mirror of https://gitee.com/openkylin/qemu.git
498 lines
14 KiB
C
498 lines
14 KiB
C
/*
|
|
* Alpha emulation cpu helpers for qemu.
|
|
*
|
|
* Copyright (c) 2007 Jocelyn Mayer
|
|
*
|
|
* This library is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU Lesser General Public
|
|
* License as published by the Free Software Foundation; either
|
|
* version 2 of the License, or (at your option) any later version.
|
|
*
|
|
* This library is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* Lesser General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU Lesser General Public
|
|
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#include "qemu/osdep.h"
|
|
|
|
#include "cpu.h"
|
|
#include "exec/exec-all.h"
|
|
#include "fpu/softfloat.h"
|
|
#include "exec/helper-proto.h"
|
|
|
|
|
|
#define CONVERT_BIT(X, SRC, DST) \
|
|
(SRC > DST ? (X) / (SRC / DST) & (DST) : ((X) & SRC) * (DST / SRC))
|
|
|
|
uint64_t cpu_alpha_load_fpcr (CPUAlphaState *env)
|
|
{
|
|
return (uint64_t)env->fpcr << 32;
|
|
}
|
|
|
|
void cpu_alpha_store_fpcr (CPUAlphaState *env, uint64_t val)
|
|
{
|
|
uint32_t fpcr = val >> 32;
|
|
uint32_t t = 0;
|
|
|
|
t |= CONVERT_BIT(fpcr, FPCR_INED, FPCR_INE);
|
|
t |= CONVERT_BIT(fpcr, FPCR_UNFD, FPCR_UNF);
|
|
t |= CONVERT_BIT(fpcr, FPCR_OVFD, FPCR_OVF);
|
|
t |= CONVERT_BIT(fpcr, FPCR_DZED, FPCR_DZE);
|
|
t |= CONVERT_BIT(fpcr, FPCR_INVD, FPCR_INV);
|
|
|
|
env->fpcr = fpcr;
|
|
env->fpcr_exc_enable = ~t & FPCR_STATUS_MASK;
|
|
|
|
switch (fpcr & FPCR_DYN_MASK) {
|
|
case FPCR_DYN_NORMAL:
|
|
default:
|
|
t = float_round_nearest_even;
|
|
break;
|
|
case FPCR_DYN_CHOPPED:
|
|
t = float_round_to_zero;
|
|
break;
|
|
case FPCR_DYN_MINUS:
|
|
t = float_round_down;
|
|
break;
|
|
case FPCR_DYN_PLUS:
|
|
t = float_round_up;
|
|
break;
|
|
}
|
|
env->fpcr_dyn_round = t;
|
|
|
|
env->fpcr_flush_to_zero = (fpcr & FPCR_UNFD) && (fpcr & FPCR_UNDZ);
|
|
env->fp_status.flush_inputs_to_zero = (fpcr & FPCR_DNZ) != 0;
|
|
}
|
|
|
|
uint64_t helper_load_fpcr(CPUAlphaState *env)
|
|
{
|
|
return cpu_alpha_load_fpcr(env);
|
|
}
|
|
|
|
void helper_store_fpcr(CPUAlphaState *env, uint64_t val)
|
|
{
|
|
cpu_alpha_store_fpcr(env, val);
|
|
}
|
|
|
|
static uint64_t *cpu_alpha_addr_gr(CPUAlphaState *env, unsigned reg)
|
|
{
|
|
#ifndef CONFIG_USER_ONLY
|
|
if (env->flags & ENV_FLAG_PAL_MODE) {
|
|
if (reg >= 8 && reg <= 14) {
|
|
return &env->shadow[reg - 8];
|
|
} else if (reg == 25) {
|
|
return &env->shadow[7];
|
|
}
|
|
}
|
|
#endif
|
|
return &env->ir[reg];
|
|
}
|
|
|
|
uint64_t cpu_alpha_load_gr(CPUAlphaState *env, unsigned reg)
|
|
{
|
|
return *cpu_alpha_addr_gr(env, reg);
|
|
}
|
|
|
|
void cpu_alpha_store_gr(CPUAlphaState *env, unsigned reg, uint64_t val)
|
|
{
|
|
*cpu_alpha_addr_gr(env, reg) = val;
|
|
}
|
|
|
|
#if defined(CONFIG_USER_ONLY)
|
|
int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr address, int size,
|
|
int rw, int mmu_idx)
|
|
{
|
|
AlphaCPU *cpu = ALPHA_CPU(cs);
|
|
|
|
cs->exception_index = EXCP_MMFAULT;
|
|
cpu->env.trap_arg0 = address;
|
|
return 1;
|
|
}
|
|
#else
|
|
/* Returns the OSF/1 entMM failure indication, or -1 on success. */
|
|
static int get_physical_address(CPUAlphaState *env, target_ulong addr,
|
|
int prot_need, int mmu_idx,
|
|
target_ulong *pphys, int *pprot)
|
|
{
|
|
CPUState *cs = CPU(alpha_env_get_cpu(env));
|
|
target_long saddr = addr;
|
|
target_ulong phys = 0;
|
|
target_ulong L1pte, L2pte, L3pte;
|
|
target_ulong pt, index;
|
|
int prot = 0;
|
|
int ret = MM_K_ACV;
|
|
|
|
/* Handle physical accesses. */
|
|
if (mmu_idx == MMU_PHYS_IDX) {
|
|
phys = addr;
|
|
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
ret = -1;
|
|
goto exit;
|
|
}
|
|
|
|
/* Ensure that the virtual address is properly sign-extended from
|
|
the last implemented virtual address bit. */
|
|
if (saddr >> TARGET_VIRT_ADDR_SPACE_BITS != saddr >> 63) {
|
|
goto exit;
|
|
}
|
|
|
|
/* Translate the superpage. */
|
|
/* ??? When we do more than emulate Unix PALcode, we'll need to
|
|
determine which KSEG is actually active. */
|
|
if (saddr < 0 && ((saddr >> 41) & 3) == 2) {
|
|
/* User-space cannot access KSEG addresses. */
|
|
if (mmu_idx != MMU_KERNEL_IDX) {
|
|
goto exit;
|
|
}
|
|
|
|
/* For the benefit of the Typhoon chipset, move bit 40 to bit 43.
|
|
We would not do this if the 48-bit KSEG is enabled. */
|
|
phys = saddr & ((1ull << 40) - 1);
|
|
phys |= (saddr & (1ull << 40)) << 3;
|
|
|
|
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
|
|
ret = -1;
|
|
goto exit;
|
|
}
|
|
|
|
/* Interpret the page table exactly like PALcode does. */
|
|
|
|
pt = env->ptbr;
|
|
|
|
/* TODO: rather than using ldq_phys() to read the page table we should
|
|
* use address_space_ldq() so that we can handle the case when
|
|
* the page table read gives a bus fault, rather than ignoring it.
|
|
* For the existing code the zero data that ldq_phys will return for
|
|
* an access to invalid memory will result in our treating the page
|
|
* table as invalid, which may even be the right behaviour.
|
|
*/
|
|
|
|
/* L1 page table read. */
|
|
index = (addr >> (TARGET_PAGE_BITS + 20)) & 0x3ff;
|
|
L1pte = ldq_phys(cs->as, pt + index*8);
|
|
|
|
if (unlikely((L1pte & PTE_VALID) == 0)) {
|
|
ret = MM_K_TNV;
|
|
goto exit;
|
|
}
|
|
if (unlikely((L1pte & PTE_KRE) == 0)) {
|
|
goto exit;
|
|
}
|
|
pt = L1pte >> 32 << TARGET_PAGE_BITS;
|
|
|
|
/* L2 page table read. */
|
|
index = (addr >> (TARGET_PAGE_BITS + 10)) & 0x3ff;
|
|
L2pte = ldq_phys(cs->as, pt + index*8);
|
|
|
|
if (unlikely((L2pte & PTE_VALID) == 0)) {
|
|
ret = MM_K_TNV;
|
|
goto exit;
|
|
}
|
|
if (unlikely((L2pte & PTE_KRE) == 0)) {
|
|
goto exit;
|
|
}
|
|
pt = L2pte >> 32 << TARGET_PAGE_BITS;
|
|
|
|
/* L3 page table read. */
|
|
index = (addr >> TARGET_PAGE_BITS) & 0x3ff;
|
|
L3pte = ldq_phys(cs->as, pt + index*8);
|
|
|
|
phys = L3pte >> 32 << TARGET_PAGE_BITS;
|
|
if (unlikely((L3pte & PTE_VALID) == 0)) {
|
|
ret = MM_K_TNV;
|
|
goto exit;
|
|
}
|
|
|
|
#if PAGE_READ != 1 || PAGE_WRITE != 2 || PAGE_EXEC != 4
|
|
# error page bits out of date
|
|
#endif
|
|
|
|
/* Check access violations. */
|
|
if (L3pte & (PTE_KRE << mmu_idx)) {
|
|
prot |= PAGE_READ | PAGE_EXEC;
|
|
}
|
|
if (L3pte & (PTE_KWE << mmu_idx)) {
|
|
prot |= PAGE_WRITE;
|
|
}
|
|
if (unlikely((prot & prot_need) == 0 && prot_need)) {
|
|
goto exit;
|
|
}
|
|
|
|
/* Check fault-on-operation violations. */
|
|
prot &= ~(L3pte >> 1);
|
|
ret = -1;
|
|
if (unlikely((prot & prot_need) == 0)) {
|
|
ret = (prot_need & PAGE_EXEC ? MM_K_FOE :
|
|
prot_need & PAGE_WRITE ? MM_K_FOW :
|
|
prot_need & PAGE_READ ? MM_K_FOR : -1);
|
|
}
|
|
|
|
exit:
|
|
*pphys = phys;
|
|
*pprot = prot;
|
|
return ret;
|
|
}
|
|
|
|
hwaddr alpha_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
|
|
{
|
|
AlphaCPU *cpu = ALPHA_CPU(cs);
|
|
target_ulong phys;
|
|
int prot, fail;
|
|
|
|
fail = get_physical_address(&cpu->env, addr, 0, 0, &phys, &prot);
|
|
return (fail >= 0 ? -1 : phys);
|
|
}
|
|
|
|
int alpha_cpu_handle_mmu_fault(CPUState *cs, vaddr addr, int size, int rw,
|
|
int mmu_idx)
|
|
{
|
|
AlphaCPU *cpu = ALPHA_CPU(cs);
|
|
CPUAlphaState *env = &cpu->env;
|
|
target_ulong phys;
|
|
int prot, fail;
|
|
|
|
fail = get_physical_address(env, addr, 1 << rw, mmu_idx, &phys, &prot);
|
|
if (unlikely(fail >= 0)) {
|
|
cs->exception_index = EXCP_MMFAULT;
|
|
env->trap_arg0 = addr;
|
|
env->trap_arg1 = fail;
|
|
env->trap_arg2 = (rw == 2 ? -1 : rw);
|
|
return 1;
|
|
}
|
|
|
|
tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
|
|
prot, mmu_idx, TARGET_PAGE_SIZE);
|
|
return 0;
|
|
}
|
|
#endif /* USER_ONLY */
|
|
|
|
void alpha_cpu_do_interrupt(CPUState *cs)
|
|
{
|
|
AlphaCPU *cpu = ALPHA_CPU(cs);
|
|
CPUAlphaState *env = &cpu->env;
|
|
int i = cs->exception_index;
|
|
|
|
if (qemu_loglevel_mask(CPU_LOG_INT)) {
|
|
static int count;
|
|
const char *name = "<unknown>";
|
|
|
|
switch (i) {
|
|
case EXCP_RESET:
|
|
name = "reset";
|
|
break;
|
|
case EXCP_MCHK:
|
|
name = "mchk";
|
|
break;
|
|
case EXCP_SMP_INTERRUPT:
|
|
name = "smp_interrupt";
|
|
break;
|
|
case EXCP_CLK_INTERRUPT:
|
|
name = "clk_interrupt";
|
|
break;
|
|
case EXCP_DEV_INTERRUPT:
|
|
name = "dev_interrupt";
|
|
break;
|
|
case EXCP_MMFAULT:
|
|
name = "mmfault";
|
|
break;
|
|
case EXCP_UNALIGN:
|
|
name = "unalign";
|
|
break;
|
|
case EXCP_OPCDEC:
|
|
name = "opcdec";
|
|
break;
|
|
case EXCP_ARITH:
|
|
name = "arith";
|
|
break;
|
|
case EXCP_FEN:
|
|
name = "fen";
|
|
break;
|
|
case EXCP_CALL_PAL:
|
|
name = "call_pal";
|
|
break;
|
|
}
|
|
qemu_log("INT %6d: %s(%#x) cpu=%d pc=%016"
|
|
PRIx64 " sp=%016" PRIx64 "\n",
|
|
++count, name, env->error_code, cs->cpu_index,
|
|
env->pc, env->ir[IR_SP]);
|
|
}
|
|
|
|
cs->exception_index = -1;
|
|
|
|
#if !defined(CONFIG_USER_ONLY)
|
|
switch (i) {
|
|
case EXCP_RESET:
|
|
i = 0x0000;
|
|
break;
|
|
case EXCP_MCHK:
|
|
i = 0x0080;
|
|
break;
|
|
case EXCP_SMP_INTERRUPT:
|
|
i = 0x0100;
|
|
break;
|
|
case EXCP_CLK_INTERRUPT:
|
|
i = 0x0180;
|
|
break;
|
|
case EXCP_DEV_INTERRUPT:
|
|
i = 0x0200;
|
|
break;
|
|
case EXCP_MMFAULT:
|
|
i = 0x0280;
|
|
break;
|
|
case EXCP_UNALIGN:
|
|
i = 0x0300;
|
|
break;
|
|
case EXCP_OPCDEC:
|
|
i = 0x0380;
|
|
break;
|
|
case EXCP_ARITH:
|
|
i = 0x0400;
|
|
break;
|
|
case EXCP_FEN:
|
|
i = 0x0480;
|
|
break;
|
|
case EXCP_CALL_PAL:
|
|
i = env->error_code;
|
|
/* There are 64 entry points for both privileged and unprivileged,
|
|
with bit 0x80 indicating unprivileged. Each entry point gets
|
|
64 bytes to do its job. */
|
|
if (i & 0x80) {
|
|
i = 0x2000 + (i - 0x80) * 64;
|
|
} else {
|
|
i = 0x1000 + i * 64;
|
|
}
|
|
break;
|
|
default:
|
|
cpu_abort(cs, "Unhandled CPU exception");
|
|
}
|
|
|
|
/* Remember where the exception happened. Emulate real hardware in
|
|
that the low bit of the PC indicates PALmode. */
|
|
env->exc_addr = env->pc | (env->flags & ENV_FLAG_PAL_MODE);
|
|
|
|
/* Continue execution at the PALcode entry point. */
|
|
env->pc = env->palbr + i;
|
|
|
|
/* Switch to PALmode. */
|
|
env->flags |= ENV_FLAG_PAL_MODE;
|
|
#endif /* !USER_ONLY */
|
|
}
|
|
|
|
bool alpha_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
|
|
{
|
|
AlphaCPU *cpu = ALPHA_CPU(cs);
|
|
CPUAlphaState *env = &cpu->env;
|
|
int idx = -1;
|
|
|
|
/* We never take interrupts while in PALmode. */
|
|
if (env->flags & ENV_FLAG_PAL_MODE) {
|
|
return false;
|
|
}
|
|
|
|
/* Fall through the switch, collecting the highest priority
|
|
interrupt that isn't masked by the processor status IPL. */
|
|
/* ??? This hard-codes the OSF/1 interrupt levels. */
|
|
switch ((env->flags >> ENV_FLAG_PS_SHIFT) & PS_INT_MASK) {
|
|
case 0 ... 3:
|
|
if (interrupt_request & CPU_INTERRUPT_HARD) {
|
|
idx = EXCP_DEV_INTERRUPT;
|
|
}
|
|
/* FALLTHRU */
|
|
case 4:
|
|
if (interrupt_request & CPU_INTERRUPT_TIMER) {
|
|
idx = EXCP_CLK_INTERRUPT;
|
|
}
|
|
/* FALLTHRU */
|
|
case 5:
|
|
if (interrupt_request & CPU_INTERRUPT_SMP) {
|
|
idx = EXCP_SMP_INTERRUPT;
|
|
}
|
|
/* FALLTHRU */
|
|
case 6:
|
|
if (interrupt_request & CPU_INTERRUPT_MCHK) {
|
|
idx = EXCP_MCHK;
|
|
}
|
|
}
|
|
if (idx >= 0) {
|
|
cs->exception_index = idx;
|
|
env->error_code = 0;
|
|
alpha_cpu_do_interrupt(cs);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void alpha_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
|
|
int flags)
|
|
{
|
|
static const char *linux_reg_names[] = {
|
|
"v0 ", "t0 ", "t1 ", "t2 ", "t3 ", "t4 ", "t5 ", "t6 ",
|
|
"t7 ", "s0 ", "s1 ", "s2 ", "s3 ", "s4 ", "s5 ", "fp ",
|
|
"a0 ", "a1 ", "a2 ", "a3 ", "a4 ", "a5 ", "t8 ", "t9 ",
|
|
"t10", "t11", "ra ", "t12", "at ", "gp ", "sp ", "zero",
|
|
};
|
|
AlphaCPU *cpu = ALPHA_CPU(cs);
|
|
CPUAlphaState *env = &cpu->env;
|
|
int i;
|
|
|
|
cpu_fprintf(f, " PC " TARGET_FMT_lx " PS %02x\n",
|
|
env->pc, extract32(env->flags, ENV_FLAG_PS_SHIFT, 8));
|
|
for (i = 0; i < 31; i++) {
|
|
cpu_fprintf(f, "IR%02d %s " TARGET_FMT_lx "%c", i,
|
|
linux_reg_names[i], cpu_alpha_load_gr(env, i),
|
|
(i % 3) == 2 ? '\n' : ' ');
|
|
}
|
|
|
|
cpu_fprintf(f, "lock_a " TARGET_FMT_lx " lock_v " TARGET_FMT_lx "\n",
|
|
env->lock_addr, env->lock_value);
|
|
|
|
if (flags & CPU_DUMP_FPU) {
|
|
for (i = 0; i < 31; i++) {
|
|
cpu_fprintf(f, "FIR%02d %016" PRIx64 "%c", i, env->fir[i],
|
|
(i % 3) == 2 ? '\n' : ' ');
|
|
}
|
|
}
|
|
cpu_fprintf(f, "\n");
|
|
}
|
|
|
|
/* This should only be called from translate, via gen_excp.
|
|
We expect that ENV->PC has already been updated. */
|
|
void QEMU_NORETURN helper_excp(CPUAlphaState *env, int excp, int error)
|
|
{
|
|
AlphaCPU *cpu = alpha_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
cs->exception_index = excp;
|
|
env->error_code = error;
|
|
cpu_loop_exit(cs);
|
|
}
|
|
|
|
/* This may be called from any of the helpers to set up EXCEPTION_INDEX. */
|
|
void QEMU_NORETURN dynamic_excp(CPUAlphaState *env, uintptr_t retaddr,
|
|
int excp, int error)
|
|
{
|
|
AlphaCPU *cpu = alpha_env_get_cpu(env);
|
|
CPUState *cs = CPU(cpu);
|
|
|
|
cs->exception_index = excp;
|
|
env->error_code = error;
|
|
if (retaddr) {
|
|
cpu_restore_state(cs, retaddr, true);
|
|
/* Floating-point exceptions (our only users) point to the next PC. */
|
|
env->pc += 4;
|
|
}
|
|
cpu_loop_exit(cs);
|
|
}
|
|
|
|
void QEMU_NORETURN arith_excp(CPUAlphaState *env, uintptr_t retaddr,
|
|
int exc, uint64_t mask)
|
|
{
|
|
env->trap_arg0 = exc;
|
|
env->trap_arg1 = mask;
|
|
dynamic_excp(env, retaddr, EXCP_ARITH, 0);
|
|
}
|