qemu/hw/esp.c

672 lines
18 KiB
C

/*
* QEMU ESP/NCR53C9x emulation
*
* Copyright (c) 2005-2006 Fabrice Bellard
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "hw.h"
#include "scsi-disk.h"
#include "scsi.h"
/* debug ESP card */
//#define DEBUG_ESP
/*
* On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O),
* also produced as NCR89C100. See
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
* and
* http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt
*/
#ifdef DEBUG_ESP
#define DPRINTF(fmt, args...) \
do { printf("ESP: " fmt , ##args); } while (0)
#else
#define DPRINTF(fmt, args...) do {} while (0)
#endif
#define ESP_REGS 16
#define TI_BUFSZ 32
typedef struct ESPState ESPState;
struct ESPState {
uint32_t it_shift;
qemu_irq irq;
uint8_t rregs[ESP_REGS];
uint8_t wregs[ESP_REGS];
int32_t ti_size;
uint32_t ti_rptr, ti_wptr;
uint8_t ti_buf[TI_BUFSZ];
uint32_t sense;
uint32_t dma;
SCSIDevice *scsi_dev[ESP_MAX_DEVS];
SCSIDevice *current_dev;
uint8_t cmdbuf[TI_BUFSZ];
uint32_t cmdlen;
uint32_t do_cmd;
/* The amount of data left in the current DMA transfer. */
uint32_t dma_left;
/* The size of the current DMA transfer. Zero if no transfer is in
progress. */
uint32_t dma_counter;
uint8_t *async_buf;
uint32_t async_len;
espdma_memory_read_write dma_memory_read;
espdma_memory_read_write dma_memory_write;
void *dma_opaque;
};
#define ESP_TCLO 0x0
#define ESP_TCMID 0x1
#define ESP_FIFO 0x2
#define ESP_CMD 0x3
#define ESP_RSTAT 0x4
#define ESP_WBUSID 0x4
#define ESP_RINTR 0x5
#define ESP_WSEL 0x5
#define ESP_RSEQ 0x6
#define ESP_WSYNTP 0x6
#define ESP_RFLAGS 0x7
#define ESP_WSYNO 0x7
#define ESP_CFG1 0x8
#define ESP_RRES1 0x9
#define ESP_WCCF 0x9
#define ESP_RRES2 0xa
#define ESP_WTEST 0xa
#define ESP_CFG2 0xb
#define ESP_CFG3 0xc
#define ESP_RES3 0xd
#define ESP_TCHI 0xe
#define ESP_RES4 0xf
#define CMD_DMA 0x80
#define CMD_CMD 0x7f
#define CMD_NOP 0x00
#define CMD_FLUSH 0x01
#define CMD_RESET 0x02
#define CMD_BUSRESET 0x03
#define CMD_TI 0x10
#define CMD_ICCS 0x11
#define CMD_MSGACC 0x12
#define CMD_SATN 0x1a
#define CMD_SELATN 0x42
#define CMD_SELATNS 0x43
#define CMD_ENSEL 0x44
#define STAT_DO 0x00
#define STAT_DI 0x01
#define STAT_CD 0x02
#define STAT_ST 0x03
#define STAT_MI 0x06
#define STAT_MO 0x07
#define STAT_PIO_MASK 0x06
#define STAT_TC 0x10
#define STAT_PE 0x20
#define STAT_GE 0x40
#define STAT_INT 0x80
#define INTR_FC 0x08
#define INTR_BS 0x10
#define INTR_DC 0x20
#define INTR_RST 0x80
#define SEQ_0 0x0
#define SEQ_CD 0x4
#define CFG1_RESREPT 0x40
#define CFG2_MASK 0x15
#define TCHI_FAS100A 0x4
static void esp_raise_irq(ESPState *s)
{
if (!(s->rregs[ESP_RSTAT] & STAT_INT)) {
s->rregs[ESP_RSTAT] |= STAT_INT;
qemu_irq_raise(s->irq);
}
}
static void esp_lower_irq(ESPState *s)
{
if (s->rregs[ESP_RSTAT] & STAT_INT) {
s->rregs[ESP_RSTAT] &= ~STAT_INT;
qemu_irq_lower(s->irq);
}
}
static uint32_t get_cmd(ESPState *s, uint8_t *buf)
{
uint32_t dmalen;
int target;
dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
target = s->wregs[ESP_WBUSID] & 7;
DPRINTF("get_cmd: len %d target %d\n", dmalen, target);
if (s->dma) {
s->dma_memory_read(s->dma_opaque, buf, dmalen);
} else {
buf[0] = 0;
memcpy(&buf[1], s->ti_buf, dmalen);
dmalen++;
}
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
if (s->current_dev) {
/* Started a new command before the old one finished. Cancel it. */
s->current_dev->cancel_io(s->current_dev, 0);
s->async_len = 0;
}
if (target >= ESP_MAX_DEVS || !s->scsi_dev[target]) {
// No such drive
s->rregs[ESP_RSTAT] = 0;
s->rregs[ESP_RINTR] = INTR_DC;
s->rregs[ESP_RSEQ] = SEQ_0;
esp_raise_irq(s);
return 0;
}
s->current_dev = s->scsi_dev[target];
return dmalen;
}
static void do_cmd(ESPState *s, uint8_t *buf)
{
int32_t datalen;
int lun;
DPRINTF("do_cmd: busid 0x%x\n", buf[0]);
lun = buf[0] & 7;
datalen = s->current_dev->send_command(s->current_dev, 0, &buf[1], lun);
s->ti_size = datalen;
if (datalen != 0) {
s->rregs[ESP_RSTAT] = STAT_TC;
s->dma_left = 0;
s->dma_counter = 0;
if (datalen > 0) {
s->rregs[ESP_RSTAT] |= STAT_DI;
s->current_dev->read_data(s->current_dev, 0);
} else {
s->rregs[ESP_RSTAT] |= STAT_DO;
s->current_dev->write_data(s->current_dev, 0);
}
}
s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
esp_raise_irq(s);
}
static void handle_satn(ESPState *s)
{
uint8_t buf[32];
int len;
len = get_cmd(s, buf);
if (len)
do_cmd(s, buf);
}
static void handle_satn_stop(ESPState *s)
{
s->cmdlen = get_cmd(s, s->cmdbuf);
if (s->cmdlen) {
DPRINTF("Set ATN & Stop: cmdlen %d\n", s->cmdlen);
s->do_cmd = 1;
s->rregs[ESP_RSTAT] = STAT_TC | STAT_CD;
s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
esp_raise_irq(s);
}
}
static void write_response(ESPState *s)
{
DPRINTF("Transfer status (sense=%d)\n", s->sense);
s->ti_buf[0] = s->sense;
s->ti_buf[1] = 0;
if (s->dma) {
s->dma_memory_write(s->dma_opaque, s->ti_buf, 2);
s->rregs[ESP_RSTAT] = STAT_TC | STAT_ST;
s->rregs[ESP_RINTR] = INTR_BS | INTR_FC;
s->rregs[ESP_RSEQ] = SEQ_CD;
} else {
s->ti_size = 2;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->rregs[ESP_RFLAGS] = 2;
}
esp_raise_irq(s);
}
static void esp_dma_done(ESPState *s)
{
s->rregs[ESP_RSTAT] |= STAT_TC;
s->rregs[ESP_RINTR] = INTR_BS;
s->rregs[ESP_RSEQ] = 0;
s->rregs[ESP_RFLAGS] = 0;
s->rregs[ESP_TCLO] = 0;
s->rregs[ESP_TCMID] = 0;
esp_raise_irq(s);
}
static void esp_do_dma(ESPState *s)
{
uint32_t len;
int to_device;
to_device = (s->ti_size < 0);
len = s->dma_left;
if (s->do_cmd) {
DPRINTF("command len %d + %d\n", s->cmdlen, len);
s->dma_memory_read(s->dma_opaque, &s->cmdbuf[s->cmdlen], len);
s->ti_size = 0;
s->cmdlen = 0;
s->do_cmd = 0;
do_cmd(s, s->cmdbuf);
return;
}
if (s->async_len == 0) {
/* Defer until data is available. */
return;
}
if (len > s->async_len) {
len = s->async_len;
}
if (to_device) {
s->dma_memory_read(s->dma_opaque, s->async_buf, len);
} else {
s->dma_memory_write(s->dma_opaque, s->async_buf, len);
}
s->dma_left -= len;
s->async_buf += len;
s->async_len -= len;
if (to_device)
s->ti_size += len;
else
s->ti_size -= len;
if (s->async_len == 0) {
if (to_device) {
// ti_size is negative
s->current_dev->write_data(s->current_dev, 0);
} else {
s->current_dev->read_data(s->current_dev, 0);
/* If there is still data to be read from the device then
complete the DMA operation immeriately. Otherwise defer
until the scsi layer has completed. */
if (s->dma_left == 0 && s->ti_size > 0) {
esp_dma_done(s);
}
}
} else {
/* Partially filled a scsi buffer. Complete immediately. */
esp_dma_done(s);
}
}
static void esp_command_complete(void *opaque, int reason, uint32_t tag,
uint32_t arg)
{
ESPState *s = (ESPState *)opaque;
if (reason == SCSI_REASON_DONE) {
DPRINTF("SCSI Command complete\n");
if (s->ti_size != 0)
DPRINTF("SCSI command completed unexpectedly\n");
s->ti_size = 0;
s->dma_left = 0;
s->async_len = 0;
if (arg)
DPRINTF("Command failed\n");
s->sense = arg;
s->rregs[ESP_RSTAT] = STAT_ST;
esp_dma_done(s);
s->current_dev = NULL;
} else {
DPRINTF("transfer %d/%d\n", s->dma_left, s->ti_size);
s->async_len = arg;
s->async_buf = s->current_dev->get_buf(s->current_dev, 0);
if (s->dma_left) {
esp_do_dma(s);
} else if (s->dma_counter != 0 && s->ti_size <= 0) {
/* If this was the last part of a DMA transfer then the
completion interrupt is deferred to here. */
esp_dma_done(s);
}
}
}
static void handle_ti(ESPState *s)
{
uint32_t dmalen, minlen;
dmalen = s->rregs[ESP_TCLO] | (s->rregs[ESP_TCMID] << 8);
if (dmalen==0) {
dmalen=0x10000;
}
s->dma_counter = dmalen;
if (s->do_cmd)
minlen = (dmalen < 32) ? dmalen : 32;
else if (s->ti_size < 0)
minlen = (dmalen < -s->ti_size) ? dmalen : -s->ti_size;
else
minlen = (dmalen < s->ti_size) ? dmalen : s->ti_size;
DPRINTF("Transfer Information len %d\n", minlen);
if (s->dma) {
s->dma_left = minlen;
s->rregs[ESP_RSTAT] &= ~STAT_TC;
esp_do_dma(s);
} else if (s->do_cmd) {
DPRINTF("command len %d\n", s->cmdlen);
s->ti_size = 0;
s->cmdlen = 0;
s->do_cmd = 0;
do_cmd(s, s->cmdbuf);
return;
}
}
static void esp_reset(void *opaque)
{
ESPState *s = opaque;
esp_lower_irq(s);
memset(s->rregs, 0, ESP_REGS);
memset(s->wregs, 0, ESP_REGS);
s->rregs[ESP_TCHI] = TCHI_FAS100A; // Indicate fas100a
s->ti_size = 0;
s->ti_rptr = 0;
s->ti_wptr = 0;
s->dma = 0;
s->do_cmd = 0;
}
static void parent_esp_reset(void *opaque, int irq, int level)
{
if (level)
esp_reset(opaque);
}
static uint32_t esp_mem_readb(void *opaque, target_phys_addr_t addr)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr >> s->it_shift) & (ESP_REGS - 1);
DPRINTF("read reg[%d]: 0x%2.2x\n", saddr, s->rregs[saddr]);
switch (saddr) {
case ESP_FIFO:
if (s->ti_size > 0) {
s->ti_size--;
if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
/* Data in/out. */
fprintf(stderr, "esp: PIO data read not implemented\n");
s->rregs[ESP_FIFO] = 0;
} else {
s->rregs[ESP_FIFO] = s->ti_buf[s->ti_rptr++];
}
esp_raise_irq(s);
}
if (s->ti_size == 0) {
s->ti_rptr = 0;
s->ti_wptr = 0;
}
break;
case ESP_RINTR:
// Clear interrupt/error status bits
s->rregs[ESP_RSTAT] &= ~(STAT_GE | STAT_PE);
esp_lower_irq(s);
break;
default:
break;
}
return s->rregs[saddr];
}
static void esp_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
ESPState *s = opaque;
uint32_t saddr;
saddr = (addr >> s->it_shift) & (ESP_REGS - 1);
DPRINTF("write reg[%d]: 0x%2.2x -> 0x%2.2x\n", saddr, s->wregs[saddr],
val);
switch (saddr) {
case ESP_TCLO:
case ESP_TCMID:
s->rregs[ESP_RSTAT] &= ~STAT_TC;
break;
case ESP_FIFO:
if (s->do_cmd) {
s->cmdbuf[s->cmdlen++] = val & 0xff;
} else if ((s->rregs[ESP_RSTAT] & STAT_PIO_MASK) == 0) {
uint8_t buf;
buf = val & 0xff;
s->ti_size--;
fprintf(stderr, "esp: PIO data write not implemented\n");
} else {
s->ti_size++;
s->ti_buf[s->ti_wptr++] = val & 0xff;
}
break;
case ESP_CMD:
s->rregs[saddr] = val;
if (val & CMD_DMA) {
s->dma = 1;
/* Reload DMA counter. */
s->rregs[ESP_TCLO] = s->wregs[ESP_TCLO];
s->rregs[ESP_TCMID] = s->wregs[ESP_TCMID];
} else {
s->dma = 0;
}
switch(val & CMD_CMD) {
case CMD_NOP:
DPRINTF("NOP (%2.2x)\n", val);
break;
case CMD_FLUSH:
DPRINTF("Flush FIFO (%2.2x)\n", val);
//s->ti_size = 0;
s->rregs[ESP_RINTR] = INTR_FC;
s->rregs[ESP_RSEQ] = 0;
s->rregs[ESP_RFLAGS] = 0;
break;
case CMD_RESET:
DPRINTF("Chip reset (%2.2x)\n", val);
esp_reset(s);
break;
case CMD_BUSRESET:
DPRINTF("Bus reset (%2.2x)\n", val);
s->rregs[ESP_RINTR] = INTR_RST;
if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) {
esp_raise_irq(s);
}
break;
case CMD_TI:
handle_ti(s);
break;
case CMD_ICCS:
DPRINTF("Initiator Command Complete Sequence (%2.2x)\n", val);
write_response(s);
break;
case CMD_MSGACC:
DPRINTF("Message Accepted (%2.2x)\n", val);
write_response(s);
s->rregs[ESP_RINTR] = INTR_DC;
s->rregs[ESP_RSEQ] = 0;
break;
case CMD_SATN:
DPRINTF("Set ATN (%2.2x)\n", val);
break;
case CMD_SELATN:
DPRINTF("Set ATN (%2.2x)\n", val);
handle_satn(s);
break;
case CMD_SELATNS:
DPRINTF("Set ATN & stop (%2.2x)\n", val);
handle_satn_stop(s);
break;
case CMD_ENSEL:
DPRINTF("Enable selection (%2.2x)\n", val);
break;
default:
DPRINTF("Unhandled ESP command (%2.2x)\n", val);
break;
}
break;
case ESP_WBUSID ... ESP_WSYNO:
break;
case ESP_CFG1:
s->rregs[saddr] = val;
break;
case ESP_WCCF ... ESP_WTEST:
break;
case ESP_CFG2:
s->rregs[saddr] = val & CFG2_MASK;
break;
case ESP_CFG3 ... ESP_RES4:
s->rregs[saddr] = val;
break;
default:
break;
}
s->wregs[saddr] = val;
}
static CPUReadMemoryFunc *esp_mem_read[3] = {
esp_mem_readb,
NULL,
NULL,
};
static CPUWriteMemoryFunc *esp_mem_write[3] = {
esp_mem_writeb,
NULL,
esp_mem_writeb,
};
static void esp_save(QEMUFile *f, void *opaque)
{
ESPState *s = opaque;
qemu_put_buffer(f, s->rregs, ESP_REGS);
qemu_put_buffer(f, s->wregs, ESP_REGS);
qemu_put_sbe32s(f, &s->ti_size);
qemu_put_be32s(f, &s->ti_rptr);
qemu_put_be32s(f, &s->ti_wptr);
qemu_put_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_put_be32s(f, &s->sense);
qemu_put_be32s(f, &s->dma);
qemu_put_buffer(f, s->cmdbuf, TI_BUFSZ);
qemu_put_be32s(f, &s->cmdlen);
qemu_put_be32s(f, &s->do_cmd);
qemu_put_be32s(f, &s->dma_left);
// There should be no transfers in progress, so dma_counter is not saved
}
static int esp_load(QEMUFile *f, void *opaque, int version_id)
{
ESPState *s = opaque;
if (version_id != 3)
return -EINVAL; // Cannot emulate 2
qemu_get_buffer(f, s->rregs, ESP_REGS);
qemu_get_buffer(f, s->wregs, ESP_REGS);
qemu_get_sbe32s(f, &s->ti_size);
qemu_get_be32s(f, &s->ti_rptr);
qemu_get_be32s(f, &s->ti_wptr);
qemu_get_buffer(f, s->ti_buf, TI_BUFSZ);
qemu_get_be32s(f, &s->sense);
qemu_get_be32s(f, &s->dma);
qemu_get_buffer(f, s->cmdbuf, TI_BUFSZ);
qemu_get_be32s(f, &s->cmdlen);
qemu_get_be32s(f, &s->do_cmd);
qemu_get_be32s(f, &s->dma_left);
return 0;
}
void esp_scsi_attach(void *opaque, BlockDriverState *bd, int id)
{
ESPState *s = (ESPState *)opaque;
if (id < 0) {
for (id = 0; id < ESP_MAX_DEVS; id++) {
if (s->scsi_dev[id] == NULL)
break;
}
}
if (id >= ESP_MAX_DEVS) {
DPRINTF("Bad Device ID %d\n", id);
return;
}
if (s->scsi_dev[id]) {
DPRINTF("Destroying device %d\n", id);
s->scsi_dev[id]->destroy(s->scsi_dev[id]);
}
DPRINTF("Attaching block device %d\n", id);
/* Command queueing is not implemented. */
s->scsi_dev[id] = scsi_generic_init(bd, 0, esp_command_complete, s);
if (s->scsi_dev[id] == NULL)
s->scsi_dev[id] = scsi_disk_init(bd, 0, esp_command_complete, s);
}
void *esp_init(target_phys_addr_t espaddr, int it_shift,
espdma_memory_read_write dma_memory_read,
espdma_memory_read_write dma_memory_write,
void *dma_opaque, qemu_irq irq, qemu_irq *reset)
{
ESPState *s;
int esp_io_memory;
s = qemu_mallocz(sizeof(ESPState));
if (!s)
return NULL;
s->irq = irq;
s->it_shift = it_shift;
s->dma_memory_read = dma_memory_read;
s->dma_memory_write = dma_memory_write;
s->dma_opaque = dma_opaque;
esp_io_memory = cpu_register_io_memory(0, esp_mem_read, esp_mem_write, s);
cpu_register_physical_memory(espaddr, ESP_REGS << it_shift, esp_io_memory);
esp_reset(s);
register_savevm("esp", espaddr, 3, esp_save, esp_load, s);
qemu_register_reset(esp_reset, s);
*reset = *qemu_allocate_irqs(parent_esp_reset, s, 1);
return s;
}