registers */
|
|
int pr_fpvalid; /* XXX */
|
|
};
|
|
|
|
#define ELF_PRARGSZ (80) /* Number of chars for args */
|
|
|
|
struct target_elf_prpsinfo {
|
|
char pr_state; /* numeric process state */
|
|
char pr_sname; /* char for pr_state */
|
|
char pr_zomb; /* zombie */
|
|
char pr_nice; /* nice val */
|
|
target_ulong pr_flag; /* flags */
|
|
target_uid_t pr_uid;
|
|
target_gid_t pr_gid;
|
|
target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
|
|
/* Lots missing */
|
|
char pr_fname[16]; /* filename of executable */
|
|
char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
|
|
};
|
|
|
|
/* Here is the structure in which status of each thread is captured. */
|
|
struct elf_thread_status {
|
|
QTAILQ_ENTRY(elf_thread_status) ets_link;
|
|
struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
|
|
#if 0
|
|
elf_fpregset_t fpu; /* NT_PRFPREG */
|
|
struct task_struct *thread;
|
|
elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
|
|
#endif
|
|
struct memelfnote notes[1];
|
|
int num_notes;
|
|
};
|
|
|
|
struct elf_note_info {
|
|
struct memelfnote *notes;
|
|
struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
|
|
struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
|
|
|
|
QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
|
|
#if 0
|
|
/*
|
|
* Current version of ELF coredump doesn't support
|
|
* dumping fp regs etc.
|
|
*/
|
|
elf_fpregset_t *fpu;
|
|
elf_fpxregset_t *xfpu;
|
|
int thread_status_size;
|
|
#endif
|
|
int notes_size;
|
|
int numnote;
|
|
};
|
|
|
|
struct vm_area_struct {
|
|
abi_ulong vma_start; /* start vaddr of memory region */
|
|
abi_ulong vma_end; /* end vaddr of memory region */
|
|
abi_ulong vma_flags; /* protection etc. flags for the region */
|
|
QTAILQ_ENTRY(vm_area_struct) vma_link;
|
|
};
|
|
|
|
struct mm_struct {
|
|
QTAILQ_HEAD(, vm_area_struct) mm_mmap;
|
|
int mm_count; /* number of mappings */
|
|
};
|
|
|
|
static struct mm_struct *vma_init(void);
|
|
static void vma_delete(struct mm_struct *);
|
|
static int vma_add_mapping(struct mm_struct *, abi_ulong,
|
|
abi_ulong, abi_ulong);
|
|
static int vma_get_mapping_count(const struct mm_struct *);
|
|
static struct vm_area_struct *vma_first(const struct mm_struct *);
|
|
static struct vm_area_struct *vma_next(struct vm_area_struct *);
|
|
static abi_ulong vma_dump_size(const struct vm_area_struct *);
|
|
static int vma_walker(void *priv, unsigned long start, unsigned long end,
|
|
unsigned long flags);
|
|
|
|
static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
|
|
static void fill_note(struct memelfnote *, const char *, int,
|
|
unsigned int, void *);
|
|
static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
|
|
static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
|
|
static void fill_auxv_note(struct memelfnote *, const TaskState *);
|
|
static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
|
|
static size_t note_size(const struct memelfnote *);
|
|
static void free_note_info(struct elf_note_info *);
|
|
static int fill_note_info(struct elf_note_info *, long, const CPUState *);
|
|
static void fill_thread_info(struct elf_note_info *, const CPUState *);
|
|
static int core_dump_filename(const TaskState *, char *, size_t);
|
|
|
|
static int dump_write(int, const void *, size_t);
|
|
static int write_note(struct memelfnote *, int);
|
|
static int write_note_info(struct elf_note_info *, int);
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
static void bswap_prstatus(struct target_elf_prstatus *);
|
|
static void bswap_psinfo(struct target_elf_prpsinfo *);
|
|
|
|
static void bswap_prstatus(struct target_elf_prstatus *prstatus)
|
|
{
|
|
prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
|
|
prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
|
|
prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
|
|
prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
|
|
prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
|
|
prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
|
|
prstatus->pr_pid = tswap32(prstatus->pr_pid);
|
|
prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
|
|
prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
|
|
prstatus->pr_sid = tswap32(prstatus->pr_sid);
|
|
/* cpu times are not filled, so we skip them */
|
|
/* regs should be in correct format already */
|
|
prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
|
|
}
|
|
|
|
static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
|
|
{
|
|
psinfo->pr_flag = tswapl(psinfo->pr_flag);
|
|
psinfo->pr_uid = tswap16(psinfo->pr_uid);
|
|
psinfo->pr_gid = tswap16(psinfo->pr_gid);
|
|
psinfo->pr_pid = tswap32(psinfo->pr_pid);
|
|
psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
|
|
psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
|
|
psinfo->pr_sid = tswap32(psinfo->pr_sid);
|
|
}
|
|
#endif /* BSWAP_NEEDED */
|
|
|
|
/*
|
|
* Minimal support for linux memory regions. These are needed
|
|
* when we are finding out what memory exactly belongs to
|
|
* emulated process. No locks needed here, as long as
|
|
* thread that received the signal is stopped.
|
|
*/
|
|
|
|
static struct mm_struct *vma_init(void)
|
|
{
|
|
struct mm_struct *mm;
|
|
|
|
if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
|
|
return (NULL);
|
|
|
|
mm->mm_count = 0;
|
|
QTAILQ_INIT(&mm->mm_mmap);
|
|
|
|
return (mm);
|
|
}
|
|
|
|
static void vma_delete(struct mm_struct *mm)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
while ((vma = vma_first(mm)) != NULL) {
|
|
QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
|
|
qemu_free(vma);
|
|
}
|
|
qemu_free(mm);
|
|
}
|
|
|
|
static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
|
|
abi_ulong end, abi_ulong flags)
|
|
{
|
|
struct vm_area_struct *vma;
|
|
|
|
if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
|
|
return (-1);
|
|
|
|
vma->vma_start = start;
|
|
vma->vma_end = end;
|
|
vma->vma_flags = flags;
|
|
|
|
QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
|
|
mm->mm_count++;
|
|
|
|
return (0);
|
|
}
|
|
|
|
static struct vm_area_struct *vma_first(const struct mm_struct *mm)
|
|
{
|
|
return (QTAILQ_FIRST(&mm->mm_mmap));
|
|
}
|
|
|
|
static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
|
|
{
|
|
return (QTAILQ_NEXT(vma, vma_link));
|
|
}
|
|
|
|
static int vma_get_mapping_count(const struct mm_struct *mm)
|
|
{
|
|
return (mm->mm_count);
|
|
}
|
|
|
|
/*
|
|
* Calculate file (dump) size of given memory region.
|
|
*/
|
|
static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
|
|
{
|
|
/* if we cannot even read the first page, skip it */
|
|
if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
|
|
return (0);
|
|
|
|
/*
|
|
* Usually we don't dump executable pages as they contain
|
|
* non-writable code that debugger can read directly from
|
|
* target library etc. However, thread stacks are marked
|
|
* also executable so we read in first page of given region
|
|
* and check whether it contains elf header. If there is
|
|
* no elf header, we dump it.
|
|
*/
|
|
if (vma->vma_flags & PROT_EXEC) {
|
|
char page[TARGET_PAGE_SIZE];
|
|
|
|
copy_from_user(page, vma->vma_start, sizeof (page));
|
|
if ((page[EI_MAG0] == ELFMAG0) &&
|
|
(page[EI_MAG1] == ELFMAG1) &&
|
|
(page[EI_MAG2] == ELFMAG2) &&
|
|
(page[EI_MAG3] == ELFMAG3)) {
|
|
/*
|
|
* Mappings are possibly from ELF binary. Don't dump
|
|
* them.
|
|
*/
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
return (vma->vma_end - vma->vma_start);
|
|
}
|
|
|
|
static int vma_walker(void *priv, unsigned long start, unsigned long end,
|
|
unsigned long flags)
|
|
{
|
|
struct mm_struct *mm = (struct mm_struct *)priv;
|
|
|
|
/*
|
|
* Don't dump anything that qemu has reserved for internal use.
|
|
*/
|
|
if (flags & PAGE_RESERVED)
|
|
return (0);
|
|
|
|
vma_add_mapping(mm, start, end, flags);
|
|
return (0);
|
|
}
|
|
|
|
static void fill_note(struct memelfnote *note, const char *name, int type,
|
|
unsigned int sz, void *data)
|
|
{
|
|
unsigned int namesz;
|
|
|
|
namesz = strlen(name) + 1;
|
|
note->name = name;
|
|
note->namesz = namesz;
|
|
note->namesz_rounded = roundup(namesz, sizeof (int32_t));
|
|
note->type = type;
|
|
note->datasz = roundup(sz, sizeof (int32_t));;
|
|
note->data = data;
|
|
|
|
/*
|
|
* We calculate rounded up note size here as specified by
|
|
* ELF document.
|
|
*/
|
|
note->notesz = sizeof (struct elf_note) +
|
|
note->namesz_rounded + note->datasz;
|
|
}
|
|
|
|
static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
|
|
uint32_t flags)
|
|
{
|
|
(void) memset(elf, 0, sizeof(*elf));
|
|
|
|
(void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
|
|
elf->e_ident[EI_CLASS] = ELF_CLASS;
|
|
elf->e_ident[EI_DATA] = ELF_DATA;
|
|
elf->e_ident[EI_VERSION] = EV_CURRENT;
|
|
elf->e_ident[EI_OSABI] = ELF_OSABI;
|
|
|
|
elf->e_type = ET_CORE;
|
|
elf->e_machine = machine;
|
|
elf->e_version = EV_CURRENT;
|
|
elf->e_phoff = sizeof(struct elfhdr);
|
|
elf->e_flags = flags;
|
|
elf->e_ehsize = sizeof(struct elfhdr);
|
|
elf->e_phentsize = sizeof(struct elf_phdr);
|
|
elf->e_phnum = segs;
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_ehdr(elf);
|
|
#endif
|
|
}
|
|
|
|
static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
|
|
{
|
|
phdr->p_type = PT_NOTE;
|
|
phdr->p_offset = offset;
|
|
phdr->p_vaddr = 0;
|
|
phdr->p_paddr = 0;
|
|
phdr->p_filesz = sz;
|
|
phdr->p_memsz = 0;
|
|
phdr->p_flags = 0;
|
|
phdr->p_align = 0;
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_phdr(phdr);
|
|
#endif
|
|
}
|
|
|
|
static size_t note_size(const struct memelfnote *note)
|
|
{
|
|
return (note->notesz);
|
|
}
|
|
|
|
static void fill_prstatus(struct target_elf_prstatus *prstatus,
|
|
const TaskState *ts, int signr)
|
|
{
|
|
(void) memset(prstatus, 0, sizeof (*prstatus));
|
|
prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
|
|
prstatus->pr_pid = ts->ts_tid;
|
|
prstatus->pr_ppid = getppid();
|
|
prstatus->pr_pgrp = getpgrp();
|
|
prstatus->pr_sid = getsid(0);
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_prstatus(prstatus);
|
|
#endif
|
|
}
|
|
|
|
static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
|
|
{
|
|
char *filename, *base_filename;
|
|
unsigned int i, len;
|
|
|
|
(void) memset(psinfo, 0, sizeof (*psinfo));
|
|
|
|
len = ts->info->arg_end - ts->info->arg_start;
|
|
if (len >= ELF_PRARGSZ)
|
|
len = ELF_PRARGSZ - 1;
|
|
if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
|
|
return -EFAULT;
|
|
for (i = 0; i < len; i++)
|
|
if (psinfo->pr_psargs[i] == 0)
|
|
psinfo->pr_psargs[i] = ' ';
|
|
psinfo->pr_psargs[len] = 0;
|
|
|
|
psinfo->pr_pid = getpid();
|
|
psinfo->pr_ppid = getppid();
|
|
psinfo->pr_pgrp = getpgrp();
|
|
psinfo->pr_sid = getsid(0);
|
|
psinfo->pr_uid = getuid();
|
|
psinfo->pr_gid = getgid();
|
|
|
|
filename = strdup(ts->bprm->filename);
|
|
base_filename = strdup(basename(filename));
|
|
(void) strncpy(psinfo->pr_fname, base_filename,
|
|
sizeof(psinfo->pr_fname));
|
|
free(base_filename);
|
|
free(filename);
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_psinfo(psinfo);
|
|
#endif
|
|
return (0);
|
|
}
|
|
|
|
static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
|
|
{
|
|
elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
|
|
elf_addr_t orig_auxv = auxv;
|
|
abi_ulong val;
|
|
void *ptr;
|
|
int i, len;
|
|
|
|
/*
|
|
* Auxiliary vector is stored in target process stack. It contains
|
|
* {type, value} pairs that we need to dump into note. This is not
|
|
* strictly necessary but we do it here for sake of completeness.
|
|
*/
|
|
|
|
/* find out lenght of the vector, AT_NULL is terminator */
|
|
i = len = 0;
|
|
do {
|
|
get_user_ual(val, auxv);
|
|
i += 2;
|
|
auxv += 2 * sizeof (elf_addr_t);
|
|
} while (val != AT_NULL);
|
|
len = i * sizeof (elf_addr_t);
|
|
|
|
/* read in whole auxv vector and copy it to memelfnote */
|
|
ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
|
|
if (ptr != NULL) {
|
|
fill_note(note, "CORE", NT_AUXV, len, ptr);
|
|
unlock_user(ptr, auxv, len);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Constructs name of coredump file. We have following convention
|
|
* for the name:
|
|
* qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
|
|
*
|
|
* Returns 0 in case of success, -1 otherwise (errno is set).
|
|
*/
|
|
static int core_dump_filename(const TaskState *ts, char *buf,
|
|
size_t bufsize)
|
|
{
|
|
char timestamp[64];
|
|
char *filename = NULL;
|
|
char *base_filename = NULL;
|
|
struct timeval tv;
|
|
struct tm tm;
|
|
|
|
assert(bufsize >= PATH_MAX);
|
|
|
|
if (gettimeofday(&tv, NULL) < 0) {
|
|
(void) fprintf(stderr, "unable to get current timestamp: %s",
|
|
strerror(errno));
|
|
return (-1);
|
|
}
|
|
|
|
filename = strdup(ts->bprm->filename);
|
|
base_filename = strdup(basename(filename));
|
|
(void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
|
|
localtime_r(&tv.tv_sec, &tm));
|
|
(void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
|
|
base_filename, timestamp, (int)getpid());
|
|
free(base_filename);
|
|
free(filename);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int dump_write(int fd, const void *ptr, size_t size)
|
|
{
|
|
const char *bufp = (const char *)ptr;
|
|
ssize_t bytes_written, bytes_left;
|
|
struct rlimit dumpsize;
|
|
off_t pos;
|
|
|
|
bytes_written = 0;
|
|
getrlimit(RLIMIT_CORE, &dumpsize);
|
|
if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
|
|
if (errno == ESPIPE) { /* not a seekable stream */
|
|
bytes_left = size;
|
|
} else {
|
|
return pos;
|
|
}
|
|
} else {
|
|
if (dumpsize.rlim_cur <= pos) {
|
|
return -1;
|
|
} else if (dumpsize.rlim_cur == RLIM_INFINITY) {
|
|
bytes_left = size;
|
|
} else {
|
|
size_t limit_left=dumpsize.rlim_cur - pos;
|
|
bytes_left = limit_left >= size ? size : limit_left ;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* In normal conditions, single write(2) should do but
|
|
* in case of socket etc. this mechanism is more portable.
|
|
*/
|
|
do {
|
|
bytes_written = write(fd, bufp, bytes_left);
|
|
if (bytes_written < 0) {
|
|
if (errno == EINTR)
|
|
continue;
|
|
return (-1);
|
|
} else if (bytes_written == 0) { /* eof */
|
|
return (-1);
|
|
}
|
|
bufp += bytes_written;
|
|
bytes_left -= bytes_written;
|
|
} while (bytes_left > 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static int write_note(struct memelfnote *men, int fd)
|
|
{
|
|
struct elf_note en;
|
|
|
|
en.n_namesz = men->namesz;
|
|
en.n_type = men->type;
|
|
en.n_descsz = men->datasz;
|
|
|
|
#ifdef BSWAP_NEEDED
|
|
bswap_note(&en);
|
|
#endif
|
|
|
|
if (dump_write(fd, &en, sizeof(en)) != 0)
|
|
return (-1);
|
|
if (dump_write(fd, men->name, men->namesz_rounded) != 0)
|
|
return (-1);
|
|
if (dump_write(fd, men->data, men->datasz) != 0)
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
|
|
{
|
|
TaskState *ts = (TaskState *)env->opaque;
|
|
struct elf_thread_status *ets;
|
|
|
|
ets = qemu_mallocz(sizeof (*ets));
|
|
ets->num_notes = 1; /* only prstatus is dumped */
|
|
fill_prstatus(&ets->prstatus, ts, 0);
|
|
elf_core_copy_regs(&ets->prstatus.pr_reg, env);
|
|
fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
|
|
&ets->prstatus);
|
|
|
|
QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
|
|
|
|
info->notes_size += note_size(&ets->notes[0]);
|
|
}
|
|
|
|
static int fill_note_info(struct elf_note_info *info,
|
|
long signr, const CPUState *env)
|
|
{
|
|
#define NUMNOTES 3
|
|
CPUState *cpu = NULL;
|
|
TaskState *ts = (TaskState *)env->opaque;
|
|
int i;
|
|
|
|
(void) memset(info, 0, sizeof (*info));
|
|
|
|
QTAILQ_INIT(&info->thread_list);
|
|
|
|
info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
|
|
if (info->notes == NULL)
|
|
return (-ENOMEM);
|
|
info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
|
|
if (info->prstatus == NULL)
|
|
return (-ENOMEM);
|
|
info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
|
|
if (info->prstatus == NULL)
|
|
return (-ENOMEM);
|
|
|
|
/*
|
|
* First fill in status (and registers) of current thread
|
|
* including process info & aux vector.
|
|
*/
|
|
fill_prstatus(info->prstatus, ts, signr);
|
|
elf_core_copy_regs(&info->prstatus->pr_reg, env);
|
|
fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
|
|
sizeof (*info->prstatus), info->prstatus);
|
|
fill_psinfo(info->psinfo, ts);
|
|
fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
|
|
sizeof (*info->psinfo), info->psinfo);
|
|
fill_auxv_note(&info->notes[2], ts);
|
|
info->numnote = 3;
|
|
|
|
info->notes_size = 0;
|
|
for (i = 0; i < info->numnote; i++)
|
|
info->notes_size += note_size(&info->notes[i]);
|
|
|
|
/* read and fill status of all threads */
|
|
cpu_list_lock();
|
|
for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
|
|
if (cpu == thread_env)
|
|
continue;
|
|
fill_thread_info(info, cpu);
|
|
}
|
|
cpu_list_unlock();
|
|
|
|
return (0);
|
|
}
|
|
|
|
static void free_note_info(struct elf_note_info *info)
|
|
{
|
|
struct elf_thread_status *ets;
|
|
|
|
while (!QTAILQ_EMPTY(&info->thread_list)) {
|
|
ets = QTAILQ_FIRST(&info->thread_list);
|
|
QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
|
|
qemu_free(ets);
|
|
}
|
|
|
|
qemu_free(info->prstatus);
|
|
qemu_free(info->psinfo);
|
|
qemu_free(info->notes);
|
|
}
|
|
|
|
static int write_note_info(struct elf_note_info *info, int fd)
|
|
{
|
|
struct elf_thread_status *ets;
|
|
int i, error = 0;
|
|
|
|
/* write prstatus, psinfo and auxv for current thread */
|
|
for (i = 0; i < info->numnote; i++)
|
|
if ((error = write_note(&info->notes[i], fd)) != 0)
|
|
return (error);
|
|
|
|
/* write prstatus for each thread */
|
|
for (ets = info->thread_list.tqh_first; ets != NULL;
|
|
ets = ets->ets_link.tqe_next) {
|
|
if ((error = write_note(&ets->notes[0], fd)) != 0)
|
|
return (error);
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write out ELF coredump.
|
|
*
|
|
* See documentation of ELF object file format in:
|
|
* http://www.caldera.com/developers/devspecs/gabi41.pdf
|
|
*
|
|
* Coredump format in linux is following:
|
|
*
|
|
* 0 +----------------------+ \
|
|
* | ELF header | ET_CORE |
|
|
* +----------------------+ |
|
|
* | ELF program headers | |--- headers
|
|
* | - NOTE section | |
|
|
* | - PT_LOAD sections | |
|
|
* +----------------------+ /
|
|
* | NOTEs: |
|
|
* | - NT_PRSTATUS |
|
|
* | - NT_PRSINFO |
|
|
* | - NT_AUXV |
|
|
* +----------------------+ <-- aligned to target page
|
|
* | Process memory dump |
|
|
* : :
|
|
* . .
|
|
* : :
|
|
* | |
|
|
* +----------------------+
|
|
*
|
|
* NT_PRSTATUS -> struct elf_prstatus (per thread)
|
|
* NT_PRSINFO -> struct elf_prpsinfo
|
|
* NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
|
|
*
|
|
* Format follows System V format as close as possible. Current
|
|
* version limitations are as follows:
|
|
* - no floating point registers are dumped
|
|
*
|
|
* Function returns 0 in case of success, negative errno otherwise.
|
|
*
|
|
* TODO: make this work also during runtime: it should be
|
|
* possible to force coredump from running process and then
|
|
* continue processing. For example qemu could set up SIGUSR2
|
|
* handler (provided that target process haven't registered
|
|
* handler for that) that does the dump when signal is received.
|
|
*/
|
|
static int elf_core_dump(int signr, const CPUState *env)
|
|
{
|
|
const TaskState *ts = (const TaskState *)env->opaque;
|
|
struct vm_area_struct *vma = NULL;
|
|
char corefile[PATH_MAX];
|
|
struct elf_note_info info;
|
|
struct elfhdr elf;
|
|
struct elf_phdr phdr;
|
|
struct rlimit dumpsize;
|
|
struct mm_struct *mm = NULL;
|
|
off_t offset = 0, data_offset = 0;
|
|
int segs = 0;
|
|
int fd = -1;
|
|
|
|
errno = 0;
|
|
getrlimit(RLIMIT_CORE, &dumpsize);
|
|
if (dumpsize.rlim_cur == 0)
|
|
return 0;
|
|
|
|
if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
|
|
return (-errno);
|
|
|
|
if ((fd = open(corefile, O_WRONLY | O_CREAT,
|
|
S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
|
|
return (-errno);
|
|
|
|
/*
|
|
* Walk through target process memory mappings and
|
|
* set up structure containing this information. After
|
|
* this point vma_xxx functions can be used.
|
|
*/
|
|
if ((mm = vma_init()) == NULL)
|
|
goto out;
|
|
|
|
walk_memory_regions(mm, vma_walker);
|
|
segs = vma_get_mapping_count(mm);
|
|
|
|
/*
|
|
* Construct valid coredump ELF header. We also
|
|
* add one more segment for notes.
|
|
*/
|
|
fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
|
|
if (dump_write(fd, &elf, sizeof (elf)) != 0)
|
|
goto out;
|
|
|
|
/* fill in in-memory version of notes */
|
|
if (fill_note_info(&info, signr, env) < 0)
|
|
goto out;
|
|
|
|
offset += sizeof (elf); /* elf header */
|
|
offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
|
|
|
|
/* write out notes program header */
|
|
fill_elf_note_phdr(&phdr, info.notes_size, offset);
|
|
|
|
offset += info.notes_size;
|
|
if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* ELF specification wants data to start at page boundary so
|
|
* we align it here.
|
|
*/
|
|
offset = roundup(offset, ELF_EXEC_PAGESIZE);
|
|
|
|
/*
|
|
* Write program headers for memory regions mapped in
|
|
* the target process.
|
|
*/
|
|
for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
|
|
(void) memset(&phdr, 0, sizeof (phdr));
|
|
|
|
phdr.p_type = PT_LOAD;
|
|
phdr.p_offset = offset;
|
|
phdr.p_vaddr = vma->vma_start;
|
|
phdr.p_paddr = 0;
|
|
phdr.p_filesz = vma_dump_size(vma);
|
|
offset += phdr.p_filesz;
|
|
phdr.p_memsz = vma->vma_end - vma->vma_start;
|
|
phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
|
|
if (vma->vma_flags & PROT_WRITE)
|
|
phdr.p_flags |= PF_W;
|
|
if (vma->vma_flags & PROT_EXEC)
|
|
phdr.p_flags |= PF_X;
|
|
phdr.p_align = ELF_EXEC_PAGESIZE;
|
|
|
|
dump_write(fd, &phdr, sizeof (phdr));
|
|
}
|
|
|
|
/*
|
|
* Next we write notes just after program headers. No
|
|
* alignment needed here.
|
|
*/
|
|
if (write_note_info(&info, fd) < 0)
|
|
goto out;
|
|
|
|
/* align data to page boundary */
|
|
data_offset = lseek(fd, 0, SEEK_CUR);
|
|
data_offset = TARGET_PAGE_ALIGN(data_offset);
|
|
if (lseek(fd, data_offset, SEEK_SET) != data_offset)
|
|
goto out;
|
|
|
|
/*
|
|
* Finally we can dump process memory into corefile as well.
|
|
*/
|
|
for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
|
|
abi_ulong addr;
|
|
abi_ulong end;
|
|
|
|
end = vma->vma_start + vma_dump_size(vma);
|
|
|
|
for (addr = vma->vma_start; addr < end;
|
|
addr += TARGET_PAGE_SIZE) {
|
|
char page[TARGET_PAGE_SIZE];
|
|
int error;
|
|
|
|
/*
|
|
* Read in page from target process memory and
|
|
* write it to coredump file.
|
|
*/
|
|
error = copy_from_user(page, addr, sizeof (page));
|
|
if (error != 0) {
|
|
(void) fprintf(stderr, "unable to dump " TARGET_FMT_lx "\n",
|
|
addr);
|
|
errno = -error;
|
|
goto out;
|
|
}
|
|
if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
|
|
goto out;
|
|
}
|
|
}
|
|
|
|
out:
|
|
free_note_info(&info);
|
|
if (mm != NULL)
|
|
vma_delete(mm);
|
|
(void) close(fd);
|
|
|
|
if (errno != 0)
|
|
return (-errno);
|
|
return (0);
|
|
}
|
|
|
|
#endif /* USE_ELF_CORE_DUMP */
|
|
|
|
static int load_aout_interp(void * exptr, int interp_fd)
|
|
{
|
|
printf("a.out interpreter not yet supported\n");
|
|
return(0);
|
|
}
|
|
|
|
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
|
|
{
|
|
init_thread(regs, infop);
|
|
}
|